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Several models for fibrous biological tissues have been proposed in the past, taking into account the fibrous microstructure through different homogenization methods. The aim of this paper is to compare theoretically and experimentally two existing homogenization methods -the Angular Integration method and the Generalized Structure Tensor method -by adapting them to a damage model for a planar fibrous tissue made of linear elastic and brittle fibers. The theoretical implementation of the homogenization methods reveals some differences once damage starts in the fibrous tissue; in particular, the anisotropy of the tissue evolves differently. The experimental aspect of this work consists in identifying the parameters of the damage model, with both homogenization methods, using inflation tests until rupture on a biological membrane. The numerical identification method is based on the simulation of the tests with the real geometry of the samples and the real boundary conditions computed by Stereo Digital Image Correlation. The identification method is applied to human liver capsule. The collagen fibers Young's modulus (19±6 MPa) as well as their ultimate longitudinal strain (33±4%) are determined; no significant difference was observed between the two methods. However, by using the experimental boundary conditions, we could observe that the damage progression is faster for the Angular Integration version of the model.

Introduction 1

In the field of biomechanics of soft tissues, a lot of 2 studies have been focused on the characterization of 3 the behavior of biological tissues and organs. This is 4 due to the numerous medical applications of a human 5 body model, which usually remain in the physiologi-6 cal range of loadings. However, the potentialities of a 7 virtual human body including information about failure 8 of the tissues are important in several fields, including 9 road safety and surgery. Many fatal cases caused by car 10 crashes and reported in the literature are due to abdomi-11 nal organ injuries, especially the spleen, the liver and the 12 kidney [START_REF] Tinkoff | American Association for the Surgery of Trauma Organ[END_REF]. Predicting the occurrence 13 of abdominal injuries by car crash simulation would im- (Balzani et al, 2006), or the fiber bundles and the 96 groundmatrix (Calvo et al, 2006;Rodriguez et al, 2006).
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The evolution of the damage variables is discontinuous, (Viidik , 1972;[START_REF] Orberg | Scanning electron microscopy of collagen fibers in intestine[END_REF] 106 Hill et al, 2012).

107

In this study, we focus on two homogenization meth-108 ods proposed in the literature and investigate their dif-109 ferences in the range of damaging loads. The AI 110 method proposed by [START_REF] Lanir | Constitutive equations for fibrous connective tissues[END_REF] and the GST method 111 proposed by (Gasser et al, 2006) have been theoreti- -viscoelasticity e.g. [START_REF] Limbert | A transversely isotropic viscohyperelastic material:: Application to the modeling of biological soft connective tissues[END_REF], anisotropy 

157 ψ = ψ m + ψ f (1)
For the sake of clarity, the matrix contribution, al- 

1 π π 2 -π 2 ρ(ξ) dξ = 1 π A 0 ρ(ξ) dξ = 1 (2)
In the case of a homogeneous distribution, i.e. ρ(ξ) only along its longitudinal axis n(ξ) and its strain energy 

= 182 constant, one has ρ(ξ) = 1 ∀ξ ∈ A 0 = [-π/2,
194 is φ f = φ f (ε f ) i.e.
ψ AI f (E, D) = 1 π A 0 ρ(ξ, D)φ f (ξ, E) dξ (3)
The expression of the second Piola-Kirchhoff stress 205 tensor (PK2) is: 

206 S AI f = ∂ψ AI f (E, D) ∂E = 1 π A 0 ρ(ξ, D) ∂φ f (ξ, E) ∂E dξ ( 
S AI f = E π A 0 ρ (ξ, D) (M : E) M dξ (5)
rial and M = n(ξ) ⊗ n(ξ) the orientation tensor.
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The Cauchy stress tensor is obtained using the fol-

T = J -1 F.S.F T (6)
where F is the deformation gradient and J = det(F). tensor onto the structure of the undamaged fibers.

T AI f = J -1 F.S AI f .F T = 2E Jπ F. A 0 ρ (ξ, D) (M : E) Mdξ.F T (
225

H = 1 π A 0 ρ(ξ, D)n(ξ) ⊗ n(ξ)dξ (8) 
Thus, the constitutive law is applied to the tissue 226 rather than to its constituent fibers, taking the scalar

227

E h = H : E as the strain value to express the macro-228 scopic strain energy ψ GS T f . In the linear case we get:

229 ψ GS T f = 1 2 E E 2 h = 1 2 E (H : E) 2 (9)
From that expression, we deduce the PK2 tensor corresponding to the GS T model and the Cauchy stress: do not change.

S GS T f = ∂ψ GS T f ∂E = E (H : E) H (10) 
T GS T f = J -1 F.S GS T f .F T = E J (H : E) F.H.F T (
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The assumption that the distribution is strictly pos- tor n defined by:

284 n = cos ξ X m + sin ξ Y m ( 12 
)
The tissue is subjected to a biaxial strain character-285 ized by the macroscopic Green-Lagrange strain tensor 286 E described in Cartesian coordinates by:

287 E = ε r k (cos ϕ X m ⊗ X m + sin ϕ Y m ⊗ Y m ) (13) = E 1 X m ⊗ X m + E 2 Y m ⊗ Y m (14)
where ε r is the ultimate longitudinal strain of the 288 fibers and ϕ is the loading angle. From here on, we 

Initial elasticity range 304

The elasticity range D of a fiber is defined in the strain space by:

D = {ε f | ε f -ε r < 0} (16)
The corresponding elasticity range of the tissue, de-305 noted S is simply:

306 S = {E | ∀ξ, n(ξ).E.n(ξ) -ε r < 0} (17)
The shape of S corresponds to the resolution of the equation ε fε r < 0 and is simply described by:

             k < 1 cosϕ ∀ ϕ ∈ 0, π 4 k < 1 sinϕ ∀ ϕ ∈ π 4 , π 2 (18)
At the boundary of S, at least one fiber breaks as the 307 non-rupture criterion is not respected anymore (Eq.16).

308

The first fiber to break is always the one oriented along

309 ξ = 0 if ϕ ≤ π 4 or the one oriented along ξ = π 2 if ϕ ≥ π 4 .
310

The next section describes the damage process of the Eq.18.

320

The damaged state at the microscale is then defined an intensity k greater than the bounds defined in Eq.18 328 leads to the fracture of the fibers as follows:

329 ϕ ∈ 0, π 4 :            all fibers are broken ∀ ξ ∈ -ξ 1 , ξ 1 ξ 1 = arccos 1 -k sinϕ k (cosϕ -sinϕ) (19) ϕ = π 4 : all fibers break simultaneously at k = √ 2 (Eq.15) (20) ϕ ∈ π 4 , π 2 :            all fibers are broken ∀ ξ ∈ -π 2 , -ξ 2 ∪ ξ 2 , π 2 ξ 2 = arccos 1 -k sinϕ k (cosϕ -sinϕ) (21)
as detailed in (Bel-Brunon et al, 2012). 363 (SDIC) via VIC3D software [START_REF] Sutton | Image correlation for shape, motion and deformation measurements: basic concepts, theory and applications[END_REF].

Influence of the homogenization method on the

ψ AI f = E π ξ 2 ξ 1 (M(ξ) : E) 2 dξ = E π ξ 2 ξ 1 E 1 cos 2 ξ + E 2 sin 2 ξ 2 dξ ( 22 
)
ψ GS T f = E 2 (H : E) 2 = 2E π 2            ξ 2 ξ 1 E 1 cos 2 ξ + E 2 sin 2 ξ dξ            2 (23) 0 
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A zone of interest (ZOI) was defined on the mem-409 brane surface (Fig. 5, grey surface). Its shape was circu-410 lar to fit the whole sample surface. We then defined a 411 rectangular grid on the reference image of the sample.

412

The rectangular shape was chosen to ease the meshing The algorithm of Levenberg-Marquardt (Levenberg, 457 1944;[START_REF] Marquardt | An algorithm for least-squares estimation of nonlinear parameters[END_REF] 

Simulation of the test 524

The method to simulate the test is described in 525 Sec.3.1 but some details specific to this application are 526 given here.

527

For the simulation, the thickness of the capsule 528 was assumed homogeneous throughout the liver. Its To ease the convergence of the identification, the op- 

14

  prove user safety by suggesting technical changes in the 15 et al, 2005). But only a few papers address the damage 88 of fibrous biological tissues. Some consider the dam-89 age to be solely due to fiber or fibril fracture at the mi-90 croscale (Hurschler et al, 1997). Balzani et al., Calvo 91 et al. and Rodriguez et al. all use the continuum the-92 ory to describe damage in a tissue made of a groundma-93 trix and bundles of fibers; they use internal macroscopic 94 damage variables associated to either the fiber bundles 95 solely

  98i.e. it is based on the maximum value of an equiva-99 lent strain over the past history. In (Rodriguez et al, 100 2006) however, the damage in the fiber bundles is con-101 trolled by a probability density function that reflects the 102 stochastic waviness of the fibers in their reference state; 103 it is therefore better suited to biological soft tissues as 104 collagen fibers are usually wavy in an unloaded biolog-105 ical tissue, see e.g.

112

  cally compared in (Cortes et al, 2010) for physiological 113 ranges of loading, i.e. without any damage. Limits of 114 the GST have been emphasized for fibrous distributions 115 close to isotropy, but the differences between AI and 116 GST methods vanish in the case of quasi-equibiaxial 117 loading. In the present work, the experimental test case 118 combines isotropic tissue and quasi-equibiaxial loading. 119 The experiments are mainly devoted to provide data for 120 the failure mechanism of this kind of tissue. But a by-121 product of these tests is also to produce some experi-122 mental data which allow comparing the non linear re-123 sponse of the two models in such a configuration. 124 Although several sophisticated models are available 125 in the literature to account for various physical features 126

  127 e.g. (Ateshian , 2007), fiber crimp e.g. (Cacho et al, 128 2007), etc -we chose to compare the homogenization 129 methods using a simple model describing an isotropic 130 fibrous membrane, made of linear elastic brittle fibers 131 and loaded with biaxial tension. The tissue macroscopic 132 damage is due to fiber rupture at the microscale. This is 133 the focus of the second part of the paper. A method to 134 identify the two versions of the obtained damage model 135 using inflation tests and full-field measurements is then 136 presented in the third part. The fourth part is an applica-137 tion of this method on human liver capsule; results are 138 discussed in the fifth part.139 cal comparison of the homogenization methods 141 The proposed model consists of a damage model for 142 the tissue that is homogenized with two homogenization 143 methods. Some simplifying assumptions (negligible re-144 orientation of the fibers, linear elastic behavior of the 145 fibers or the tissue) of this academic model help making 146 the framework as clear as possible to focus on the two 147 main points that are the comparison of the homogeniza-148 tion methods and the identification method.

(

  Gasser et al, 2006).152We consider a plane tissue consisting of a groundma-153 trix and fibers. We consider an additive decomposition 154 of the Helmoltz free-energy function ψ, defined per unit 155 reference volume, into the free energy of the groundma-156 trix ψ m and the free energy of the fibers ψ f :

  φ f (ξ, E), whose expression depends 195 on the constitutive equation of the fiber. n is the unit 196 vector associated to the initial orientation of the fiber. 197 As described in the next section, we neglect the change 198 of orientation between the fibers and the local reference 199 frame during loading. Hence the vector n which repre-200 sents the direction of each fiber with respect to the con-201 tinuous material frame does not change during loading. 202 Therefore, on the tissue's scale, the free energy ψ AI f of 203 the fibers is:

  204

254(

  itive helps simplifying the framework as it leads to a 255 simple expression of the damage angles without extra 256 condition of existence of fibers in a specific direction.257The third assumption relies on the conclusions of Sacks 258 and Gloeckner and Liao et al. which observed that the 259 closer the loading to equibiaxiality, the lesser the reori-260 entation of the fibers (Sacks and Gloeckner, 1999; Liao 261 et al, 2005). Therefore, in the present study which fo-262 cuses on biaxial loading close to equibiaxiality, we shall 263 ignore fiber reorientation. This assumption helps sim-264 plifying the framework of the model. Let us quote how-265 ever that the description of the damage variables evo-266 lution that is given in the paper does not require this 267 assumption. This model is academic and is designed 268 to produce clear conclusions when we compare the two 269 homogenization methods proposed in the previous sec-270 tion. It can be extended using a two scale approach to 271 describe more realistic situations as uncrimping, dam-272 age fibers, non isotropic fiber orientations; if they are 273 based on statistical distributions of properties -e.g. in 274 Cacho et al, 2007) for uncrimping -the price to pay 275 to these extensions is a larger number of internal vari-276 ables to describe the small scale state and therefore, an 277 increased computational cost and a decreased identifia-278 bility of the model. 279 Let us consider a planar fibrous tissue. In the material 281 plane (X m ,Y m ), the direction of a fiber is characterized 282 by the angle ξ ∈ [-π/2, π/2] and its initial direction vec-283

  289will assume that ϕ ∈ [0, π/2] and k ≥ 0, which implies 290 strict biaxial tension, i.e. no compression and possibly 291 different amplitude in both tension directions. 292 The fibers constituting the tissue are uniaxial ele-293 ments which can withstand only solicitations along their 294 axis. We define the longitudinal strain ε f of a fiber ori-295 ented along an angle ξ by: 296 ε f = n(ξ).E n(ξ) = kε r cos ϕ. cos 2 ξ + sin ϕ sin 2 ξ (15) This corresponds to the Green strain. We can observe 297 that for ϕ = π 4 all the fibers are loaded equally; then, 298 their longitudinal strain is ε f = kε r √ 2 . Also, differentiating 299 ε f with respect to ξ shows that the most highly loaded 300 fibers are oriented along the principal directions of the 301 strain tensor, that is ξ = 0 or ξ = π 2 , see details in (Bel-302 Brunon et al, 2012).

  303

  321by two subsets: the subset of healthy fibers and the sub-322 set of broken ones. These sets are defined by two angles 323 ξ 1 and ξ 2 . The vector of the two damage variables ξ 1 and 324 ξ 2 is denoted D which characterizes the damage state of 325 the tissue. These angles are obtained by the solution of 326 inequality ε f (ξ)ε r > 0. A proportional loading with 327
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 12 Figure 1: Components of the Green-Lagrange strain tensor of the test case.

  the fibers contribution to the strain energy 351 for each homogenization method (Fig.3) shows that un-352 der the current assumptions of uniform angular dis-353 tribution prior to damage and brittle linear fibers, the 354 two models behave differently only when fibers start to 355 break. This difference can be observed by expanding the 356 expressions of these energies(Eq.22,23). Let us denote 357 X the term E 1 cos 2 ξ + E 2 sin 2 ξ . The AI fiber energy 358 is the integral of X 2 whereas the GST one is the square 359 of the integral of X. Indeed, we can observe that with ξ 1 360 and ξ 2 constant (especially prior to damage), the ratio 361 of ψ GS T f to ψ AI f is constant throughout the loading and 362 independent of the value of the elastic parameter E.

Figure 3 :Figure 4 :

 34 Figure 3: Comparison of the macroscopic strain energies of the fibrous tissue for the two homogenization methods with the proposed damage model for an increasing strain amplitude.Besides, the components of tensor PK2 displayed on

Figure 5 :

 5 Figure5: Nodes of the grid where the experimental displacement is caught. The simulation mesh is also defined on these nodes.

413Figure 6 :

 6 Figure 6: Measurement of the error in the vertical displacement used for the identification procedure.

  was chosen to ensure a good 458 convergence of the minimization of the error and imple-459 mented in Matlab. The Matlab routine wrote the succes-460 sively required Abaqus input files, launched the Abaqus 461 simulations using the command function, and compiled 462 and ran the Fortran post-treatment files to get the node 463 displacements. The obtained simulated displacements 464 were read to build the Jacobian matrix and to further up-465 date the material parameters and the regularization fac-466 tor. Several initial guesses were tested to ensure that the 467 identified parameter corresponded to a global minimum. 468 In the case of the present damage model, the three pa-469 rameters to identify were the fibers and the groundma-470 trix Young's moduli, as well as the fibers ultimate strain. 471 As the contributions of both the matrix and the fibers 472 are independent, the solution of the identification of the 473 Young's moduli is not unique. An additional statement 474 was necessary; in the present paper, we assumed that the 475 matrix had a very small influence. Its modulus has been 476 chosen to be about one thousand times smaller than the 477 fibers modulus. Preliminary studies within this work led 478 to choose a value of 0.01 MPa. 479 The determination of the fibers ultimate longitudinal 480 strain was conducted using the ultimate pressure and de-481 formation state of the material. As mentioned before, 482 the matrix was much softer than the fibers. Therefore, 483 a classical Finite Element simulation, without any im-484 proved tool to compute failure (such as X-FEM), lead 485 to a divergent result once the fibers break. SDIC was 486 conducted until the last image before the sample rup-487 ture, corresponding to a pressure p last . We assumed then 488 that the pressure increase ∆p between two images was 489 constant at this stage, so that the ultimate pressure was 490 known (p ult = p last + ∆p). The image and pressure ac-491 quisition frequency of 50 Hz is fast enough to ensure a 492 small pressure increase between two images and there-493 fore, a good estimation of the rupture pressure. The 494 fiber ultimate strain corresponded to a divergent com-495 putation for this specific pressure.

496 4 .

 4 Application to human liver capsule 497 The damage model and identification procedure pre-498 sented in the previous sections were applied to human 499 liver capsule. This tissue can indeed be considered as 500 isotropic as confocal microscopy on the collagen fibers 501 of the capsule did not reveal any preferred direction 502 (Brunon et al, 2011). The experimental protocol has 503 been presented in a previous paper (Brunon et al, 2011); 504 the main features are recalled here.

  505 4.1. Experimental set-up 506 Inflation tests were conducted on 15 samples of hu-507 man liver capsule, all from the same liver. After being 508 covered with a fine random pattern, the circular samples 509 were fixed between two silicone flat seals (φ int = 25 mm, 510 φ ext = 30 mm) on a PMMA plate (Fig.7). The circular 511 shape of the samples was chosen so that the inflation test 512 corresponded to rather equibiaxial tension. The capsule 513 being translucent allowed a throughout lighting which 514 prevented possible light reflections on the camera sen-515 sors and ensured a good SDIC. The capsule was inflated 516 with air at a strain rate of approximately 10 -2 s -1 before 517 rupture. The deformation of the capsule was recorded 518 by two digital DALSA cameras associated to two 35 519 mm macro-lenses to have the appropriate size (20 × 20 520 mm 2 ) and depth of field (around 10 mm). The pressure 521 was recorded using a 3-bar ENTRAN EPX-N1 pressure 522 sensor (accuracy ± 1%).

Figure 7 :

 7 Figure 7: Top: experimental device: view of the dedicated system to load the sample (without the clamp and screws) when illuminated. Bottom: Example of the vertical displacement field (in mm) computed by stereocorrelation on the inflated capsule.

529

  value was set to 0.1 mm, corresponding to a typical 530 mean value of measured thicknesses in previous studies 531[START_REF] Snedeker | Strain-rate dependent material properties of the porcine and human kidney capsule[END_REF] Hollenstein et al, 2006; Brunon 532 et al, 2010). The number of elements was fixed by the 533 grid size -0.5×0.5 mm 2 -of the SDIC. The number of 534 elements depended on the sample and was around 500.535The reference -unloaded -state of the capsule was 536 defined after computing the position of the capsule by 537 SDIC. We set the reference state to be the first state (im-538 age) with a constant curvature sign. This means that 539 there was no more wrinkling and that the displacements 540 further computed relative to this reference state would 541 be consistent. The capsule was therefore slightly in-542 flated at this reference state; the initial pressure was 543 measured around 0.002 MPa, corresponding to less than 544 4% of the maximal measured pressure. The main diffi-545 culty as we will see in the next section is the control of 546 the clamping conditions. In order to have a good model-547 ing of the real boundary conditions, the SDIC-computed 548 displacements have been used to set the boundary con-549 ditions of the model. 550 The simulation was conducted using an explicit pro-551 cedure. This resulted in vibrations of the capsule if the 552 simulation speed was the real one. Therefore the sim-553 ulated test was five times slower than the experimental 554 test; this ensured a good representation of the beginning 555 of the deflection curve and a good convergence of the 556 identification algorithm.

  557

  558 timization procedure was conducted in two steps: we 559 first minimized the error on the pole of the sphere verti-560 cal position ; this gave a first estimation of the parame-561 ters. Then we adjusted these previously determined pa-562 rameters using the error on all the nodes of the capsule. 563 This method revealed that the position of the pole was 564 a rich enough information to identify the parameters of 565 the damage law, as the optimization of the parameters 566 during the second phase lead to less than 5% of vari-567 ation of the identified parameters provided the experi-568 mental boundary conditions are correctly modeled.

  Fig.8shows the result of the identification of the

Figure 8 :

 8 Figure 8: Identification of the GS T version of the damage model for human hepatic capsule. Expe and Num are experimental data and simulated data respectively.

Figure 9 :

 9 Figure 9: Comparison of the failure surface obtained with both homogenization methods (left:AI, right:GS T ). ξ g = 2π (ξ 2ξ 1 ) so ξ g = 1 (red) with no damage and decreases to 0 (blue) when damage increases.
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  The groundmatrix elasticity modulus, which is a param-657 eter of the complete model, cannot be identified using 658 this protocol for two reasons: the parallel contribution 659 of both the fibers and the groundmatrix leads to a non-660 unique solution for the identification of their Young's 661 moduli; the groundmatrix contribution to the overall en-662 ergy and stress is very low in a connective tissue, so that 663 the experimental noise prevents a robust identification 664 of its elasticity. Therefore the matrix elasticity modu-665 lus was set up to an arbitrary low value. Comparing the 666 fibers Young's modulus obtained here to values from the 667 literature would require better knowledge on the tissue 668 microstructure. The capsule is mainly made of collagen 669 fibers of type I and III. The value of 19 MPa is rather 670 low compared to those from the literature that range 671 for collagen of type I from 0.4 to 3 GPa (Fung, 1993; 672 Sasaki and Odajima, 1996; Carlisle et al, 2010). Only 673 one paper has comparable values (Lopez-Garcia et al, 674 2010). A quantification of the microstructure would 675 be necessary to explain this discrepancy; previous stud-676 ies showed indeed the strong influence of structure over 677 stiffness of the collagen (Gautieri et al, 2011). 678 On the other hand, the ultimate strain determined us-679 ing this damage model can be compared to the literature 680 as it does not depend on the quantity of fibers in each 681 direction. The value of 33 ± 4% is in the range of the 682 the one assessed in (Carlisle et al, 2010). 683 The main feature of the identification method is the 684 simulation of the test using experimental boundary con-685 ditions. One of the main issues when testing soft tis-686 sues is to ensure the repeatability of the boundary condi-687 tions from one sample to the other. The need for special 688 clamping technics, that do not damage the sample and 689 prevent any sliding implies that the boundary conditions 690 are not perfectly controlled, especially with such a thin 691 tissue. Using full-field measurement with high qual-692 ity images allows determining the actual strain field on 693 the sample rather accurately. In our case, several sam-694 ples experienced slippage or wrinkled stress free states 695 but these experimental characteristics are caught by the 696 SDIC and included in the simulation. Once autom-697 atized, the identification procedure can therefore take 698 into account the variability of the experimental condi-699 tions, to improve the material parameters determination.

Table 1 :

 1 Identified values of the fibers Young modulus and determined values of their ultimate strain, for both AI and GS T homogenization method. Cells exhibiting "-" correspond to samples that experienced slippage and did not break. Only the values of Young's modulus obtained with the AI method are displayed as they were the same as the ones obtained with the GS T method.

				.435	0.345		
		2	20.0	0.290	0.275		
		3	19.6	0.305	0.275		
		6	30.5	-	-		
		7	24.0	0.390	0.345		
		8	19.8	-	-		
		9	20.0	0.355	0.340		10
		10	11.3	0.290	0.275		
		11 12 13 14 15	25.3 14.9 25.4 14.0 12.1	-0.345 0.315 0.365 -	-0.335 0.300 0.360 -	Altitude of the pole (mm)	4 6 8 2	Expe 1 Num 1 Expe 2 Num 2 Expe 6 Num 6 Expe 10 Num 10 Expe 14
								Num 14
							0
							0	0.02	0.04	0.06	0.08
								Pressure (MPa)
							10
	592 593	the whole fibrous tissue -which makes the two models equivalent without any damage.	Altitude of the pole (mm)	4 6 8 2	Expe 7 Num 7 Expe 8 Num 8 Expe 11 Num 11 Expe 12
	594						0	Num 12
							0	0.02	0.04	0.06	0.08
	595							Pressure (MPa)
	596	For the identification of the ultimate strain ǫ r , the ul-		10
	597 598 599 600 601 602 603	timate pressure was set to 105% of the pressure corre-sponding to the last image before rupture, as explained in Sec.3.2. A mean value of 33 ± 4% is obtained. The two versions of the model give approximately the same results in terms of ultimate strain of the fiber. Fig.9 shows the failure surface obtained with both model. With ideal boundary conditions, the capsule	Altitude of the pole (mm)	4 6 8 2 0	Expe 3 Num 3 Expe 9 Num 9 Expe 13 Num 13 Expe 15 Num 15
	604	sample being circular would lead to an equal loading on		0	0.02	0.04 Pressure (MPa)	0.06	0.08
	605	all the fibers and a brutal rupture of all the fibers at the		
	606	same step. Using the experimental boundary conditions		
	607	leads to a non-equibiaxial loading and a more localized		
	608	rupture, especially with the GS T version model. We		
	609	can see the damage and the strain concentration in sev-		
	610	eral elements (light to dark blue). The AI version of the		
	611	model leads to a faster increase of damage in all the el-		
	612	ements: the loading is indeed much more biaxial with		
	613	this version once the damage occurs than with the GS T		
	614	version, as we can see on the Fig.4; the stress in the less		
	615	loaded direction is still quite high while it drops really		
	616	fast in the GS T version.				

lowing expression:
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Thus:

greater amplitude in the 11 direction than in the 22 di-336 rection (Fig. 1); all the following plots of this section e = P j=1 N i=1 δ ( j) i z ( j) pi (24) δ ( j) i = |z ( j) iz ( j) pi | (25) with P the number of steps in Abaqus, N the number sions of the damage model. In the inflation test case,

the tissue is loaded with pressure; this emphasizes the 704 difference in damage progression between the two ho-705 mogenization methods.

706

The main issue of the experimental protocol is that 707 the membrane failure occurs rather rapidly, which does and therefore, it could be caught by the SDIC system.

723

The identification method presented here can be