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Improving object learning

through manipulation and robot self-identification

Natalia Lyubova1, David Filliat1, Serena Ivaldi2

Abstract— We present a developmental approach that allows
a humanoid robot to continuously and incrementally learn
entities through interaction with a human partner in a first
stage before categorizing these entities into objects, humans or
robot parts and using this knowledge to improve objects models
by manipulation in a second stage. This approach does not
require prior knowledge about the appearance of the robot, the
human or the objects. The proposed perceptual system segments
the visual space into proto-objects, analyses their appearance,
and associates them with physical entities. Entities are then
classified based on the mutual information with proprioception
and on motion statistics. The ability to discriminate between
the robot’s parts and a manipulated object then allows to
update the object model with newly observed object views
during manipulation. We evaluate our system on an iCub robot,
showing the independence of the self-identification method on
the robot’s hands appearances by wearing different colored
gloves. The interactive object learning using self-identification
shows an improvement in the objects recognition accuracy with
respect to learning through observation only.

Key-words: developmental robotics, incremental learning,
robot self-identification, interactive object exploration

I. INTRODUCTION

Future service robots will need the ability to work in

different human environments that cannot be predicted in

advance. Serving humans will require a capability to detect

many different objects and to learn about them. Ideally,

robots should be able to learn about objects without constant

or dedicated supervision, but rather like children do, during

interaction with adults and by manipulating objects [1].

Objects appearances can be learned through observation.

However, more complete objects representations are re-

quired, when a robot needs to exploit objects for accom-

plishing tasks. This information can be essentially retrieved

through active object exploration [2]. Manipulation provides

an opportunity to gather an object appearance from differ-

ent viewing angles and scales by turning the object and

approaching to a camera. However, during manipulations,

objects are often partly covered by a robot’s or human hand,

and thus the ability to distinguish between features that

belong to the robot, the human, and the manipulated object,

is crucial. This paper focuses on this issue: we propose an

approach to enhance learning through object manipulation

and categorization of visible entities into robot’s parts, hu-

man parts, and manipulable objects. The interplay of the

implemented modules is shown in Fig. 1.
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Fig. 1. The main modules of the proposed system.

Self-identification has been used in various applications,

as it endows the robot with a better control of its body [3], it

facilitates interaction with humans and objects. The ability to

distinguish between several individuals or sources of motion

also gives the robot an opportunity to understand the dynamic

of its environment and to interact with several persons [4].

Among the variety of robot self-recognition methods, most

algorithms are based on local approaches or prior knowl-

edge. Some strategies impose restrictions on the change of

motors configurations during self-recognition. Others exploit

a predefined appearance of the robot’s body or a prede-

fined pattern of the robot’s motion that simplifies the self-

identification [3]. Since these techniques are not independent

of the appearance of the robot’s body and behavior, they

cannot be easily generalized over new end-effectors and they

cannot recognize robot’s parts extended by grasped tools, that

would be useful to increase the robot capabilities.

Following a developmental robotics approach, we take

inspiration from the sensorimotor developmental stage in hu-

mans. Observations show, that at the beginning of life, infants

learn about own body through simple repetitive movements,

and then spend a lot of time by exploring surrounding objects

through interaction [5]. These exploratory actions become

effective, once toddlers learn to control and recognize their

own body [6]. Our preliminary experiments investigating this

issue with the iCub robot are presented in [7].

In this paper we propose a self-identification, categoriza-

tion, and learning method which is able to differentiate and to

memorize appearances of objects, humans, and robot’s parts.

The algorithm builds upon our previous learning approach

[8] and introduces new elements integrating the robot’s



actions into the learning process and improving the final

learning performance. Our algorithm does not require prior

knowledge about the robot or objects appearances, robot’s

body model (kinematics or dynamics), nor the functional

description of its joints, and is thus easily adaptable to

different robots.

The paper is organized as follows: Section 2 gives a brief

overview of the related work on robot self-discovery and its

applications; the proposed approach is detailed in Section 3;

the performed experiments and their evaluation are reported

in Section 4; the last Section is devoted to conclusions and

future work.

II. RELATED WORK

Self-identification has been performed using several ap-

proaches. It can be achieved based on a known robot’s

appearance, or a predefined pattern of the robot’s motion

[3]. The identification of a robot’s hand can be also based

on temporal contingency, for example, by learning the time

delay between the initiation of the robot’s movements and

the emergence of its parts in the visual field, as proposed in

[4]. However, methods based on time delay are often limited

to one active motion source at a time.

The identification of robot’s parts without prior knowledge

can be based on correlation between the proprioceptive and

sensory information. This information can be analyzed dur-

ing head-arm movements, as performed in [9]. The authors

analyse the speed of visual motion and of the robot’s joints

to recognize the robots arms and learn its appearance.

A system discovering robot’s hands during natural interac-

tion with a human is presented in [10]. Mutual information

is used to identify which salient region of the visual space

can be influenced by the robot’s actions: the algorithm

analyzes the visual input and proprioceptive sensing. Since

it is designed to detect humans and robot’s parts, it focuses

on regions that are close to the sensor and move fast.

Assuming knowledge of the robot’s body, several studies

exploit the robot’s actions for object exploration. The decom-

position of scene into objects by means of interactive actions

is proposed in [11]. In [12], perception and interaction are

integrated for autonomous acquisition of kinematic structures

of rigid articulated objects. The interactive learning of objects

features and object-specific grasping knowledge is performed

in [13]. Robots actions are also used to improve object

recognition in ambiguous situations. Having several similar

objects, interaction can be used to turn one object into a

representative perspective that allows to recognize it [14].

In our approach, we do not focus on the selection of a

particular action to act on objects, or use of actions for object

segmentation; we rather attempt to learn objects appearances

in between actions and during manipulations, while the

objects are grasped. As a consequence, the discrimination

between manipulated objects, the robot’s and human parts is

fundamental.

III. PROPOSED METHOD

Our approach detects proto-objects as salient regions of the

visual space, incrementally encodes their appearance, and as-

sociates them with physical entities. The learning algorithm

is based on our previous work on object learning through

observation [8], but it has been improved with Bayesian

filtering in order to enhance temporal coherency of object

recognition and enhanced with a capability of categorization

and interactive learning. Entities are classified into robot’s

hands, human hands, and manipulable objects. The pose of

each object entity, its dimensions, and its localization in

the robot’s space are estimated in order to plan the robot’s

actions. Finally, the object learning is improved through

manipulation using the outcome of categorization.

As input data, we use color and depth images from a RGB-

D sensor (Kinect) and robot’s motors states. The complete

experimental setup will be described in section IV.

A. Segmentation of the visual space

The visual attention in our approach is based on motion;

we therefore begin proto-object detection by estimating

moving regions by image differencing. Among all moving

regions, we ignore whose located far from the robot accord-

ing to the constraints of the reachable area. In remaining

regions, GFT-points are extracted and grouped into clusters

of coherently moving points. Each cluster is considered a

proto-object and tracked in time. The contours of proto-

objects are refined based on the depth variation of the

visual field. The processing steps are detailed in [8] and

summarized in Fig. 2.

B. Robot actions

Before interaction, we localize proto-objects in the oper-

ational space of the robot, estimate their orientations and

dimensions. By retrieving the depth information from the

RGB-D sensor and processing it as a point cloud, we com-

pute each proto-object’s 3D position relative to the sensor

before transforming it to the operational space. The proto-

object’s axes orientations are obtained from eigenvectors and

eigenvalues of the covariance matrix of the proto-object’s

points giving three orthogonal reference directions for which

we compute the proto-object’s dimensions.

Since this study is aimed at learning objects appearances,

the robot should perform actions that help to explore differ-

ent object perspectives. Thus, we use both simple actions,

like reach, push, take, and more complex manipulations,

TakeLiftFall and TakeObserve, that are aimed at reveal-

ing new object perspectives. Both manipulations are com-

posed from a sequence of action primitives. TakeLiftFall
includes reaching an object, taking it, lifting, and releasing

that turns the object into a random perspective, when it falls

on the table. TakeObserve consists of reaching an object,

taking it, turning, approaching to the camera, and returning

to the table; during this manipulation, the robot perceives

several object perspectives and its visual details.

C. Object model learning

The proto-objects appearances are learned incrementally

based on the algorithm presented in [8]. Our system acquires

all information iteratively by analyzing low-level image
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Fig. 2. The segmentation of the visual space into proto-objects p0, p1, p2. See [8] for a complete description.

features and synthesizing them into higher-level representa-

tions. As low-level features, we extract SURF points [15]

and colors of superpixels [16] that correspond to nearly

homogeneous image regions segmented with some regularity.

Mid-features are constructed as pairs and triples of low-level

features nearest in the visual space. All extracted features are

quantized into vocabularies of visual words. Since an entity

appearance can vary between its perspectives, we learn its

model as a set of views Ei = {vj}, each view being encoded

by the occurrence frequencies of its mid-features vj = {mk}.

In [8], views are recognized through a voting method

based on TF-IDF (Term-Frequency - Inverse-Document Fre-

quency [17]) of mid-features and a maximum likelihood

approach:

L(vj) =
∑

mk∈vj

tf(mk)idf(mk), (1)

where tf(mk) is the frequency of the mid-feature mk, and

idf(mk) is the inverse view frequency for this mid-feature.

Since several objects can have similar views, we introduce

a Bayesian filter that improves temporal consistency of

recognition between consecutive images therefore reducing

potential confusion between objects. The probability of

recognizing a view is estimated recursively based on its

likelihood, its probability computed in the previous image,

and its tracking:

pt(vj) = ηL(vj)
∑

l

p(vj |vl)pt−1(vl), (2)

where η is the normalization term; L(vj) is the current

likelihood of the view vj ; pt−1(vl) is the probability of the

view vl computed in the previous image; p(vj |vl) is the

probability that the view vj appears, when the view vl was

recognized in the previous images. This probability is fixed

to 0.8 when vj = vl, and otherwise 0.2/Nv with Nv being

the total number of views.

The recognized view is then associated with a physical

entity. If the entity tracking from previous image was suc-

cessful, the view is associated to the same entity. When track-

ing fails, the current entity is recognized through a maximum

likelihood approach similar to the view recognition but based

on the occurrence frequency of views among entities:

L(Ei) = tf(vj)idf(vj), (3)

where tf(vj) is the frequency of the view vj , and idf(vj) is

the inverse entity frequency for the view vj .

Since our experiments are based on object manipulation, it

is important to recognize connected physical entities moving

together, while the robot or the human interacts with an

object. For this purpose, we use a double-check recognition.

In the first stage, the most probable view is identified. In the

second stage, features that don’t belong to the most probable

view (see Fig. 3) participate in the voting method again to

identify a second possible view. Thus, each moving region of

the visual space is recognized either as a single entity or two

connected entities. Since objects are partly covered by hands

during manipulations, the double-check recognition allows

to prevent erroneous updates of objects models with hand

features. The information about connected physical entities

is also used by the categorization module described in the

Section III.D and during interactive object learning presented

in the Section III.E.

Fig. 3. Recognition of connected views: the mid-features (in this case,
pairs of superpixels) found in the most probable view are shown by the
green color, the mid-features found in the connected view are red, and the
rest of extracted mid-features are blue.

D. Categorization

The categorization procedure is aimed at identifying the

nature of physical entities detected in the visual space, while

the robot learns objects through interaction with a human

partner. First, the parts of the robot’s body are discriminated

among all entities, and then, the rest of single entities are

distinguished either as a human part or a manipulable object

category. As a result, each entity is associated with one of

the following categories (see Fig. 4): a robot cr, a human ch,

an object co, an object grasped by the robot co+r, an object

grasped by the human co+h, or unknown cu category that

will be identified later, when more statistics is gathered.

1) Robot self-identification: The robot’s body identifica-

tion is based on mutual information (MI) between visual

data and proprioception. As proprioceptive information, we

analyze the robot’s arm and torso motors states. We acquire

states of the following arm joints (see Fig. 4): shoulder
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(pitch, roll, and yaw), elbow, wrist (pronosupination, pitch,

and yaw) and torso joints (pitch, roll, and yaw). Finger joints

are not considered, since their movements do not produce a

significant visual displacement of the hand.

The visual space is quantized regularly by applying a

grid (12x10) producing 120 visual clusters. The position of

each physical entity is quantized to the closest visual cluster.

Each time a new image is acquired from the visual sensor,

we acquire the robot’s arms and torso joints values. The

joints values are incrementally quantized into a vocabulary

of arm-torso configurations, where each entry is encoded as

a vector of joints values. During quantization, if the minimal

L2 distance between the current vector of joints values and

each vocabulary entry exceeds a threshold, a new config-

uration is stored in the vocabulary; otherwise, the current

vector of joints values is recognized as the closest arm-torso

configuration from the vocabulary. In our experiments, we

obtain in average 37 arm-torso configurations.

As in [10], MI is used to evaluate the occurrence depen-

dency between the robot’s arm-torso configuration Ac and

the physical entity localization LEi
:

MI(LEi
;Ac) = H(LEi

)−Hc(LEi
|Ac), (4)

where H(LEi
) is the marginal entropy, and Hc(LEi

|Ac) is

the conditional entropy computed in the following way:

H(LEi
) = −

∑

l

p(lEi
)log(p(lEi

)), (5)

Hc(LEi
|Ac) = −

∑

ac

p(ac)
∑

lEi

p(lEi
|ac)log(p(lEi

|ac)),

(6)

where p(lEi
) is the probability of the entity localization lEi

,

p(ac) is the probability of the arm-torso configuration ac,

and p(lEi
|ac) is the probability of the entity localization lEi

given the arm-torso configuration ac.

Since we change the appearance of the robot’s hands dur-

ing experiments, MI(LEi
;Ac) is estimated for each robot’s

arm and for each physical entity. Thereby, the robot category

cr can be associated with several entities that correspond

to different appearances of the hand (for example, with and

without wearing gloves); while views of each entity describe

the hand appearance in different postures (see Fig. 5).

Fig. 5. The representation models of three entities that correspond to
different appearances of the robot’s hands.

The threshold identifying the robot category is selected

empirically by analyzing the MI distribution for robot’s and

non-robot’s parts on a small labelled database. If MI is higher

than thr = 40%, the physical entity is identified as a robot

category cr; otherwise, its category is identified according to

the algorithm of the following section.

2) Discrimination of human and object categories: The

discrimination between human parts and manipulable objects

is based on statistics on entities motion: human parts often

move by themselves while objects are static most of time,

and they are rather displaced by the robot or the human.

Since our vision module is able to detect and to categorize

connected entities moving together, we identify objects dur-

ing manipulations based on the statistics of their simultane-

ous motion with entities categorized as robot’s parts. During

the experiment, we count the number of times each entity

Ei moves alone as a non-robot category, and the number of

times the same entity moves connected to a robot’s entity

and estimate the associated occurrence frequencies:

• fs =
NcEi

6=cr

NcEi

is the occurrence frequency of a non-

robot’s entity moving alone,

• fc =
NcEi

,cEi2
=cr

NcEi
,cEi2

is the occurrence frequency of an

entity moving together with a connected entity Ei2

categorized as a robot’s part.

Since objects usually do not move alone, the frequency fs
should be low and fc should be high for the object category.

Therefore, a non-robot’s entity is identified as:

• the object category co, if fc > tho.c. and fs < tho.s.;
• the human category ch, otherwise.

Gathering these statistics require the identification of the

robot hand category cr, therefore all entities are temporarily

associated with the unknown category cu before cr is iden-

tified. Once the robot’s body is identified, all single entities

are categorized as co, ch, or cr. In the case of connected

entities, the category of each individual entity is retrieved

from the categorization statistics and the connected entity is

categorized as an object grasped by the robot category cr+o

or an object grasped by the human category ch+o.

E. Object model update during interaction

The outcome of the categorization module is used to

improve object learning during manipulation. The interaction

with an object starts when the robot detects an object entity in



a reachable distance. In case of a successful grasp, the model

of the grasped entity Eg is updated during manipulation. This

is a kind of self-supervision, where the object is supposed

to be the same during manipulation.

The perceptual system continuously detects entities in the

visual space and categorizes them. In the case of detecting

connected entities with one entity identified as a robot

category, the categories of both connected views are verified.

We link each connected view with a set of physical entities

{Ei} that have this view in their models. The category cEi

of each entity is retrieved from the categorization statistics,

and each connected view is identified as:

• a robot’s view, if at least one linked entity is identified

as the robot category (∃i, cEi
= cr);

• a non-robot’s view, if none of linked entities is identified

as the robot category (∀i, cEi
6= cr).

If during manipulation, a proto-object is identified as a

robot’s view connected to a non-robot’s view,the manipulated

entity model is updated with the non-robot’s view. If a proto-

object identified as a robot’s view contains a large amount

of features that do not correspond to this entity, a new view

is stored with these features. If this newly created view is

identified again later, it will be added to the manipulated

entity model. Therefore, interactive learning allows to update

the object model with both newly created and recognized

non-robot’s views.

IV. EXPERIMENTS

The proposed approach is evaluated on an iCub robot

interacting with a human partner, as demonstrated in Fig.

6a, and manipulating objects, as shown in Fig. 6b. Objects

used in the experiments are shown in Fig. 7.

Fig. 6. The context of the experiments: a) learning through observation;
b) learning through manipulation.

Fig. 7. Objects used in the experiments.

We design experiments for two purposes: first, to evaluate

the categorization algorithm and then to analyse the accuracy

of objects learning through manipulation and to compare it

with the results of learning through observation.

A. Camera calibration

In our experiments, the visual input is acquired from an

RGB-D sensor mounted above the robot (see Fig. 6b). This

sensor is chosen due the precision of depth data compared

to stereo vision. Since in our scenario, the robot performs

actions in its operational space, the visual sensor is calibrated

with respect to the robot, like described in [7]. In this

procedure, a calibration pattern is placed on the table and

the robot moves its hand to the origin of the pattern in order

to acquire its position in the operational space Hpat→rob.

The OpenCV library is used to estimate the sensor position

relative to the pattern Hsen→pat, and the transformation

matrix from the target to the robot’s space is computed:

Hsen→rob = Hpat→rob ×Hsen→pat.

B. Evaluation of categorization

In this experiment, a human manipulates objects and

produces simple hand movements in the visual field of

the robot. The robot performs simple actions, like reach,

take, push, and manipulations with and without objects, as

described in the Section III.B. The self-identification method

is evaluated based on the robot’s hands positions estimated

by the forward kinematics model.

During evaluation, the categorization module was able

to identify the robot’s hand within first 10 seconds of its

motion in the visual field. The average self-recognition rate

was about 98.2%. Our self-identification method is also

evaluated with changing the robot’s hand appearance by

wearing colored gloves (see Fig. 5). The system has shown

to be independent on the robot’s hand appearance and to

recognize 98.1% of the robot’s hands in the blue gloves and

98.0% of the robot’s hands in the pink gloves. The slightly

lower self-recognition accuracy in the case of changing the

hand appearance can be explained by a large sizes of the

gloves that reduce visibility of hand motion.

The system’s ability to identify an object category is

evaluated in an interactive scenario, while the robot is asked

to interact with entities detected at a reachable distance. As

shown in Fig. 8, each object has been successfully identified

during within 5-10 seconds of interaction with it. Human

parts have been correctly identified in 89% of images.
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Fig. 8. Identification of five objects based on their probability p(cE =
co) of being an object category co; each object is marked as an unknown
category cu, when it appears, and as co, when it is identified.

C. Evaluation of object learning

We evaluate the accuracy of objects learning through inter-

action and compare it with the results of learning through ob-

servation. During observation, a human demonstrates objects



to the robot (about 700 images per object). Then, during ma-

nipulation, the robot performs TakeLiftFall action (about

800 images per object) in order to improve its knowledge

about objects appearances.

Since our experiments are based on interaction with ob-

jects, it is difficult to evaluate the system using existing image

databases. Thus, we created a database of 50 images for

each object shown from different perspectives. This database

is processed after each experiment in order to estimate the

object recognition rate based on the number of times an

object is identified as its most frequently associated entity.

Learning through manipulation improved the recognition

rate for several objects compared to the results of learning

through observation (see Fig. 9). This improvement slightly

depends on the robot’s hand appearance; the best results have

been achieved with the robot’s hand appearance the most

different from all objects appearances, i.e. without wearing

gloves. Gloves produce a larger occlusion of object features,

making it less visible and leading to less updates of object

models and smaller learning improvement.

Using only observation, several objects whose appearance

significantly varies between perspectives are associated with

multiple physical entities. It occurs when the human partner

takes an object out of the visual field while demonstrating

different perspectives, making it impossible to track the

object and therefore to associate all its views with a sin-

gle entity. For these objects (O2, O4, O5, O8, O9), learning

during manipulation has been especially useful as several

entities created during observation have been merged into

a single entity during interactive learning, thus leading to

better object recognition. Moreover, the system was able to

memorize new views while manipulating objects O1, O6, O8,

thus improving the informativeness of objects models.

o1 o2 o3 o4 o5 o6 o7 o8 o9 o10

0,0

20,0

40,0

60,0

80,0

100,0

observation interaction

Fig. 9. Object recognition rate (with initial robot’s hands appearances):
the results after objects observation are shown by the blue color, and the
improvement after manipulation is shown by the yellow color.

V. CONCLUSION AND FUTURE WORK

The proposed developmental approach allows a robot to

explore its close environment in purely unsupervised way, to

identify its body and to categorize other visible physical en-

tities as human parts or manipulable objects. Based on these

categories, it is possible to learn objects through observation

and to improve their visual models through manipulation.

Important aspects of our model are its capacity to extract

new information about an object during and in between

manipulations and its adaptability to the modification of the

robot’s appearance. The system works online and gathers all

information in an incremental manner.

Future work will include the use of weak supervision by

integrating the audio information in our system. We plan

to take advantage of naming objects, like in infant directed

speech, in order to learn objects names and to improve object

recognition in more complex interactive scenarios.
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