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We justify the Bogoliubov c-number approximation for the case of
interacting Bose-gas in a homogeneous random media. To this aim we
take into account occurrence of generalised (estended/fragmented) Bose-
Einstein condensation in an infinitesimal band of low kinetic-energy modes,
to generalise the c-number substitution procedure for this band of low-
momenta modes.

1 Introduction

One of the key developments in the theory of the Bose gas, especially the
theory of the low density gases currently at the forefront of experiment,
is Bogoliubov’s 1947 analysis [2], [3] of the many-body Hamiltonian
by means of a c-number substitution for the most releVant operators
in the problem. These are the zero-momentum mode boson operators,
namely by — z, by — z*. Later this idea triggered a more general The
Approzimating Hamiltonian Method [6]. Naturally, the appropriate value
of z has to be determined by some sort of consistency or variational
principle, which might be complicated, but the concern is whether this
sort, of substitution is legitimate, i.e., error free.

© Institute of Mathematics, 2013



72 Valentin A. Zagrebnov

The rigorous justification for this substitution, as far as calculating the
pressure of interacting (superstable) boson gas is concerned, was done
for the first time in the paper by Ginibre [10]. Later it was revised
and essentially improved by Lieb-Seiringer-Yngvason (LSY) [15], [16]. In
textbooks it is often said, for instance, that it is tied to the imputed
"fact"that the expectation value of the zero-mode particle number operator
No = bjbo is of order V' = volume. This was the second Bogoliubov ansatz:
the Bose-Einstein condensation (BEC) justifies the substitution [26].

As Ginibre pointed out, however, that BEC has nothing to do with it.
The z substitution still gives the right answer for any value of the Gibbs
average of the operator Ny. On the other hand, the zero-mode translation
invariant condensation (the first Bogoliubov ansatz) plays a distinguished
role in the Bogoliubov Weakly Imperfect Bose theory [26].

The problem of justification becomes delicate in a (bona fide)
homogeneous random external potential: first of all because of the
translation invariance breaking and secondly because of the problem with
nature of the generalised BEC for this case even for the perfect Bose-gas
[11], [12]. The aim of the present note is to elucidate this problem for
interacting boson gas in a homogeneous random potential following the
LSY method. The later allows to simplify and make more transparent
the arguments of [13] versus the generalised condensation & la Van den
Berg-Lewis-Pulé [24].

This note is based on the lecture delivered by the author on the
Workshop "Mathematical Horizons for Quantum Physics: Many-Particle
Systems"(09 - 27 September 2013) in the Institute for Mathematical
Sciences of the National University of Singapore. Invitation and financial
support extended to the author by the Institute for Mathematical
Sciences and the Centre for Quantum Technologies (NUS) are greatly
acknowledged.

2 The Bogoliubov c-Number Approximation

2.1 Imperfect Bose-Gas

Let interacting bosons of mass m be enclosed in a cubic box A = LXL XL C
R3 of the volume V = |A| = L3, with (for simplicity) periodic boundary
conditions on 9A: ty := (—h*A/2m)pp.c.. Let u(zx) be isotropic two-body
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interaction with non-negative Fourier transformation:
v(q) = / Bz u(x)e " u € LY(R?)
R3

The second-quantized Hamiltonian of the imperfect Bose-gas acting as
operator in the boson Fock space § := Fposon(H = L2(A)) is

1
Hy =) exbibi + o > (@) b, qbiy—gbrabry
keA~ k1,k2,qEN*

where (dual) set A* = {k ER3:, kg =2mns/Letn, €Z,a= 1,2,3}
and {ey}ren = Spec(ty). Here {ex = h%k?/2m > O}pea- is the one-
particle excitations spectrum. The perfect Bose-gas Hamiltonian and
particle-number operators are

TA = Z Ekabk s Nk = b:bk y NA = Z Nk .
keA~ keA*

Here {bj,bx},c. are boson creation and annihilation operators in
the one-particle eigenstates (kinetic-energy modes) verifying the CCR
[bk7b2] = (Sk’q .

1
Y (x) = —= ikz xa(z) €H, ke A*

3

by o= b (k) = / dz Pr ()b (z) , b = (b ()"

Here b# (x) are boson-field operators in the Fock space over H.

2.2 Grand-Canonical (3, 1)-Ensemble

Recall that the grand-canonical (8, u)-state generated by Hy on algebra
of observables 2(F) [20], is define by

(AV g, o= Trg(e PHA=INA) f) /Ty AHA=INA) A € (F) .

The grand-canonical pressure: p[Hx](3, i) := (BV)~!1In Trze S(Ha=nNa)
corresponds to the temperature 87! and to the chemical potential y.
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Example 1. For the perfect Bose-gas T one must put g < 0, then the
expectation value of the particle number in mode k is

1
eBler—n) — 17 e 20

<bzbk>TA =
The expectation value of the total density of bosons in A is

1 1

1 * 1 %
pa(B, ) = V<bobo>TA ty Z (bpbr)T) = Vo1t oA (B, 1)
keA*\{0}

Then the critical density (if finite) is define by the limit:

B = lim i ,
pe(B) lin lim, pA(B; 1) < 00

2.3 Conventional Bose-Einstein Condensation

For a fixed density p, let pa (8, p) be solution of the equation

p=pa(B;n) = p=pa(B,palp)) (always exists!).

o low density : limy pa(p < pe(8)) = pa(p) < 0
e high density: lima ua(p > pe(8)) =0, and

1 -1
po(B) = p— pe(B) = lim {e—ﬂuA(pZPC(ﬁ)) _ 1} =
1 1

TV B petmy) TV

pa(p = pe(B)) =
e Since ¢ = h? 2?21(27'(77,]'/‘/1/3)2/2771, the BEC is in k=0-mode:

lim l {eﬂ(6k¢o—uA(ﬂ)) _ 1}71 =0
AV ’

This type of condensation based on the concept of the one-level
macroscopic occupation is known as the conventional zero-mode (or type

I) BEC [9], [17].
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2.4 Generalised Bose-Einstein Condensation

This type of condensation was predicted by Casimir [8] and elucidated by
Van den Berg-Lewis-Pulé in [22], [23], [24].

Let A=Ly X Lo x Ly =V xV*2 x Ve a; >ay > a3 >0, and
o t+ast+az3=1.

e The Casimir bozx (1968): Let an = 1/2, i.e. ag 3 < 1/2.
Since ey, 0.0 = h2(27n1/V/?)2/2m ~ 1/V, then again the asymptotics of
solution:

p = pa(Bs ua(p)) = palp > pe(B)) = —A/V +0(1/V), A>0

R 1 1 1
LR etk D DR ey
ke{A*:n17#0,no=nz=0}

1 —1
=p— pC(ﬁ) >0 ) 11/1\11 V {eﬁ(sk;éo_#A(p)) - 1} 7é 0,€k7éo = €£,1,0,0

1 -1
li[{n v {eﬁ(€k¢o—uA(P)) _ 1} =0, €0k 50= ﬁ2(27rn2,3/va2’3)2/2m

The generalised type II BEC [23]:

1 2 1/2\2 -1
_ — 1 B(R*(2mna /VI2)2 /2m—pa(p)) _
p— pe(B) = lim v E {e ! kale 1}

L—o00
ni1€Z

1 . 1 §
- Z h?(2mny)?/2m + A = h/r\n V<b0b0>TA(’LA(p)) <p=pelB).

ni1€Z

Here A > 0 is a unique root of the above equation. Note that BEC in the
zero mode is less than the total amount of the condensation density.

For a; = 1/2 the BEC is still mode by mode macroscopic, but
it is infinitely fragmented. This type of BEC is also known as quasi-
condensate and it was observed in the rotating condensate (2000) and
in the condensate with chaotic phases (2008), [18].

e The Van den Berg box (1982): oy > 1/2.

Proposition 1. There is no macroscopic occupation of any kinetic-energy

mode: ) .
o 2 [ Bler—nalp) _ }‘ —
h/Ian{e 1 0.
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This is the generalised BEC of type III [Van den Berg-Lewis-Pulé
(1978)]. It occurs one-direction anisotropy ag > 1/2 i.e. as + a3 < 1/2.
Since €k, 00 = (2701 /V)2/2 ~ 1/V?*1 2a; > 1, then the solution
ua(p) has a new asymptotics:

pa(p = pe(B)) = =B/V° +0(1/V°), B20, 6 =2(1-a) <1,

0<p—pcB) = (QWB)—1/2 /O‘X’d5 o—BBE 5—1/2 .

Here parameter B = B (8, p) > 0 is a unique root of the equation:
1

V28°B(B.p)

The generalised BEC of type III yields for the one-mode particle
occupation

p—p(B) =

lin s (Ni)r, (B 1a (p > pe(8))) = 0 for all k € {A°)

For the "renormalised” ki-modes occupation "density"one obtains:

o1 2
h}xnﬁ (Ni), (Bypa (p > pe(B))) =28 (p—pe(B)”,

where k € {A*: (n1,0,0)} and 1 —e=6< 1.

Definition 1.[24] In kinetic-energy modes the amount of the generalised
BEC is defined as

1 -1
_ — T : Bex—pa(B,p)) _
p—pe(B): nlirgohlr\n E {e 1} .
{keA~,|[klI<n}

Remark 1. [22],[24] Saturation and p,,-problem: is it possible that there
is a new critical density p,, such that p. < p,, < oo and the type III (or II)
condensation transforms into conventional type I BEC when p > p,, 7 The
answer is positive. Recently the second critical density p,, was discovered
for a cigar-type harmonic anisotropy [1]. There it was also proved that the
type I and the type III condensations may coexist.
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2.5 The Bogoliubov Theory and the Zero-Mode c-
Number Substitution

The first Bogoliubov ansatz. If one expects that the Bose-Einstein
condensation, which occurs in the mode k& = 0 for the perfect Bose-gas,
persists for a weak two-body interaction u(x), then one can to truncate
Hamiltonian: Hy — HZ, and to keep in HY only the most important
condensate terms, in which at least two zero-mode operators bj, by are
involved. This approximation gives the Bogoliubov Weakly Imperfect Bose-
Gas (WIBG) Hamiltonian HP [26].

The second Bogoliubov ansatz. Since for a large volume (thermodynamic
limit) the condensate operators b5/\/V, bo/VV almost commute:
[bo/VV, b5/ V] =1/V, one may use substitutions:

bo/NVV = ¢ T, bV = ¢ -1, ceC,

in the truncated grand-canonical WIBG Hamiltonian HP(u) := HEP —
uNa — HEB (e, u) to produce a diagonalizable bilinear operator form.

2.6 The Zero-Mode c-Number Approximation

For the periodic boundary conditions on 9A, let o := Fposon (Ho) be the
boson Fock space constructed on the one-dimensional Hilbert space Hg
spanned by ¢—o(z) = xa(x)/VV

Let 3 := Sboson (Ha) be the Fock space constructed on the orthogonal
complement Hg . Then Fposon(H) = Shoson (Ho ® Hg ) is isomorphic to the
tensor product:

S‘boson (HO ¥ Hé_) ~ %boson(HO) ® Sboson(H(J)_) = SO & 367

For any complex number ¢ € C the coherent vector in §Fy is
oale) 1= eIy L (V7e) (55)" 2 = VI /20Vet
oalc) == il 0 0= 0 s
k=0

where Qg is the vacuum of §. Notice that

b

\/‘7wOA(C):C'(/)OA(C)EC'HwOA(C)-
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Definition 2. The c-number Bogoliubov approximation of the grand-
canonical Hamiltonian (N := 7, 1. bibr := bgbo + N})

Hy (,u) = Hp — ,UNA y dOII’l(HA (N)) C¥~ Sboson(HO) & gboson(H(J)_)

is a self-adjoint operator Hy (¢, p) defined in ) = Froson (’Hé‘), for any
fixed vector 1oa (c), by the closable sesquilinear form:

(W4, Ha(e, m)a) g = (Yoa (¢) @ ¥, Ha (1) oa () @ 13)5

for vectors (1oa (¢) ® Y7 5) € form-domain of the operator Hy (u).

Remark 2. Since (bo/VV) toa(c) = c-T vop(c), the c-number
approximation is equivalent to substitutions:

bo/VV = -1, by /VV = ¢ -1
in the Hamiltonian
Ha(n) = Hale,p) = Hy(2) — p(z2 T+ N}) | 2 1= ¢ V7.
2.7 Exactness of the c-Number Approximation

Definition 3. The grand-canonical pressure for Hamiltonian Hy(x) and
for its c-number Bogoliubov approximation H} (z, i), are defined by:

pa(p) = ﬁiv In Trg exp[—BH (1))
1
P i= 5 In /C @ Trg, exp[—BHA (2, )]

Proposition 2.(Variational Principle) [10], [15].

ePAVraln) > /CdzzTr% exp[—BH\(z,n)] >

P Trg, exp[—BH) (¢, p)] =: €V Pames )

Proposition 3.
limpa (i) = lim py (1) = lim pa,maa (1)
with the rate of convergence:

0 < pa(n) = pAmaz (1) < O((InV)/V),
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see [15]. The rate of convergence proved by the Approxzimating Hamiltonian
Method(AHM) is

0< pA(.u) - pA,maw(,u) < O(l/\/V) )

see [10], [26].

Remark 2. Although in [10] and in [15] the use of coherent states is
essential, the method of the last paper efficiently exploits the Peierls-
Bogoliubov and Berezin-Lieb inequalities instead of the AHM. To be more
flexible, this method covers also the case of infinitely many k-modes,
provided the card{k : k € Iy C A*}< ¢ V177, v > 0, and it gives also more
accurate estimates. The Bogoliubov c-Number Approximation is ezact on
the thermodynamic level (AHM) [6], .

2.8 The c-Number Approximation for Ideal Bose-Gas

The c-number substitution in the grand-canonical Hamiltonian Ty (p) :=
TA — uNA is

Ta(n) = Tale,p) = > (e — w)bibx — Vel
keA*\{0}

Then one gets for the pressures (note that pu < 0 and ex—g = 0):

1 1
Th()] = —— InTrx exp[—BTh ()] = —— S~ In(1 — e~ Bler—m)-1
pTa(R)] Gl 5 exp[—BTa(1)] 5 kEEA* n(l—e )
1
— —B(ex— —1 2
p[Ta(c, )] = BV E In(1 — e~ AER=m) =1 4 pyjc|
keA"\{0}

0 < p[Ta(w)] = p[Tale, )] = Z%V In(1 = &™)~ — plef =: An(c, p)

Variational Principle: {c : inf.limpa Ap(e,p)} = {ex(p)} =
c(pp < 0) =0V (pes () |u=0= 0. Hence, the BEC density is not defined.

2.9 Gauge Invariance and Bogoliubov Quasi-Averages

Since [Hp, Na] = 0 (total particle number conservation law),

Hp = eNaH e 9N U(p) := e Na
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H, is invariant w.r.t. gauge transformations U(y).
Corollary 1. The grand-canonical expectation value:

(bo/ V), (B =0.
Let Hp (1) := Ha(p) — VV (v b 4+ v*bo), v € C. Then

<j(;7>HA,,, G 70 <Z:I7§)>HA (B,m) =0

Remark 4. Whether the limit: lim,_,olimp <%>H (Byp) =:co#£07?

If it is the case this yields a spontaneous breaking of the gauge symmetry.
Here ¢ is the Bogoliubov quasi-average [4], [5]. The idea of quasi-averages
allowed Bogoliubov to prove his famous 1/¢?-Theorem for interacting Bose-
gas as well as to advance later in elucidating the c-Number Approximation,
see [15], [16], [21], [26].

Example 2.(Ideal Bose-Gas) The gauge-breaking sources imply

A,v

Ta () = Ta(p) — VV (v b5+ v7bo) =
—(B5 + VY1) (bo + Vv /) + TR (1) + VI /o

The c-number substitution gives:

T (1) = Tap(e ) = —pV (@ +7/p)(c+v/p) + T 7 (w) + Vv /u

One gets for the pressure (note that pu < 0 and ex—g = 0):

p[Ta. ()] = p[Talp)] — |v|? /1,
pITh (e, )] = pITSE ()] + pV (@ + 2 /) (e + v/p) — v/

0 < p[Tar(w)] = plTau(e, p)] =
1
Gy (=)™t = ple+n/ul* = Anle,)
The Variational Principle:{c : inf.limy Ap (¢, 1)} = {ea(p,v) = —v/u}
implies that the variational BEC density pgp. is defined by the limit

lv/u(v)] 7, VPos Ot equivalently by
vV—r

) . ) b3 bo
Pos = lim ‘C*(/J,7I/)|2 = lim lim (—O YTa (1) =) a0 () -
v—0 v—0 V=00 4/ ’ \/ ?
u:u(_l>/)—>0 M:MU/)_)O - v v
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The relation of BEC versus the quasi-average BEC and the maximizer py.
takes the form:

1, 11
zero — mode BEC py = V<b0bo>TA‘u:O(H) = Vo1 <
w11 L. .

Lz Ty = V<b0b0>TA,,/(u) = quasi — average BEC .

Then by the Variational Principle for the ¢-Number Approximation one
obtains:

llgb ‘}gfloov<bobo>m,u(u): 312% VII_I;HOO<W>TA,U(H)<W>TAW(“)

p=p(v)—0 p=p(r)—0
= gauge — symmetry breaking BEC = lirr%) lex (i, V)| = pos -
#:Z(HV)—H)
Remark 5. Is it possible that pg < po« ? The answer is positive: one can
prove this inequality for the ideal as well as for an interacting Bose-gas [7]
if they manifest generalised BEC of the type II or III.
Proposition 4 [15], [16]. The k¥ = 0 — mode BEC = quasi-average
BEC < spontaneous gauge-symmetry breaking BEC < non-zero c-number
approximation for the mode k = 0.
The proof is based on Griffith’s arguments and on the following two

Propositions:
Proposition 5 For a real v one gets equality between the limits:

lim pa (5 v) = lim py (5 v) = Him pa maa (3 7)

which are convex in v.
Proposition 6 (Gauge-Symmetry Breaking and BEC)

. . bo >
lim lim( — B, 1) =
v|—0, arg(v) A <W HA,V( 2
lim iz e (V)] € arg() [\ =i ¢p .

|v|—0, arg(v)
Here by the Variational Principle: 25 max (V) = |2a,max (V)] €@ 283,
sup Trg, exp[—BH)(C, p;v)] = Trg; exp[—BH) (28,max(v), 15 1)]

= exP [BVDPA 2p o (v) (15 V)] =2 €xD [BVDA maz (115 V)],
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and ZA,maw(O) = |ZA,ma:1:(0)‘ ei(ba PAzA max (V) (,u; V)|V:O = pA,maz(,u)-
Corollary 2. One obtains for the quasi-average condensate density and
for the condensate density equation:

) ) b5 b .
po(B,p) = lim lim (-2 (8, w)=1lim |co, A, maz|* (B, 1) -
4 Hp A

|[v|—=0, arg(v) A
where ¢y A mae 1S @ maximizer of the variational problem:

sup Trg/ exp[—BH) (coVV, )] = Trg, exp[—BHA(Con.mazVV, )]

3 Random Homogeneous (Ergodic) External
Potentials.

3.1 Random and Kinetic-Energy Eigenfunctions

For the almost surely (a.s.) self-adjoint random Schrédinger operator in
A C R? one has:

K07 = (ta +0”), 7 = Ef ¢% , for almost all(a.a.) w € Q,

where {¢%'};>1 are the random eigenfunctions. In the limit A 1 R? the
spectrum o (h*) of this operator is a.s. nonrandom [19].
Let NA(¢;’) be particle-number operator in the eigenstate ¢

Nai=Y Na(d§) =D b"(¢7)b(¢5)

i>1 i>1

is the total number operator in the boson Fock space §(L*(A)), b(¢¥) =
[y da @(x) b(z), and {¢%};>1 is a.s. a (random) basis in H = L3(A).

Let tayr = e be the kinetic-energy operator eigenfunctions
{1 }rea~ with eigenvalues e, = h*k%/2m. Recall that one of the
key hypothesis of the conventional Bogoliubov Theory is the existence
of translation-invariant ground-state (i.e. the zero-mode p—y) Bose
condensation.

Random Hamiltonian HY of interacting Bosons in §(H):

HY =Ty + Uy = random Schrodinger operator + interaction ,
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where the kinetic-energy operator has two forms:

AU(hR) :=T% = > EY b (¢)b(¢5) = D (vky, (ta + 1)k, )20k, brs -

j>1 k1,ko€A*

Note that there are also two faces for the second-quantised two-body
interaction u(z — y) in F(H):

1 W w W W * W * W W W
Un = 5 (05 @65, u 65, @ 6 Juam b (506" (95,) b(65,)b(65,)
J1,J2
J3,J4
1 * *
= o Z v (q) b, 4 Oy gbko Oy
k1,k2,qeA*

Remark 6. Our aim is to elucidate the status and in particularly
exactness of the Bogoliubov c-Number Approximation for the random

interacting boson gas. For example to answer the questions concerning
the (generalised) BEC:

Zj:E;<5<NA(¢;‘U)>H7{/V —c?or Zk:sk<7<NA(¢k)>H,‘t/V —c?

3.2 Random versus Kinetic-Energy Condensation

Proposition 7 [11] Let HY := T% + Ux be many-body Hamiltonian
of interacting bosons in random external potential V. If the particle
interaction Ux commutes with any of number operators N (¢%) (local
gauge invariance), then

. 1 w
a.s. — %Jl})llljx\n | =((Na(9))my >0 &
j:E}f’gé
e 1
& a.s. — Ll%llmAlnf Z V<NA('¢I€)>H7( >0,

kier <y

and: limy olima >, o (Na(¢x))ny/V = 0. Here (—)py is quantum
Gibbs expectation with random Hamiltonian HY.
Remark 7 If a many-body interaction satisfies the local gauge invariance:

[Un, Na(¢5)] =0,

then Uy is a function of the occupation number operators {Nx(¢;j)}j>1-
For this reason it is called a “diagonal interaction".
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Corollary 3 A random localized generalised (of a yet unknown type)
boson condensation occurs if and only if there is a generalised (type
IT/IIT) condensation in the extended (kinetic-energy) eigenstates. This is a
possible way to save the Bogoliubov theory in a the case of non-translation
invariant, but homogeneous random external potential.

3.3 Amounts of Random and of Kinetic-Energy
Condensates

Let for any A C R, the particle occupation measures m, and my are
defined for the perfect Bose-gas by:

() =5 ST V@) ia(A) = Y (NaW))g

J:E;€A kiepr€A

Proposition 8 [11] For the perfect Bose-gas amounts of random and
kinetic-energy condensates coincide:

— (ﬁ - pc)(SO(dE) + (eﬁE - 1)_1N(dE) lfﬁ 2 Pe

m(dE) = { (ePE=re) — )=t N(dE) if p < pe ,
[ (- pdolde) + F(e)de 7> pe.
m(de) = { F(e)de if 5 < pe.

with explicitly defined density F(¢). For models with diagonal interactions:
ma(A) < mp(A).

3.4 BEC in One-Dimensional Random Potential.
Poisson Point-Impurities

For d = 1 and for repulsive Poisson point-impurities with density 7 and
a > 0, the homogeneous ergodic random external potential has the form:

vw(x): = /,uT(dya(SJ;— Zadx—%

AS —T w
Plw: p(A) = s} :Jgf‘M,wmm»:ﬂM,Acw.
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Proposition 9 [14] Let ¢ = +o00. Then o(h*) is a.s. nonrandom, dense
pure-point spectrum such that the closure o, (h*) = [0, 4+00), with the
Integrated Density of States

e—ﬂ'T/\/ﬁ

g 2 re ™/V2E | E | 0, (Lifshitz tail).
_ 6—71'7'

N(E)=T1
One gets for the spectrum:

(a.5.) — o(h*) = | J{=*s*/2(L5)*} 2,

J

where intervals L} = y; — y;_, are independent identically distributed
random variables :

k
dPijh---,jk (Lj17 cee 7ij) = Tk H eiTLjS dLjs

s=1

The eigenfunctions: for a.a. w € Q the one-particle localized quantum
states {@%};>1, give a basis in L*(A).

4 Generalized c-numbers approximation

4.1 Existence of the approximating pressure

Since randomness implies fragmented (or generalized type II/III)
condensation, following the Bogoliubov approximation philosophy, we want
to replace all creation/annihilation operators in the momentum states )y,
with kinetic energy less than some 6 > 0 by c-numbers. Let Is C A* be
the set of all replaceable modes

Is .= {k € A" : B*k*/2m < 6},

and we denote ngs := card{k : k € Is}.

Remark 8 The number of quantum states ngs is of the order V; since by
definition of the Integrated Density of States: ng = V N (d). To use the
Lieb-Seiringer-Yngvason method we consider ng, = O(V1=7), 0 < v < 1.
Why it is possible ? See Corollary 4, and [25] for details.
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4.2 Generalised BEC of type III: one-mode particle
occupations

Definition 4 [12] We call eigenfunctions: {¢%'};>1 weakly localised if

1
lim — [ dz [¢¥(2)| =0 fora.a.wef.
= [ d 07(a)

Proposition 10 [12],[13] Let all {¢%};>1 be localised. Then for models
HY with diagonal interactions

.1 x
11/I\n v <NA(1/’k)>H;g =0 forall k € {A*}

This implies that any possible generalised kinetic-energy BEC in these
models is of type III.

Corollary 4 The number of condensed kinetic-modes is at most O(V1~7),
0 <~ < 1, and in this case one can use the LSY method for the modes:

. 1
hlr\n v <NA(¢1€)>HX #0, forkels,, y=1—¢

Let H? be the subspace of # spanned by the set of v, with k € I5, and
Ps be orthogonal projector onto this subspace. Hence, we have a natural
decomposition of the total space H and the corresponding representation
for the associated symmetrised Fock space:

H=HoH K  F~F7F.

Then we proceed with the Bogoliubov substitution by — ¢ and b — ¢, for
all k € Is, which provides an approzimating (for the initial) Hamiltonian,
that we denote by HY™ (i, {ck}).

The partition function and the corresponding pressure for this
approzimating Hamiltonian have the form:

=0 (1, {er}) = Trg e AT Unten))

1 -
PR (1, {er}) = v =R (, {cr}) -

Proposition 10 [13], [25] The c-numbers substitution for all operators in
the energy-band Ij,, card{k : k € Is,} = O(V'~7), does not affect the
original pressure in the following sense:

a.5.— li/r\n[p/\(ﬁ,u) - {I{Ig?}( pﬁxong (1, {ex}P)} =0
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Remark 9 Besides the type III condensation the last statement covers the
one-mode case. For the case of eventual type I condensation the arguments
are similar, but with a volume-dependent cut-off of the converging sum over
modes [25].
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