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Abstract

This study focuses on the numerical modeling of wave propagation in fractionally-dissipative

media. These viscoelastic models are such that the attenuation is frequency-dependent and

follows a power law with non-integer exponent within certain frequency regimes. As a

prototypical example, the Andrade model is chosen for its simplicity and its satisfactory

fits of experimental flow laws in rocks and metals. The corresponding constitutive equa-

tion features a fractional derivative in time, a non-local-in-time term that can be expressed

as a convolution product which direct implementation bears substantial memory cost. To

circumvent this limitation, a diffusive representation approach is deployed, replacing the

convolution product by an integral of a function satisfying a local time-domain ordinary

differential equation. An associated quadrature formula yields a local-in-time system of

partial differential equations, which is then proven to be well-posed. The properties of the

resulting model are also compared to those of the Andrade model. The quadrature scheme

associated with the diffusive approximation, and constructed either from a classical poly-

nomial approach or from a constrained optimization method, is investigated. Finally, the

benefits of using the latter approach are highlighted as it allows to minimize the discrep-

ancy with the original model. Wave propagation simulations in homogeneous domains are

performed within a split formulation framework that yields an optimal stability condition
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and which features a joint fourth-order time-marching scheme coupled with an exact inte-

gration step. A set of numerical experiments is presented to assess the overall approach.

Therefore, in this study, the diffusive approximation is demonstrated to provide an effi-

cient framework for the theoretical and numerical investigations of the wave propagation

problem associated with the fractional viscoelastic medium considered.

Keywords: Viscoelasticity; Andrade model; Fractional derivatives; Transient wave

propagation; Finite differences

1. Introduction1

There is a long history of studies discussing or providing experimental evidences of2

frequency-dependent viscoelastic attenuations, as observed in e.g. metals [1], acoustic me-3

dia [2, 3] and in the Earth [4, 5]. Such a behavior is classically modeled using a fractional4

derivative operator [6, 7], a mathematical tool generalizing to real parameters the stan-5

dard derivatives of integer orders [8]. While fractional calculus is now a mature theory in6

the field of viscoelasticity [9], some issues remain commonly encountered. They mostly7

revolve around the two questions of:8

(i) Incorporating fractional dissipation into viscoelastic models that both fit experi-9

mental data and have a theoretical validity regarding, e.g., causality properties [10, 11] or10

the Kramers-Kronig relations [12].11

(ii) Implementing numerically these fractional models to perform wave propagation12

simulations. This latter problem is commonly tackled using standard approaches [13] for13

modeling constant-law of attenuation over a frequency-band of interest, i.e. with the frac-14

tional viscoelastic model being approximated by multiple relaxation mechanisms [14].15

Bearing in mind the issue (i) discussed above, it is chosen to anchor the present study16

to a specific, yet prototypical, physically-based viscoelastic model, namely the Andrade17

model. Initially introduced in [1] to fit experimental flow laws in metals, it has been fur-18

ther investigated in [15]. It is now used as a reference in a number of studies [16, 17, 18, 19]19

for the description of observed frequency-dependent damping behaviors in the field of geo-20
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physics and experimental rock mechanics. Moreover, the Andrade model creep function,21

as written, can notably be decomposed as the sum of a fractional power-law and a standard22

Maxwell creep function, therefore corresponding rheologically to a spring-pot element ar-23

ranged in series with a spring-dashpot Maxwell model. Therefore, while being physically24

motivated and rooted in experiments, this model gives leeway to cover the spectrum from25

a conventional rheological mechanism to a more complex fractional model, and this with26

only a few parameters.27

28

This study focuses on the issue (ii), namely the numerical modeling of wave propa-29

gation within an Andrade medium that exhibits fractional attenuation. The objective is to30

develop an efficient approximation strategy of the fractional term featured in this viscoelas-31

tic model in view of the investigation and simulation of its transient dynamical behavior.32

A model-based approach is explored in the sense that one aims at a direct approximation33

of the original constitutive equation. Therefore, the latter is not intended to be superseded34

by another viscoelastic model that would be designed to fit only a given observable. For35

example, the usual approach that employs a multi-Zener model typically approximates the36

quality factor only.37

38

The article aim and contribution are twofold:39

(i) Deploy an approximation of the fractional derivative featured in the constitutive40

equation considered. A direct discretization of this term, that is associated with a non-local41

time-domain convolution product [8] requires the storage of the entire variables history,42

which is out of reach for realistic simulations. The Grünwald-Letnikov approximation of43

fractional derivatives constitutes a tractable approach, commonly used in viscoelasticity44

[20]. Its main drawback concerns the stability analysis to be performed for the numeri-45

cal scheme so-obtained. Indeed, Von-Neumann stability of multistep schemes requires to46

bound the characteristic roots of the amplification matrix, which may be a difficult task.47

We do not follow this approach here. Alternatively, a so-called diffusive representation is48
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preferred [21], as it allows to recast the equations considered into a local-in-time system49

while introducing only a limited number of additional memory variables in its discretized50

form [22]. Following later improvements of the method in [23, 24, 25, 26], an efficient51

quadrature scheme is investigated in order to obtain a satisfactory fit of the reference model52

compliance.53

(ii) Implement the resulting approximated model into a wave propagation scheme.54

While the available literature on the numerical simulation of transient wave propagation55

within fractionally-damped media is relatively scarce, see e.g. [27, 28], the aim is here56

to demonstrate the efficiency of the proposed approach. For the sake of simplicity, the57

viscoelastic medium considered is assumed to be unidimensional and homogeneous. Af-58

ter discretization of the dynamical system at hand, a Strang splitting approach [29] is59

adopted, both to reach an optimal stability condition and to enable the use of an efficient60

time-marching scheme coupled with an exact integration step. Moreover, deriving a semi-61

analytical solution for the configuration considered, as a baseline, a set of numerical results62

is presented to assess the quality of the numerical scheme developed. The overall features63

and performances of the diffusive representation are finally discussed to compare the An-64

drade model with its diffusive approximated counterpart.65

Notably, this study demonstrates that the behavior of fractional viscoelastic models66

such as the Andrade model can be correctly described using a diffusive approximation.67

The resulting model is shown to be well characterized mathematically while being easily68

tractable numerically in view of performing simulations in the time domain.69

70

This article is organized as follows. The Andrade model is presented and discussed71

in Section 2. Considering the featured fractional derivative, a corresponding diffusive72

approximated (DA) version of the former is subsequently formulated and referred to as73

the Andrade–DA model. The evolution problem is investigated in Section 3, with the74

derivation and analysis of the first-order hyperbolic system associated with the Andrade–75

DA model. Section 4.1 is concerned with the definition and computation of an efficient76
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quadrature scheme for the diffusive approximation, while the implementation of the fully77

discretized system is described in Section 4.2. Corresponding numerical results are pre-78

sented and discussed in Section 5.79

2. Fractional viscoelastic model80

2.1. Preliminaries81

The causal constitutive law describing the behavior of a 1D linear viscoelastic medium82

can be expressed in terms of the time-domain convolution83

ε(t) =

∫ t

0

χ(t− τ)
∂σ

∂τ
(τ) dτ, (1)

with creep function χ, stress field σ and strain field ε = ∂u/∂x associated with unidimen-84

sional displacement u, time t and space coordinate x.85

Next, for parameters satisfying 0 < β < 1, the so-called Caputo-type fractional deriva-86

tive [7, 9, 8] of a causal function g(t) is defined as87

dβg

dtβ
(t) =

1

Γ(1− β)

∫ t

0

(t− τ)−β dg

dτ
(τ) dτ, (2)

where Γ is the Gamma function. Defining the direct and inverse Fourier transforms in time88

of a function g(t) as89

ĝ(ω) =

∫ +∞

−∞

g(t)e−iωt dt, g(t) =
1

2π

∫ +∞

−∞

ĝ(ω)eiωt dω,

where ω is the angular frequency and i =
√
−1, then the frequency-domain counterpart of90

equation (2) reads91

̂[dβg

dtβ

]

(ω) = (iω)β ĝ(ω), (3)

so that definition (2) is a straightforward generalization of the derivative of integer order.92

2.2. Andrade model93

The Andrade model [1] is characterized by the creep function given by94

χ(t) =

[

Ju +
t

η
+ A tα

]

H(t), 0 < α < 1, (4)
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with Heaviside step function H(t), unrelaxed compliance Ju, viscosity η and two positive95

physical parameters A and α. Usual fits with experimental data correspond to 1
3
≤ α ≤ 1

2
96

[15, 16]. The composite law (4) can be additively decomposed into a standard Maxwell97

rheological mechanism with creep function t 7→ Ju+ t/η and a relaxation time τMx = η Ju,98

together with a power law dependence in time t 7→ A tα which constitutes its main feature.99

Examples behaviors of the creep function (4) are illustrated in Figure 1a.100

The Fourier transforms ε̂ and σ̂ of the strain and stress are linked by ε̂ = N σ̂ with the101

complex compliance N being defined as N(ω) = iωχ̂(ω). The latter can be deduced from102

the Fourier transform χ̂ of the creep function (4) as103

N(ω) = Ju + (iη ω)−1 + AΓ(1 + α) (i ω)−α. (5)

Straightforward manipulations on (3), (4) and (5) lead to the following constitutive equa-104

tion in differential form for the Andrade model105

∂ε

∂t
= Ju

∂σ

∂t
+

1

η
σ + AΓ(1 + α)

∂1−α

∂t1−α
σ. (6)

2.3. Dispersion relations106

The complex wave number k(ω) satisfies107

k(ω) =
√
ρ ω [N(ω)]1/2 :=

ω

c(ω)
− iζ(ω), (7)

where the phase velocity c and the attenuation ζ are given by108

c(ω) =

√

2

ρ(|N |+ Re[N ])
, ζ(ω) = ω

√

ρ(|N | − Re[N ])

2
. (8)

Owing to equations (5) and (8), the following limits hold:109

lim
ω→0

c(ω) = 0, lim
ω→+∞

c(ω) =
1√
ρJu

:= c∞,

lim
ω→0

ζ(ω) = 0, lim
ω→+∞

ζ(ω) = +∞.

(9)

Moreover, when A > 0, the creep function (4) is an increasing and concave function.110

As a consequence, owing to the theoretical developments in [30] and [31], the attenuation111
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Figure 1: Behaviors of various viscoelastic models derived from (4): Maxwell model (A =

0) and Andrade model (α = 1/3, with A = 10−10 Pa−1.s−α and A = 2.10−10 Pa−1.s−α).

The other physical parameters are: ρ = 1200 kg/m3, c∞ = 2800 m/s and η = 109 Pa.s.

The horizontal solid line in panel (c) denotes the high-frequency limit c∞.
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ζ(ω) for the Andrade model turns out to be sublinear in the high-frequency range, i.e.112

ζ(ω) =
ω→+∞

o(ω). (10)

This key property confirms the relevance of the choice of the Andrade model as a proto-113

typical example of fractional viscoelastic media.114

The quality factor Q is defined as the ratio115

Q(ω) = −Re[k2]

Im[k2]
= −Re[N ]

Im[N ]
. (11)

According to (5) and in the low and high-frequency regimes, the frequency-dependent116

behavior follows117

Q(ω) ∼
ω→0

Q0 ω
1−α with Q0 = η AΓ(1 + α) cos

(απ

2

)

,

Q(ω) ∼
ω→+∞

Q∞ ωα with Q∞ = Ju

[

AΓ(1 + α) sin
(απ

2

)

]−1

.

(12)

Sample behaviors of the Andrade model for α = 1/3 and a varying parameter A are118

sketched in Figure 1. Notably, the case A = 0 corresponds to the standard Maxwell model.119

The corresponding attenuation curve shows that, within the frequency range considered,120

the associated high-frequency regime ζ(ω) ∼
ω→+∞

1
2η

√

ρ
Ju

is rapidly attained. Alternatively,121

when A 6= 0, one observes in Fig. 1b the slopes 2/3 and 1/3 of the quality factor in log-log122

scale at low and high frequencies respectively, as expected from (12). The attenuation ζ123

is represented as a function of the frequency f and displayed in linear scale in Fig. 1d to124

emphasize the sublinear high-frequency behavior (10).125

2.4. Diffusive approximation: Andrade–DA model126

When implementing (6), the difficulty revolves around the computation of the con-127

volution product in (2) associated with the fractional derivative of order 1 − α, which is128

numerically memory-consuming. The alternative approach adopted in this study is based129

on a diffusive representation, and its approximation, of fractional derivatives. Following130

[23], then for 0 < α < 1 equation (2) can be recast as131

∂1−α

∂t1−α
σ =

∫ +∞

0

φ(x, t, θ) dθ, (13)
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where the function φ is defined owing to a change of variables as132

φ(x, t, θ) =
2 sin(πα)

π
θ1−2α

∫ t

0

∂σ

∂τ
(x, τ) e−(t−τ) θ2 dτ. (14)

As φ is expressed in terms of an integral operator with decaying exponential kernel, it133

is referred to as a diffusive variable. From equation (14), it can be shown to satisfy the134

following first-order differential equation for θ > 0:135











∂φ

∂t
= −θ2 φ+

2 sin(πα)

π
θ1−2α∂σ

∂t
,

φ(x, 0, θ) = 0.

(15)

The diffusive representation (13–14) amounts to supersede the non-local term in (6) by an136

integral over θ of the function φ(x, t, θ) which obeys the local first-order ordinary differ-137

ential equation (15). The integral featured in (13) is in turn well-suited to be approximated138

using a quadrature scheme, so that139

∂1−α

∂t1−α
σ ≃

L
∑

ℓ=1

µℓ φ(x, t, θℓ) ≡
L
∑

ℓ=1

µℓ φℓ(x, t), (16)

given a number L of quadrature nodes θℓ with associated weights µℓ. These parameters140

with unit of s−1/2 and s1/2 respectively, and whose computations will be returned to in141

Section 4.1, will be seen to be decided from the fit of the Andrade model complex compli-142

ance.143

144

The frequency-domain versions of equations (6), (15) and (16) lead to the approximated145

complex compliance Ñ , such that ε̂ = Ñ σ̂ and characterizing the model hereafter referred146

to as the Andrade–DA model, as147

Ñ(ω) = Ju + (iη ω)−1 + AΓ(1 + α)
2 sin(πα)

π

L
∑

ℓ=1

µℓ
θ1−2α
ℓ

θ2ℓ + iω
. (17)

A comparison between (5) and its diffusive approximated counterpart (17) shows that the148

corresponding complex compliances N and Ñ differ only in their third terms. Therefore,149

based on equation (7), the associated dispersion relations read150

k2 =

(

ω

c∞

)2 [

1 +
AΓ(1 + α)

Ju
κmod(ω)

]

− iρ ω

η
(18)
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with the function κmod being defined for the two models considered by151

κmod(ω) =



















κ(ω) = (iω)−α Andrade,

κ̃(ω) =
2 sin(πα)

π

L
∑

ℓ=1

µℓ
θ1−2α
ℓ

θ2ℓ + iω
Andrade–DA.

(19)

Finally, the diffusive approximated counterparts of the phase velocity and the attenuation152

function in (8) can be immediately deduced using (18–19). In particular, the low-frequency153

and high-frequency limits of the phase velocity c̃ are equal to those in (9). Moreover, using154

tables of standard Fourier transforms, the corresponding time-domain creep function χ̃,155

defined by Ñ = iω ˆ̃χ, is obtained as156

χ̃(t) =

[

Ju +
t

η
+ AΓ(1 + α)

2 sin(πα)

π

L
∑

ℓ=1

µℓ θ
−1−2α
ℓ

(

1− e−θ2
ℓ
t
)

]

H(t). (20)

3. Evolution equations157

With the complex compliance (17) of the Andrade–DA model at hand, which consti-158

tutes the approximated version of the diffusive representation of the Andrade model (5), the159

present section is concerned with the description and analysis of its dynamical behavior.160

3.1. First-order system161

Let define the parameters162

γℓ,α =
2 sin(πα)

π Ju
θ1−2α
ℓ , Υℓ,α = AΓ(1 + α) γℓ,α for ℓ = 1, . . . , L. (21)

Combining the conservation of momentum in terms of velocity field v = ∂u/∂t and equa-

tions (6), (15) and (16) yields











































∂v

∂t
− 1

ρ

∂σ

∂x
= Fv, (22a)

∂σ

∂t
− 1

Ju

∂v

∂x
= − 1

Juη
σ − AΓ(1 + α)

Ju

L
∑

j=1

µjφj + Fσ, (22b)

∂φℓ

∂t
− γℓ,α

∂v

∂x
= −θ2ℓφℓ −

γℓ,α
η

σ −Υℓ,α

L
∑

j=1

µjφj + Juγℓ,α Fσ, (22c)
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for ℓ = 1, . . . , L and where Fv and Fσ are introduced to model external sources. Equations163

(22) are completed by initial conditions164

v(x, 0) = 0, σ(x, 0) = 0, φℓ(x, 0) = 0 for ℓ = 1, · · · , L.

Gathering unknown and sources terms, let the vectors U and F be defined as165

U =
[

v, σ, φ1, · · · , φL

]

T

, F =
[

Fv, Fσ, Juγ1,α Fσ, · · · , JuγL,α Fσ

]

T

. (23)

Then the system (22) can be written in the matrix-form166

∂U

∂t
+A

∂U

∂x
= SU + F , (24)

where A is given by167

A =























0 −ρ−1 0 · · · 0

−Ju
−1 0 0 · · · 0

−γ1,α 0 0 · · · 0
...

...
...

. . .
...

−γL,α 0 0 · · · 0























, (25)

and S reads168

S =

























0 0 0 · · · 0

0 −(Juη)
−1 −AΓ(1 + α)Ju

−1µ1 · · · −AΓ(1 + α)Ju
−1µL

0 −γ1,αη−1 −θ21 −Υ1,α µ1 · · · −Υ1,α µL

...
...

...
. . .

...

0 −γL,αη
−1 −ΥL,α µ1 · · · −θ2

L
−ΥL,α µL

























. (26)

Note that this differential system remains valid in the case of a non-homogeneous vis-169

coelastic medium.170

3.2. Energy decay171

Studying the energy associated with the system (22) is required to characterize the sta-172

bility of the Andrade–DA model and to provide constraints on the diffusive approximation173
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calculation. For an infinite 1D domain, the stored kinetic and elastic energies are defined174

as175

Ev(t) =
1

2

∫ +∞

−∞

ρv2 dx and Eσ(t) =
1

2

∫ +∞

−∞

Juσ
2 dx, (27)

together with a coupled term associated with the diffusive approximation176

Ed(t) =
1

2

∫ +∞

−∞

L
∑

ℓ=1

µℓΥℓ,α

θ2ℓ

(

√

Ju σ −
φℓ√
Ju γℓ,α

)2

dx. (28)

Then, in the absence of any source term, one has the following property177

Proposition 1. If µℓ > 0 for all ℓ = 1, . . . , L, then the function E(t) = Ev(t)+Eσ(t)+Ed(t)178

is a positive definite quadratic form and
dE
dt

< 0 for all time t > 0.179

Proof. In the absence of any source term, then multiplying the momentum equation (22a)180

by the velocity field v and integrating spatially by parts yields181

∫ +∞

−∞

{

ρv
∂v

∂t
+ σ

∂v

∂x

}

dx = 0,

assuming that the elastic fields vanish at infinity. Likewise, from equation (22b) and mul-182

tiplying by σ, one obtains183

1

2

d

dt

∫ +∞

−∞

{

ρv2 + Juσ
2
}

dx+

∫ +∞

−∞

{

σ2

η
+ AΓ(1 + α)

L
∑

ℓ=1

µℓ φℓ σ

}

dx = 0. (29)

Now, using twice differential equation (15), one has for ℓ = 1, . . . , L184

σ
∂φℓ

∂t
+ θ2ℓφℓσ − Juγℓ,ασ

∂σ

∂t
= 0 and

φℓ

Juγℓ,α

∂φℓ

∂t
+

θ2ℓφ
2
ℓ

Juγℓ,α
− φℓ

∂σ

∂t
= 0,

which after subtraction and manipulation entails185

φℓ σ =
φ2
ℓ

Juγℓ,α
+

γℓ,α
2θ2ℓ

d

dt

(

√

Ju σ −
φℓ√
Ju γℓ,α

)2

. (30)

Finally, substituting (30) in (29) leads to the relation

1

2

d

dt

∫ +∞

−∞

{

ρv2 + Juσ
2 +

L
∑

ℓ=1

µℓΥℓ,α

θ2ℓ

(

√

Ju σ −
φℓ√
Ju γℓ,α

)2}

dx

= −
∫ +∞

−∞

{

σ2

η
+

L
∑

ℓ=1

µℓΥℓ,α

(

φℓ√
Ju γℓ,α

)2}

dx,

12



which concludes the proof, owing to the definition of the total energy function E from (27)186

and (28).187

In summary, positivity of the quadrature nodes and weights in (16) is crucial to ensure188

the well-posedness of the system (22). This issue will be further discussed in Section 4.1.189

3.3. Properties of matrices190

Some properties of the matrices A (25) and S (26) are discussed to characterize the191

first-order system (24) of partial differential equations.192

Proposition 2. The eigenvalues of the matrix A are193

sp(A) = {0,±c∞} , with 0 being of multiplicity L.

As A is diagonalizable with real eigenvalues, then equation (24) is a hyperbolic system194

of partial differential equations, with solutions of finite-velocity. It is emphasized that the195

eigenvalue c∞ = 1/
√
ρJu does not depend on the set of quadrature coefficients {(µℓ, θℓ)},196

so that the phase velocity upper bounds for the Andrade and Andrade–DA models are197

equal.198

Proposition 3. Assuming θℓ > 0 and µℓ > 0 for ℓ = 1, . . . , L then sp(S) ∋ 0 with199

multiplicity 1. Moreover the L+1 non-zero eigenvalues λℓ of S are real and, ordering the200

nodes as 0 < θ1 < · · · < θL, satisfy201

λL+1 < −θ2L < · · · < −θ2ℓ < λℓ < −θ2ℓ−1 < · · · < λ1 < 0.

202

Proof. Let PS(λ) denote the characteristic polynomial of the matrix S, i.e. PS(λ) =203

det(S − λIL+2) with IL+2 the (L + 2)-identity matrix. The line i and the column j of204

the determinant are denoted by Li and Cj , respectively. The following algebraic manipula-205

tions are performed successively:206

(i) Lj ← Lj − γα θ
1−2α
j L1 with j = 2, . . . , L+ 1207
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(ii) C1 ← C1
L
∏

ℓ=1

(−θ2ℓ − λ)208

(iii) C1 ← C1 − γα θ
1−2α
ℓ λ Cℓ

L
∏

i=1
i 6=ℓ

(−θ2i − λ) for ℓ = 2, . . . , L+ 1.209

From (26) and definition (21) of parameters γℓ,α and Υℓ,α, one deduces210

PS(λ) = λ

[

(

(Juη)
−1 + λ

)

L
∏

ℓ=1

(−θ2ℓ − λ) + λ
L
∑

ℓ=1

µℓΥℓ,α

L
∏

j=1
j 6=ℓ

(−θ2j − λ)

]

:= λQS(λ).

From the above equation, one has PS(0) 6= 0 whileQS(0) 6= 0, therefore 0 is an eigenvalue211

of the matrix S with multiplicity 1. In the limit λ→ 0, then asymptotically212

PS(λ) ∼
λ→0

(−1)L (Juη)
−1 λ

L
∏

ℓ=1

θ2ℓ , so that sgn(PS(0−)) = (−1)L+1. (31)

Moreover, using (21) and the assumptions considered, then at the quadrature nodes one has213

for all k ∈ {1, . . . , L}214

PS(−θ2k) = −
2 sin(πα)AΓ(1 + α)

πJu
µk θ

5−2α
k

L
∏

j=1
j 6=k

(θ2k−θ2j ) ⇒ sgn(PS(−θ2k)) = (−1)L−k+1.

Finally, the following limit holds215

PS(λ) ∼
λ→−∞

(−1)LλL+2 ⇒ sgn(PS(−∞)) = 1. (32)

We introduce the following intervals216

I
L+1

=
]

−∞,−θ2
L

]

, Iℓ+1 =
]

−θ2ℓ+1,−θ2ℓ
]

for ℓ = 1, . . . , L−1 and I1 =
]

−θ21, 0
]

.

(33)

Given that λ 7→ PS(λ) is continuous, then equations (31–32) show that the polynomial PS217

changes sign in each of the intervals Iℓ of (33). Consequently, there exist λℓ ∈ Iℓ with218

ℓ = 1, . . . , L + 1 such that PS(λℓ) = 0 and which coincide with the eigenvalues, with219

multiplicity 1, of the matrix S of size L+ 2.220
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Proposition 3 states that, under suitable conditions on the quadrature coefficients, the221

matrix S in (26) has eigenvalues with negative or zero real parts. This property is crucial222

regarding the numerical modeling developed in the forthcoming Section 4.2. As for the en-223

ergy analysis given in Proposition 1, positivity of quadrature nodes and weights is again the224

fundamental hypothesis. Lastly, it is possible to use the above proposition to characterize225

the spectral radius of the matrix S.226

Proposition 4. The spectral radius of the matrix S (26) is such that227

max

(

θ2
L
, (Juη)

−1 +
L
∑

ℓ=1

µℓΥℓ,α

)

≤ ̺(S) ≤ θ2
L
+ (Juη)

−1 +
L
∑

ℓ=1

µℓΥℓ,α.

Proof. By definition, one has228

tr(S) = −
[

(Juη)
−1 +

L
∑

ℓ=1

(θ2ℓ + µℓΥℓ,α)

]

≡
L+1
∑

ℓ=1

λℓ. (34)

According to the proof of Property 3, the eigenvalues λℓ satisfy229

−
L
∑

ℓ=1

θ2ℓ ≤
L
∑

ℓ=1

λℓ ≤ −
L−1
∑

ℓ=1

θ2ℓ .

Substitution in (34) and providing that ̺(S) = |λ
L+1
| allows to conclude the proof.230

3.4. Semi-analytical solutions231

Let us consider a homogeneous medium described either by the Andrade model, i.e.232

equations (22a) and (6), or by the Andrade–DA model, i.e. equations (22a) and (22b),233

together with equation (15). Corresponding semi-analytical solutions are sought in order234

to validate the ensuing numerical simulations of wave propagation. It is assumed Fσ = 0235

and excitationFv(x, t) = F (t)δ(x−xs) at source point xs with time evolutionF . Applying236

space-time Fourier transforms and their inverses leads to the stress field solution in the form237

of238

σ̂(x, ω) =
iF̂ (ω)

2πc2∞Ju

∫ +∞

−∞

k

k2 − k2
0

eik(x−xs) dk,
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with k0 being defined for the two models considered according to (18–19) as239

k0 =

[

(

ω

c∞

)2 [

1 +
AΓ(1 + α)

Ju
κmod

]

− iρ ω

η

]1/2

.

Note that choosing κmod = κ or κmod = κ̃ yields the solution associated with the Andrade240

or with the Andrade–DA model respectively. The poles ±k0 of the integrand are simple241

and satisfy Im[k0] < 0. Using the residue theorem, one obtains in the time-domain the242

stress field solution243

σ(x, t) = −sgn(x− xs)

2πc2∞Ju

∫ +∞

0

Re
[

F̂ (ω)ei(ωt−k0|x−xs|)
]

dω. (35)

Similarly, the velocity field satisfies244

v(x, t) =
1

2π

∫ +∞

0

Re

[

k0
ω
F̂ (ω)ei(ωt−k0|x−xs|)

]

dω. (36)

Finally, for the Andrade–DA model, the associated memory variables φℓ are expressed as245

φℓ(x, t) = −
sgn(x− xs)γℓ,α

2πc2∞

∫ +∞

0

Re

[

iω

θ2ℓ + iω
F̂ (ω)ei(ωt−k0|x−xs|)

]

dω, ℓ = 1, . . . , L.

(37)

In the numerical results presented Section 5, the frequency-domain integrals featured246

in solutions (35), (36) and (37) are computed using a standard quadrature rule over the247

frequency-band considered.248

4. Numerical methods249

4.1. Quadrature methods250

Two different approaches can be employed to determine the set {(µℓ, θℓ)} of 2L coeffi-251

cients of the diffusive approximation (16). While the most usual one is based on orthogonal252

polynomials, the second approach is associated with an optimization procedure applied to253

the model complex compliance. Both lead to positive quadrature coefficients, which en-254

sures the stability of the Andrade–DA model, as shown by propositions 1 and 3.255
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Gaussian quadrature. Various orthogonal polynomials can be used to evaluate the im-256

proper integral (13) introduced by the diffusive representation of fractional derivatives.257

Historically, the first one has been proposed in [22], where a Gauss-Laguerre quadrature258

is chosen. Its slow convergence was highlighted and then corrected in [23] with a Gauss-259

Jacobi quadrature. This latter method has been lastly modified in [24], where alterna-260

tive weight functions are introduced, yielding an improved discretization of the diffusive261

variable owing to the use of an extended interpolation range. Following this latter modi-262

fied Gauss-Jacobi approach, while omitting the time and space coordinates for the sake of263

brevity, the improper integral (13) is then recast as264

∫ +∞

0

φ(θ) dθ =

∫ +1

−1

(

1− θ̃
)γ(

1 + θ̃
)δ
φ̃(θ̃) dθ̃ ≃

L
∑

ℓ=1

µ̃ℓ φ̃(θ̃ℓ), (38)

with the modified diffusive variable φ̃ defined as265

φ̃(θ̃) =
4

(

1− θ̃
)γ−1(

1 + θ̃
)δ+3

φ

(

(

1− θ̃

1 + θ̃

)2
)

,

and where the weights and nodes {(µ̃ℓ, θ̃ℓ)} can be computed by standard routines [32].266

According to the analysis of [24], Section 4, an optimal choice for the coefficients in (38)267

is in the present case: γ = 3 − 4α and δ = 4α − 1. Following this approach, then268

by equating the series (38) and (16) that both approximate the term (13), the quadrature269

coefficients are chosen to be defined as270

µℓ =
4 µ̃ℓ

(

1− θ̃ℓ
)γ−1(

1 + θ̃ℓ
)δ+3

, θℓ =

(

1− θ̃ℓ

1 + θ̃ℓ

)2

. (39)

Optimization quadrature. Alternatively, the quadrature coefficients can be deduced from271

the model physical observables.272

Note that as the quality factor (11) is defined as the ratio Q(ω) = −Re[N ]/ Im[N ], then273

obtaining a good fit on the latter does not imply a satisfying approximation of the function274

N itself. In other words, optimizing an objective function based on Q(ω) might yield a275

poor approximation of the model constitutive equation. Therefore, a direct optimization of276

the available Andrade model complex compliance N is preferred.277
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With reference to the quantities introduced in (19), then for a given number K of an-278

gular frequencies ωk, one defines the following objective function279

J
(

{(µℓ, θℓ)} ;L,K
)

=

K
∑

k=1

∣

∣

∣

∣

κ̃(ωk)

κ(ωk)
− 1

∣

∣

∣

∣

2

=

K
∑

k=1

∣

∣

∣

∣

∣

2 sin(πα)

π

L
∑

ℓ=1

µℓ
θ1−2α
ℓ (iωk)

α

θ2ℓ + iωk
− 1

∣

∣

∣

∣

∣

2

(40)

to be minimized w.r.t parameters (µℓ, θℓ) for ℓ = 1, . . . , L.280

A straightforward linear minimization of (40) may lead to some negative parameters281

[33, 34] so that a nonlinear optimization with the positivity constraints µℓ ≥ 0 and θℓ ≥ 0282

is preferred. The additional constraint θℓ ≤ θmax is also introduced to avoid the algorithm283

to diverge. These 3L constraints can be relaxed by setting µℓ = µ′
ℓ
2

and θℓ = θ′ℓ
2

and284

solving the following problem with only L constraints285

min
{(θ′

ℓ
,µ′

ℓ
)}
J
(

{(µ′
ℓ
2
, θ′ℓ

2
)} ;L,K

)

with θ′ℓ
2 ≤ θmax for ℓ = 1, . . . , L. (41)

As problem (41) is nonlinear and non-quadratic w.r.t. abscissae θ′ℓ, we implement the286

algorithm SolvOpt [35, 36] based on the iterative Shor’s method [37]. Initial values µ′ 0
ℓ287

and θ′ 0ℓ used in the algorithm must be chosen with care; for this purpose we propose to use288

the coefficients obtained by the modified Jacobi method (39) for ℓ = 1, . . . , L289

µ′ 0
ℓ =

√

4 µ̃ℓ
(

1− θ̃ℓ
)γ−1(

1 + θ̃ℓ
)δ+3

, θ′ 0ℓ =
1− θ̃ℓ

1 + θ̃ℓ
. (42)

Doing so, the required positivity constraints are satisfied by the initial guesses while it290

is expected that this choice already yields a satisfactory quadrature scheme as shown in291

[24]. Finally, the angular frequencies ωk for k = 1, ..., K in (40) are chosen linearly on a292

logarithmic scale over a given optimization band [ωmin, ωmax], i.e.293

ωk = ωmin

(

ωmax

ωmin

)
k−1

K−1

. (43)

Remark 1. In the proposed optimization method, both set of quadrature coefficients µℓ294

and θℓ are computed by minimization of the objective function J . In particular, the nodes295

θℓ are not imposed to be equidistributed according to (43) as it is the case in the commonly296

used approach [13]. This point will be returned to in Section 5.2.297
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4.2. Numerical scheme298

A numerical scheme is proposed to compute the solution of system (24). Introducing a299

uniform grid with mesh size ∆x and time step ∆t, let Un
j denote the approximation of the300

solution U(xj = j∆x, tn =n∆t) with j = 1, . . . , Nx and n = 1, . . . , Nt. Straightforward301

discretization of (24) typically yields to the numerical stability condition [33]302

∆t ≤ min

(

∆x

c∞
,

2

̺(S)

)

.

As shown by Proposition 4, the usual CFL bound on the time step ∆t ≤ ∆x/c∞ may be303

reduced as η decreases or A increases, which turns out to be detrimental to the numerical304

scheme. Moreover, as ̺(S) depends on the quadrature coefficients of the diffusive variable,305

the stability condition would in turn not depend only on meaningful physical quantities306

such as the maximum phase velocity c∞.307

Splitting. Alternatively, we follow here the splitting approach analyzed in [29]. To imple-308

ment (24) numerically, one solves successively the propagative equation309

∂U

∂t
+A

∂U

∂x
= 0 (44)

and the diffusive equation310

∂U

∂t
= SU + F . (45)

Due to the structure of matrix S, one defines from (23) the subvectors311

U =
[

σ, φ1, · · · , φL

]

T

, F =
[

Fσ, Juγ1,α Fσ, · · · , JuγL,α Fσ

]

T

, (46)

and from (26) the submatrix312

S =



















−(Juη)
−1 −AΓ(1 + α)Ju

−1µ1 · · · −AΓ(1 + α)Ju
−1µL

−γ1,αη−1 −θ21 −Υ1,α µ1 · · · −Υ1,α µL

...
...

. . .
...

−γL,αη
−1 −ΥL,α µ1 · · · −θ2

L
−ΥL,α µL



















.
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Having separated the two source terms, then equation (45) is equivalently recast in the form


















∂v

∂t
= Fv, (47a)

∂U

∂t
= SU + F . (47b)

The discrete operators associated with the discretizations of (44) and (47) are respec-313

tively denoted by Hp and Hd. The operator Hd depends explicitly on time when the314

forcing terms Fv or Fσ are non-zero, whereas Hp remains independent on t. The so-315

called Strang splitting approach of [29] is then used between time steps tn and tn+1, for316

n = 0, . . . , Nt − 1, which requires to solve (44) and (45) with adequate time increments317

as, for j = 1, . . . , Nx318

U
(1)
j = Hd(tn, ∆t/2)Un

j ,

U
(2)
j = Hp(∆t, j)U (1),

U
n+1
j = Hd(tn+1,∆t/2)U

(2)
j ,

(48)

with U
(1) =

[

U
(1)
1 . . .U

(1)
Nx

]

T

. Since the matrices A and S do not commute, an error319

associated with the splitting scheme is introduced [29]. However, provided that Hp and320

Hd are at least second-order accurate and stable, then the time-marching scheme (48)321

constitutes a second-order accurate approximation of the original equation (24).322

Diffusive operator. The physical parameters do not vary with time, thus the matrix323

S does not depend on t. Owing to Property 3, one has 0 /∈ sp(S) = {λ1, . . . , λL}, and324

hence detS 6= 0. Freezing the forcing terms at tk, with k = n or n+1, yields for a generic325

vector Uj = [vj , Uj]
T

326

Hd(tk,∆t/2)Uj =

[

vj +
∆t

2
Fv(xj , tk), e

S
∆t

2 Uj −
(

I − eS
∆t

2

)

S
−1
F (xj , tk)

]

T

. (49)

If there is no excitation, i.e. Fv = Fσ = 0, then integration (49) is exact. The matrix327

exponential entering the definition of the operator Hd is computed using the method ♯2 in328

[38] based on a (6/6) Padé approximation. Property 3 ensures that the computation of this329

exponential is stable.330
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Propagative operator. To integrate (44), we use a fourth-order ADER (Arbitrary331

DERivative) scheme [39]. This explicit two-step and single-grid finite-difference scheme332

writes333

U
(2)
j = U

(1)
j −

ℓ=2
∑

ℓ=−2

4
∑

m=1

ϑm,ℓ

(

A
∆t

∆x

)m

U
(1)
j+ℓ := Hp(∆t, j)U (1), (50)

where the coefficients ϑm,k are provided in Table 1. It satisfies the optimal stability condi-334

tion c∞∆t /∆x ≤ 1.335

m = 1 m = 2 m = 3 m = 4

ℓ = −2 1/12 1/24 −1/12 −1/24
ℓ = −1 −2/3 −2/3 1/6 1/6

ℓ = 0 0 5/4 0 1/4

ℓ = 1 2/3 −2/3 −1/6 1/6

ℓ = 2 −1/12 1/24 1/12 −1/24

Table 1: Coefficients ϑm,ℓ in the ADER–4 scheme (50)

5. Numerical results336

5.1. Configuration337

The homogeneous domain considered is 400 m-long and it is characterized by the phys-338

ical parameters provided in Table 2 and which are consistent with experimentally-based339

values, see [19] and the references therein.340

ρ (kg/m3) c∞ (m/s) η (Pa.s) A (Pa−1.s−α) α

1200 2800 109 2·10−10 1/3

Table 2: Chosen physical parameters in the Andrade model (4).

In this Section, one aims at assessing the overall performances of the proposed ap-341

proach. In Section 5.2 we analyze the quadrature method in order to evaluate the model342
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error, i.e. the error associated with the approximation of the Andrade model complex com-343

pliance and of associated observables. Section 5.3 is concerned with the validation of the344

numerical scheme for the wave propagation part. To do so, the numerical velocity field345

solution is compared to the semi-analytical Andrade–DA solution derived in Section 3.4.346

Finally, we close the loop in Section 5.4 by comparing the semi-analytical Andrade so-347

lution to its numerically computed diffusive approximation-based version. Moreover, we348

provide a comparison between the theoretical phase velocity and its counterpart measured349

from the propagation simulations made. A similar comparison is made for the attenuation350

as a function of frequency and distance.351

5.2. Validation of the quadrature methods352

The angular frequency range of interest [ωmin, ωmax] is defined by ωmin = ωc/100 and353

ωmax = 10ωc for a given central source angular frequency ωc = 60 π. The choice of354

ωmin is meant to promote the accuracy of the approximated model over long times. We355

choose K = 2L while the parameter θmax introduced in (41) is set to θmax =
√
10ωmax to356

ensure a stable computation of the matrix exponential in (49). Observables of the Andrade357

model (5) are then compared to those of the Andrade–DA model (17) on Figure 2 for the358

two quadrature methods discussed in Section 4.1. Large deviations are observed when the359

Gaussian quadrature is used, in particular on the attenuation function. On the contrary, an360

excellent agreement between the Andrade model and its optimized diffusive counterpart361

is obtained. Only slight differences can be observed at the scale of the figures within the362

optimization interval.363

On Figure 3 are represented the L = 4 and L = 8 quadrature coefficients, i.e. nodes364

θℓ with corresponding weights µℓ, for the two methods considered. Note that, according to365

(42), the values provided by the Gaussian approach are used as initial guesses in the mini-366

mization (41). The scaled optimization angular frequencies
√
ωk for k = 1, . . . , K are also367

shown for the purposes of comparison. Remarkably, the computed optimal nodes do not368

coincide with equidistributed nodes along the optimization frequency-band, a repartition369

which is prescribed in the commonly employed approach of [13].370
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Figure 2: Exact observables of the Andrade model with physical parameter values provided

in Table 2. Comparison with their approximated counterparts for L = 4 memory variables

and using either the modified Gauss-Jacobi approach or the proposed optimization method.

Vertical dotted lines delimit the optimization frequency-band. The horizontal solid line in

panel (c) denotes the high-frequency limit c∞.

The corresponding model error defined as | κ̃(ω)
κ(ω)
− 1| and associated with the minimiza-371

tion problem (41) is displayed in Figure 4, for L = 4 (Fig. 4a) and L = 8 (Fig. 4b) diffusive372

variables. For a given quadrature method, the results are clearly improved as L increases.373
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Figure 3: Set of quadrature coefficients for the two approaches considered. The L points

are plotted with abscissae and ordinates corresponding respectively to node θℓ and weight

µℓ values for ℓ = 1, . . . , L. Vertical dashed lines are plotted at the abscissae corresponding

to the K = 2L scaled optimization angular frequencies values
√
ωk.

For a given L, the optimization provides more accurate results compared to the Gaussian374

quadrature over the frequency band of interest which is delimited by vertical dotted lines.375

5.3. Validation of the numerical scheme376

While Fσ = 0 in (22b), the source in (22a) is imposed at point xs as Fv(x, t) =377

F (t) δ(x− xs) where F (t) is the function with regularity C6 that is defined by378

F (t) =















4
∑

m=1

am sin (bm ωc t) if 0 ≤ t ≤ 1

fc
,

0 otherwise

(51)

with central frequency fc = ωc/2 π = 30 Hz and parameters bm = 2m−1, a1 = 1,379

a2 = −21/32, a3 = 63/768 and a4 = −1/512. The associated frequency bandwidth380

is highlighted in Fig. A.9b. Moreover, the domain is discretized with Nx = 400 nodes and381

the diffusive approximation is computed by constrained optimization with L = 4 memory382
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Figure 4: Computed error | κ̃(f)
κ(f)
− 1| quantifying the discrepancy between the Andrade

model complex compliance and its diffusive approximation. Comparison between the

modified Gauss-Jacobi approach and the proposed optimization method. Vertical dotted

lines delimit the optimization frequency-band.

variables and thus K = 8 optimization frequencies. The CFL condition is chosen so that383

c∞∆t/∆x = 0.95 and the time integration is performed up to final time tf = 200∆t ≈ 67384

ms based on the fourth order ADER scheme, see Sec. 4.2. Following Section 3.4 with385

κmod = κ̃, the semi-analytical solution of the Andrade–DA model is computed by discrete386

inverse Fourier transform on 2048 modes, with uniform frequency step ∆f = 0.15 Hz.387

The solution is recorded at each time step at receivers located at xr = 220 + 40 (r− 1) for388

r = 1, . . . , 5.389

Figure 5 displays snapshots of forward propagating waves from the source point xs =390

200. The numerical solutions associated with various values of the attenuation parameters391

in (20) are plotted on Fig. 5a; namely Hooke model (i.e. purely elastic case which may392

be obtained in the limit η = +∞ and setting A = 0), Maxwell model (A = 0, η =393

109), and Andrade–DA model (A = 2 ·10−9, η = 109). As predicted by the dispersion394

analysis of sections 2.3 and 2.4, the phase velocity of the Andrade–DA model, as this of its395
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Figure 5: Time-domain numerical simulations of wave propagation. Snapshots of velocity

fields at final time tf are shown on panel (a) for a reference elastic configuration, a vis-

coelastic Maxwell model and the computed Andrade–DA model for L = 4. A synthetic

seismogram showing the propagating waveform is provided panel (b).

original version, is lower than in the elastic case, which explains the observed delay. Figure396

5b shows a seismogram corresponding to the Andrade–DA model in order to highlight397

attenuation and dispersion of the waveform.398

Considering the computed Andrade–DA model, Figure 6 compares the semi-analytical399

and the numerical velocity field solutions corresponding to equation (36) where κmod = κ̃400

and to (22) respectively. Figure 6b presents the relative spatial L2-norm error at final time401

tf between these two solutions for various discretizations, varying the numbers of nodes402

in the interval Nx = 50 to 6400. These convergence measurements show that order 2 is403

reached, confirming the theoretical results of Section 4.2.404

5.4. Validation of the overall approach405

To assess the performances of the overall approach, we now confront the results from406

the propagation simulations made to the Andrade model. Firstly, Figure 7 plots the rela-407

tive spatial L2-norm error at final time tf between the velocity field solution (36) where408

κmod = κ and this obtained from (22) for various values of the discretization parameter Nx409
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Figure 6: Validation of the numerical scheme for the Andrade–DA model. (a) Snapshots

of velocity fields at final time tf for the semi-analytical Andrade–DA solution and its nu-

merical counterpart for L = 4. (b) Relative error in spatial L2-norm between these two

solutions for a varying value of the discretization parameter Nx.

and as a function of the quadrature parameter L. This result can be used to drive the choice410

of a suitable parameter L for a given admissible error on the simulated waveform solu-411

tion. Of course, this choice is to be made with the O(L) computational complexity of the412

proposed method being taken into account. Finally, we compare on Figure 8 the Andrade413

model theoretical phase velocity and attenuation to their counterparts measured as func-414

tions of the frequency and distance from the transient simulations. On the corresponding415

Figures 8a and 8b, these results are plotted over the frequency bandwidth associated with416

the exciting source (51) employed as highlighted by Figure A.9. A very good agreement417

is found between these observables which highlights the satisfying overall performances418

of the proposed approach. In particular, this result validates the two steps investigated419

in this study: (i) approximation of the fractional viscoelastic model considered, and (ii)420

implementation of the approximated model in a numerical propagation scheme.421

27



0 1 2 3 4 5 6 7 8 9 10

1E−2 

1E−1 

1E+0 

L

er
ro

r

Nx=100
Nx=400
Nx=800
Nx=1600

Figure 7: Discrepancy between the numerical Andrade–DA solution and the semi-

analytical Andrade solution. The relative error in spatial L2-norm at final time tf between

the associated velocity fields solutions are plotted for a varying value of the discretization

parameter Nx and of the quadrature parameter L.

6. Conclusion422

Wave propagation phenomena associated with a fractional viscoelastic medium are in-423

vestigated in this study. The Andrade model is used as a prototypical reference constitu-424

tive equation as it satisfactorily describes the transient behaviors of metals and geological425

media. A diffusive representation of the featured non-local fractional derivative term is426

introduced to convert the associated convolution product into an integral of a function sat-427

isfying a local ordinary differential equation. Based on a quadrature approximation of this428

integrated term, a system of local partial differential equations is finally obtained and is429

shown to be well-suited for a numerical implementation.430

The system at hand is investigated and it is demonstrated that its well-posedness re-431

quires the positiveness of the weights associated with the quadrature scheme. To compute432

the quadrature coefficients, two numerical methods are combined: a polynomial Gaussian433

approach to get an initial guess jointly with a constrained optimization to approximate434

the Andrade model complex compliance over a frequency-band of interest. It is shown435
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Figure 8: Discrepancy between exact observables of the Andrade model and their coun-

terparts measured from numerical wave propagation simulations using the Andrade–DA

model. These quantities are compared for the values L = 4 and L = 8 of the quadrature

parameter and represented within the exciting source frequency bandwidth.

that the properties of the Andrade model are well approximated by those of the computed436

Andrade–DA model. Finally, an explicit time-domain finite-difference scheme is described437

and implemented. Corresponding wave propagation numerical experiments are presented438

and the efficiency of the proposed approach is highlighted. The main point of this arti-439

cle is that using a diffusive approximation of a fractional derivative term, entering a given440

viscoelastic constitutive equation, yields a sound mathematical model, that is also easily441

tractable numerically to perform wave propagation simulations.442

To focus on this message, a simple but realistic fractionally-damped viscoelastic model443

within a unidimensional and homogeneous configuration has been considered. Its dynam-444

ical behavior is described by a first-order hyperbolic system which extension to higher445

spatial dimensions or heterogeneous media is straightforward. The main limitation of this446

study concerns the numerical scheme employed to solve the wave propagation problem for447

two reasons: (i) The splitting approach is of order 2 which constitutes an intrinsic limiting448

factor even if the employed ADER scheme is of order 4. (ii) The numerical scheme has449
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been developed for a (piecewise)-homogeneous body. Yet, efficient numerical methods450

are currently available and can be directly employed to perform time-domain simulations451

within a higher-order scheme that is also valid for heterogeneous configurations. Improv-452

ing the method along these lines constitute the main focus for future work. Alternatively,453

arbitrary-shaped material discontinuities within piecewise-homogeneous 2D Andrade me-454

dia can be handled using an immersed interface method [40].455

Another line of research concerns extension of the proposed approach to other frac-456

tional viscoelastic model, such as the fractional Kelvin-Voigt model [41, 28] or the frac-457

tional Zener model [42, 43]. More sophisticated models could also be investigated, such458

as nonlinear fractional viscoelasticity [44] or nonlocal models in space [45].459
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Appendix A. Exciting source signal463

The Fourier transform of the time-domain source signal (51) reads464

F̂ (ω) =
4
∑

m=1

am
bm ωc

2π

e2iπωc/ω − 1

ω2 − bm ω2
c

.

For the chosen values fc = ωc/2 π = 30 Hz of the central source frequency and with the465

parameters am, bm provided in Section 5.3, Figure A.9a plots the corresponding function466

F . The associated frequency spectrum |F̂ | is shown Fig. A.9b to highlight the source467

frequency bandwidth.468
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