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Abstract

Motivated by the Jaynes-Cummings (JC) model, we consider here a quantum dot
coupled simultaneously to a reservoir of photons and to two electric leads (free-
fermion reservoirs). This Jaynes-Cummings-Leads (JCL) model makes possible
that the fermion current through the dot creates a photon flux, which describes a
light-emitting device. The same model is also describe a transformation of the
photon flux into current of fermions, i.e. a quantum dot light-absorbing device.
The key tool to obtain these results is an abstract Landauer-Biittiker formula.
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1 Introduction

The Landauer-Biittiker formula is widely used for the analysis of the steady state cur-
rent flowing trough a quantum device. It goes back to [18] and [7] and was initially
developed based on phenomenological arguments for non-interacting electrons (free-
fermions). The essential idea was to describe a quantum system as an inner or sample
system (dot) with left and right leads attached to it, i.e. free-fermion reservoirs with
two different electro-chemical potentials. The goal was to calculate the steady electron
current going from one lead through the dot to another one.

It was Landauer and Biittiker who found that this current is directly related to the
transmission coefficients of some natural scattering system related to this particle trans-
port problem. The phenomenological approach of Landauer and Biittiker later has been
justified in several papers by deriving the formula from fundamental concepts of the
Quantum Mechanics, see the series of papers [1, 5, 8,9, 10, 11, 12, 13, 14] and [19].

Note that this quantum mechanical approach is possible since for the case of free-
fermion reservoirs the corresponding transport problem reduces to study the Hamilto-
nian dynamics of extended “one-particle” system. During last decade there has been an



important progress in rigorous development of the Quantum Statistical Mechanics of
Open Systems [2, 3, 4]. This is a many-body approach adapted for interacting systems.
It also allows, besides the Hamiltonian [2], to develop a Markovian description of ef-
fective microscopic dynamics of the sample system (dot) connected to environment
of external reservoirs [3]. Then evolution the sample system is governed by a quan-
tum Master Equation. Although powerful and useful the Markovian approach needs a
microscopic Hamiltonian justification, which is a nontrivial problem [3].

In the present paper we follow the one-particle quantum mechanical Hamiltonian
approach. Motivated by the quantum optics Jaynes-Cummings (JC) model, we con-
sider here a two-level quantum dot coupled simultaneously to environment of three
external reservoirs. The first is the standard JC one-mode photon resonator, which
makes the JC quantum dot an open system [16]. Two others are free-fermion reser-
voirs coupled to the quantum dot. They mimic two electric leads. This new Jaynes-
Cummings-Leads (JC L-) model makes possible that the fermion current through the
dot creates a photon flux into the resonator, i.e. it describes a light-emitting device. The
same model is also able to describe a transformation of the external photon flux into a
current of fermions, which corresponds to a quantum dot light-absorbing device.

The aim of the paper is to analyze the fermion current going through the dot as a
function of electro-chemical potentials on leads and the contact with the photon reser-
voir. Although the latter is the canonical JC-interaction, the coupling of the JC model
with leads needs certain precautions, if we like to stay in the framework of one-particle
quantum mechanical Hamiltonian approach and the scattering theory.

We discuss the construction of our JC'L-model in Sections 2.2-2.7. For simplicity,
we choose for the leads Hamiltonians the one-particle discrete Schrodinger operators
with constant one-site (electric) potentials on each of leads. Notice that these Hamil-
tonians are one band bounded self-adjoint operators. The advantage is that one can
easily adjust the leads band spectra positions (and consequently the dot-leads transmis-
sion coefficients) shifting them with respect to the two-point quantum dot spectrum by
varying the one-site electric potentials (voltage). In Section 2.5 we show that the our
model fits into framework of trace-class scattering and in Section 2.7 we verify the
important property that the coupled Hamiltonian has no singular continuous spectrum.

Our main tool is an abstract Landauer-Biittiker-type formula applied in Sections
3.1 and 3.2 to the case of the JC'L-model. Note that this abstract formula allows to
calculate not only the electron current but also fluxes for other quantities, such as pho-
ton or energy/entropy currents. In particular, we calculate the outgoing flux of photons
induced by electric current via leads. This corresponds to a light-emitting device. We
also found that pumping the JCL quantum dot by photon flux from resonator may in-
duce current of fermions into leads. This reversing imitates a quantum light-absorbing
cell device. These are the main properties of our model and the main application of
the Landauer-Biittiker-type formula of Sections 3.1 and 3.2. They are presented in
Sections 4 and 5, where we distinguish contact-induced and photon-induced fermion
currents.

To describe the results of Sections 4 and 5 note that in our setup the sample Hamil-
tonian is a two-level quantum dot decoupled from the one-mode resonator. Then the
unperturbed Hamiltonian H describes is a collection of four totally decoupled sub-
systems: the sample, the resonator and the two leads. The perturbed Hamiltonian H is



a fully coupled system and the feature of our model is that it is totally (i.e. including
the leads) embedded into the external electromagnetic field of resonator. This allows
a systematic application of the abstract Landauer-Biittiker-type formula, c.f. Sections
3.1and 3.2.

As we see there is a variety of possibilities to switch on interactions between sub-
systems, i.e. to produce intermediate Hamiltonians. We distinguish the following two
of them:

(a) First to switch on the coupling between sample and resonator: the standard JC
model H jc, see e.g. [16]. Then to connect it to leads, which gives the Hamilto-
nian H ;¢ := H of the fully coupled system.

(b) First to couple the sample to leads: the corresponding Hamiltonian Hgy, is a
standard “Black Box” S L-model for free-fermion current, see [1], [4]. Then to
embed it into resonator and to couple the sample with electromagnetic field by
the JC-interaction. This again produces our JC'L-model with H ;o1 = H.

Similar to the SL-model { Hsy,, Hy}, it turns out that the JC L-model also fits into
the framework of the abstract Landauer-Biittiker formula, and in particular, is a trace-
class scattering system {H ;o = H, Hgr}. The current in the SL-model is called
the contact-induced current JS. It was a subject of numerous papers, see e.g. [1, 5],
or [4] and references quoted there. Note that the current J,; is due to the difference of
electro-chemical potentials between two leads, but it may be zero even if this difference
is not null [12, 13].

The fermion current in the JCL-model, takes into account the effect of the
electron-photon interaction under the assumption that the leads are already coupled.
It is called the photon-induced component Jflh of the total current. Up to our knowl-
edge the present paper is the first, where it is studied rigorously. We show that the total
free-fermion current J in the JC L-model decomposes into a sum of the contact- and
the photon-induced currents: Jo; := J5 + J, flh. An extremal case is, when the contact-
induced current is zero, but the photon-induced component is not, c.f. Section 5.1. In
this case the flux of photons J,;, out of the quantum dot (sample) is also non-zero, i.e.
the dot serves as the light emitting device, c.f. Section 5.2. In general the .J,,;, # 0 only
when the photon-induced component Jflh # 0.

In this paper we derive explicit formulas for these currents in the following three
cases which are important for the understanding of the .JC'L-model:

(1) The electro-chemical potentials of fermions in the left and right leads are equal.
Note that in this case the (contact-induced) current in the .JC'L-model is zero.

(i) The spectrum of the left and right lead Hamiltonians do not overlap. Again,
in this case the contact-induced electron current J¢; of the current in the JC'L-
model is zero, and only the photon-induced electron current Jflh of the total
current is possible.

(iii) The leads are coupled to the Jaynes-Cummings model such that left and right
leads interact only by virtue of the photon interaction in the Jaynes-Cummings
model. Then the contact-induced electron current Jg; is also zero.



For these cases we find that the photon induced electron current .J, ph o entering the left
(aw = 1) orright (o« = ) lead is given by

J = / dx G2t
a,el Z 27T

m,n€ENg
xe{l,r}

(P""(n) frp (A — pa — nw) — PP (m) frp (A — poe — mw)) .
where Eﬁ’f{ m. (A) > 0 is a partial scattering cross-section between the left channel

with m-photons and the s-channel with n-photons at energy A € R. By ¢ > 0 the
magnitude of the electron charge is denoted. The photon current is given by

1
Jon = Z (n — m)pph(m)Q— / dX frp(A = po —mw) 30" (N).
m,nENy TR
O‘a"‘e{la"'}

Both formulas become simpler if it is assumed that the JC L-model is time reversible
symmetric. In this case we get

== 3 5 [ v, o)
(P""(n) frp(A = = nw) — pP(m) frp (A — pr — mw))

and

Joh = /d)\ abh ()X

m nENo,n>m
w,ac{l,r}

(n—m) (p""(m) frp(A — pa — mw) — pP(n) fro(X — proe — nw)) .

It turns out that choosing the parameters of the model in an suitable manner one gets
either a photon emitting or a photon absorbing system. Hence JC'L-model can be
used either as a light emission device or as a light-cell. Proofs of explicit formulas for
fermion and photon currents ./ l}? Zl , Jpn 1s the contents of Sections 4 and 5.

Note that the JC'L-model is called mirror symmetric if (roughly speaking) one can
interchange left and right leads and the JC L-model remains unchanged. In Section
5 we discuss a surprising example of a mirror symmetric JC'L-model such that the
free-fermion current is zero but the model is photon emitting. This peculiarity is due to
a specific choice of the photon-fermion interaction in our model.

2 Jaynes-Cummings quantum dot coupled to leads

2.1 Jaynes-Cummings model

The starting point for construction of our JC L-model is the quantum optics Jaynes-
Cummings Hamiltonian H /€. Its simplest version is a two-level system (quantum dot)



with the energy spacing &, defined by Hamiltonian hg on the Hilbert space hg = C?,
see e.g. [16]. It is assumed that this system is “open” and interacts with the one-mode
w photon resonator with Hamiltonian hP".

Since mathematically h?" coincides with quantum harmonic oscillator, the Hilbert
space of the resonator is the boson Fock space h?" = §(C) over C and

PP = wb*b . 2.1

Here b* and b are verifying the Canonical Commutation Relations (C'C'R) creation and
annihilation operators with domains in §; (C) ~ ¢?(Ny). Operator (2.1) is self-adjoint
on its domain

dom(hPh) = {(ko,kl,kg, L) €PN Y Pkl < oo}.
n€Ng

Note that canonical basis {¢,, := (0,0,...,k, = 1,0,...) }nen, in £2(Np) consists of
eigenvectors of operator (2.1): hP"¢,, = nw ¢y, .

To model the two-level system with the energy spacing &, one fixes in C? two
ortho-normal vectors {e3, €7 }, for example

669 = ((1)) and ef = ((1)) , 2.2)

which are eigenvectors of Hamiltonian hg with eigenvalues {\5 = 0, A\{ = ¢}. To

thlS el‘ld we put
0 0

and we introduce two ladder operators:

. (01 _ (00
dm() (0. o

Then one gets hg = e oo™ as well as
S_ _+.8 S_ _—§ ~s_ (0
el =0"ey , eg =0 ¢e] and o e = 0) - (2.5)

So, eg is the ground state of Hamiltonian hs. Note that non-interacting Jaynes-
Cummings Hamiltonian HJ lives in the space $H7¢ = hs @ h?" = C? @ F.(C)
and it is defined as the matrix operator

H{® := hg @ Iyon + Iy, @ WP (2.6)

Here Iypn denotes the unit operator in the Fock space hP", whereas I b Stays for the
unit matrix in the space hg.

With operators (2.4) the interaction Vg, between quantum dot and photons (bosons)
in the resonator is defined (in the rotating-wave approximation [16]) by the operator

Vsp :=gsp (0T @b+0~ @b"). 2.7



Operators (2.6) and (2.7) define the Jaynes-Cummings model Hamiltonian
Hjc = Hi + Vs, (2.8)

which is self-adjoint operator on the common domain dom(Hg“) N dom(Vsy). The
standard interpretation of H ;¢ is that (2.8) describes an “open” two-level system in-
teracting with external one-mode electromagnetic field [16].

Since the one-mode resonator is able to absorb infinitely many bosons this inter-
pretation sounds reasonable, but one can see that the spectrum o (H <) of the Jaynes-
Cummings model is discrete. To this end note that the so-called number operator

Njc = oToT ® Ihph + Ihs ®b*b
commutes with H ;. Then, since for any n > 0

9750 = {¢oeg ® dn + C1e¥ @ dn1}conec s 910 = {Coel @ doteoec, (2.9)

are eigenspaces of operator ¢, they reduce H;c, i.e. Hjo : ﬁ;{c — ﬁ;{c. Note
that /¢ = @n>0 57{0, where each ﬁ;{c is invariant subspace of operator (2.8).
Therefore, it has the representation

Hie= @ HSE . n>1, Hg =0. 2.10)
neNp

Here operators H yg are the restrictions of H j<, which act in each ﬁgc as

H'(J”C)(Co €6 @ b+ (el @ dpoi1) = (2.11)
[Conw + CrgspV/n] €5 @ ¢ + [C1(e + (n — 1)w) + CogspV/n] €5 @ 1 .

Hence, the spectrum o(H, o) = U, U(HF;Q). By virtue of (2.11) the spectrum

O‘(H.(]Tg) is defined for n > 1 by eigenvalues F(n) of two-by-two matrix ﬁ(]nC) acting

on the coefficient space {(y, (1 }:

() (G e+(n-1Nw gsz)\/ﬁ) (Cl) (Cl)
H = =F . 2.12
7 (Co) ( gspv/n nw Co () Co 212)
Then (2.10) and (2.12) imply that the spectrum of the Jaynes-Cummings model Hamil-
tonian H ;¢ is pure point:

o(Hyc) = opp.(Hic) = (2.13)

foyu {nw+%(5w)i\/(sw)2/4+ggbn} .

neN

This property is evidently persists for any system Hamiltonian hg with discrete
spectrum and linear interaction (2.7) with a finite mode photon resonator [16].

We resume the above observations concerning the Jaynes-Cummings model, which
is our starting point, by following remarks:



(a)

(b)

(©)

(d)

2.2

The standard Hamiltonian (2.8) describes instead of flux only oscillations of
photons between resonator and quantum dot, i.e. the system hg is not “open”
enough.

Since one our aim is to model a light-emitting device, the system hg needs an
external source of energy to pump it into dot, which then be transformed by
interaction (2.7) into the outgoing photon current pumping the resonator.

To reach this aim we extend the standard Jaynes-Cummings model to our JC'L-
model by attaching to the quantum dot hg (2.3) two leads, which are (infinite)
reservoirs of free fermions. Manipulating with electro-chemical potentials of
fermions in these reservoirs we can force one of them to inject fermions in the
quantum dot, whereas another one to absorb the fermions out the quantum dot
with the same rate. This current of fermions throughout the dot would pump it
and produce the photon current according scenario (b).

The most subtle point is to invent a leads-dot interaction V;g, which ensures the
above mechanism and which is simple enough that one still be able to treat this
JC'L-model using our extension of the Landauer-Biittiker formalism.

The JCL-model

First let us make some general remarks and formulate certain conditions indispensable
when one follows the modeling (d).

ey

@)

3)

Note that since the Landauer-Biittiker formalism [13] is essentially a scatter-
ing theory on a contact between two subsystems, it is developed only on a
“one-particle” level. This allows to study with this formalism only ideal (non-
interacting) many-body systems. This condition we impose on many-body
fermion systems (electrons) in two leads. Thus, only direct interaction between
different components of the system: dot-photons Vg, and electron-dot V;s are
allowed.

It is well-known that fermion reservoirs are technically simpler to treat then bo-
son ones [13]. Moreover, in the framework of our model it is also very natural
since we study electric current although produced by “non-interacting electrons”.
So, below we use fermions/electrons as synonymous.

In spite of precautions formulated above, the first difficulty to consider an ideal
many-body system interacting with quantized electromagnetic field (photons)
is induced indirect interaction. If electrons can emit and absorb photons, it is
possible for one electron to emit a photon that another electron absorbs, thus
creating the indirect photon-mediated electron-electron interaction. This interac-
tion makes impossible to develop the Landauer-Biittiker formula, which requires
non-interacting framework.

Assumption 2.1 To solve this difficulty we forbid in our model the photon-mediated
interaction. To this end we suppose that every electron (in leads and in dot) interacts



with its own distinct copy of the electromagnetic field. So, to consider electrons to-
gether with its photon fields as non-interacting “composed particles”, which allows to
apply the Landauer-Biittiker approach. Formally it corresponds to the “one-electron”
Hilbert space h* @ hP", where hP" is the Hilbert space of the individual photon field.
The fermion description of composed-particles h* @ hP" corresponds to the antisym-
metric Fock space §_ (h°! @ hPh).

The composed-particle assumption 2.1 allows us to use the Landauer-Biittiker for-
malism developed for ideal many-body fermion systems. Now we come closer to the
formal description of our JCL-model with two (infinite) leads and a one-mode quantum
resonator.

Recall that the Hilbert space of the Jaynes-Cummings Hamiltonian with two energy
levels is §7¢ = C? ® §4(C). The boson Fock space is constructed from a one-
dimensional Hilbert space since we consider only photons of a single fixed frequency.
We model the electrons in the leads as free fermions living on a discrete semi-infinite
lattices. Thus

hel = 2(N) @ C? @ 2(N) = b @ hs @ h! (2.14)

is the one-particle Hilbert space for electrons and for the dot. Here, gl a € {l,r},are
the Hilbert spaces of the left respectively right lead and hs = C? is the Hilbert space
of the quantum dot. We denote by

{0n}nen,  {8}j=0

the canonical basis consisting of individual lattice sites of h¢/, o € {I,7}, and of b,
respectively. With the Hilbert space for photons, h?" = F, (C) ~ ¢?(Ny), we define
the Hilbert space of the full system, i.e. quantum dot with leads and with the photon
field, as

H=h"@p"" = ((A(N) & C* @ (3(N)) ® (*(Ny). (2.15)

Remark 2.2 Note that the structure of full space (2.15) takes into account the condi-
tion 2.1 and produces composed fermions via the last tensor product. It also manifests
that electrons in the dot as well as those in the leads are composed with photons. This
makes difference with the picture imposed by the the Jaynes-Cummings model, when
only dot is composed with photons:

H=CN)@C e (N @ A(N) , $7¢=C?eR(Ny), (2.16)

see (2.6), (2.7) and (2.8), where /¢ = hs ® hP". The next step is a choice of
interactions between subsystems: dot-resonator-leads.

According to (2.14) the decoupled leads-dot Hamiltonian is the matrix operator

REE 00 u
h(e)l = 0 hg 0 on u=|us| , {ua S 62(N>}ae{l,r} , Us € C? s
0 0 hd Uy
where h¢! = —AP + v, with a constant potential bias v, € R, o € {l,7}, and hg can

be any self-adjoint two-by-two matrix with eigenvalues {\§,A\{ := \§ + ¢}, e > 0,



and eigenvectors {e5, ef'}, cf (2.3). Here, AP denotes the discrete Laplacian on ¢%(N)
with homogeneous Dirichlet boundary conditions given by

(APf)(@) = fle+1)=2f(x)+ flz—-1), zeN,
dom(AP) = {f e *(Ny): f(0):= 0},

which is obviously a bounded self-adjoint operator. Notice that o(AP) = [0, 4].
We define the lead-dot interaction for coupling g.; € R by the matrix operator
acting in (2.14) as

0 (76€>6§ 0
Vel = ger | (- 6405 0 (,0me8 |, (2.17)
0 (-, 67)07 0

where non-trivial off-diagonal entries are projection operators in the Hilbert space
(2.14) with the scalar product u, v + (u,v) for u,v € h'. Here {55, 07} is ortho-
normal basis in h¢, which in general may be different from {e5, €7 }. Hence, interac-
tion (2.17) describes quantum tfunneling between leads and the dot via contact sites of
the leads, which are supports of 6} and d7.

Then Hamiltonian for the system of interacting leads and dot we define as h¢ :=
h&' + ve;. Here both hg! and he! are bounded self-adjoint operators on h.

Recall that photon Hamiltonian in the one-mode resonator is defined by operator
hP" = wb*b with domain in the Fock space 4 (C) ~ ¢?(Np), (2.1). We denote the
canonical basis in £2(Np) by {Y,,},en,. Then for the spectrum of 2”" one obviously
gets

a(h") = opp(h?") = | {nw}. (2.18)
n€eNy

We introduce the following decoupled Hamiltonian Hy, which describes the system
when the leads are decoupled from the quantum dot and the electron does not interact
with the photon field.

Hy := HS + HP", (2.19)

where
H§' == h§l @ Iypn  and  HPM := I @ hP".

The operator Hy is self-adjoint on dom(Hy) = dom(Iyer @ hP"). Recall that h§ and
hP" are bounded self-adjoint operators. Hence H§' and H® are semi-bounded from
below which yields that Hj is semi-bounded from below.

The interaction of the photons and the electrons in the quantum dot is given by
the coupling of the dipole moment of the electrons to the electromagnetic field in the
rotating wave approximation. Namely,

Vo = g ((€5)ef @b+ (-, e7)ed @ b%) (2.20)
for some coupling constant g,, € R. The total Hamiltonian is given by

H:=H" + H" 4 V,;, = Hy + Vg + Vp, (2.21)

10



where He := hel @ Tgpn and Ve 1= ve; @ Iypn.

In the following we call § = {H, Hy } the Jaynes-Cummings-leads system, in short
JC'L-model, which we are going to analyze. In particular, we are interested in the
electron and photon currents for that system. The analysis will be based on the abstract
Landauer-Biittiker formula, cf. [1, 13].

Lemma 2.3 H is bounded from below self-adjoint such that dom(H) = dom(Hy).

Proof. Let ¢ > 2. Then
16T n ) < I YulP=n+1<c 'n?+e¢, neN,.

Consider elements f € hs ® h?* N dom(fger ® hPM) with

f= Zﬂjzej ®7Y;, j€{0,1}, 1€ Ny,
gl
which are dense in $7/¢ := [)esl®hph. Then Hf”2 — Zj,l|5jl|2 and ||(Ihel®b*b)f||2 _
Zj,l:1|5jl|212. We obtain

(s ed)eg ©b)fIP < D I8 I67al* <
7.l

S 1Bl (¢ 2 + ¢) = ¢ Y|(Tyer @ b*B) £ + el £II?
4,

Similarly,
(G, et)ed @ b)fIP < e HI(Tger @ 6" B)FI1* + e |1 £1I%.

If ¢ > 2 is large enough, then we obtain that V), is dominated by H P with relative
bound less than one. Hence H is self-adjoint and dom(Hy) = dom(H). Since HE'
and V., are bounded and HP" is self-adjoint and bounded from below, it follows that
H = Hg' + HP" 4+ V,; + V), is bounded from below [17, Thm. V.4.1]. O

2.3 Time reversible symmetric systems

A system described by the Hamiltonian H is called time reversible symmetric if there
is a conjugation I' defined on §) such that 'H = HT'. Recall that I' is a conjugation if
the conditions I'> = I and (I'f,T'g) = (f,9), f,g € 9.

Let h2", n € Ny, the subspace spanned by the eigenvector Y, in h?"*. We set

O, = @pP" neNy, ae{lr}. (2.22)

= P o

n€Ng,ae{l,r}

Notice that

11



Definition 2.4 The JC L-model is called time reversible symmetric if there is a con-
jugation I' acting on $) such that H and H( are time reversible symmetric and the
subspaces $),,_, n € No, a € {l,r}, reduces T'.

Example 2.5 Let v¢ and Vg ! be conjugations defined by

fa = fa = {fa( )}kENa faebg}a ae{l,r},

wrs = (1) = (23)

We set v := ¢! @ v¢ @ ~v¢'. Further, we set

and

= = {P()knenys ¥ € B
We set I' := v/ @ ", One easily checks that I is a conjugation on ) = h* @ hP".

Lemma 2.6 Let ¢, o € {S,1,r}, and vP" be given by Example 2.5.

(i) If the conditions 73 60 = 60 and 73 e? = e} are satisfied, then Hy is time

reversible symmetric with respect to I' and, moreover, the subspaces $,,_,, n €
No, a € {l,r}, reducesT.

(i) If in addition the conditions v&'05 = &5 and v& 67 = 07 are satisfied, then
JC L-model is time reversible symmetric.

Proof. (i) Obviously we have
Ve = helyel o e {l,r}, and APPRPR = pPhAPR

Ifv&es = ef and vge? = ef is satisfied, then v¢hg = hZ~¢ which yields v¢'hgl =
helyel and, hence, THy = T'Hy. Since y°'h¢! = bel and vP"hPh = HPR one gets
Fﬁna $n,, which shows that ), reducesI'.

(ii) Notice that v¢/6¢ = 6%, o € {l,7}. If in addltlon the conditions v&d5 = &5
and fyelés = 55 are satisfied, then v*'v,; = voy® is valid which yields v*'h¢! =
helfyel. Hence I'H = HT'. Together with (i) this proves that the .JC L-model is time

reversible symmetric. (I
Choosing
1 0 1 /1 1 1
S . S . S ._ = S._ =
a=() a=(0) L), w-2(L) am
s

one satisfies the condition ygef = ej and yge? = ef as well as vgef = eff and

1,S _ S
vser = e€7.
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2.4 Mirror symmetric systems

A unitary operator U acting on $) is called a mirror symmetry if the conditions
Uﬁna = y)na/; a, O/ € {Z,T}, @ 7& O/
are satisfied. In particular, this yields U$'¢ = §7¢, §7¢ := p¢ @ prh.

Definition 2.7 The JC L-model is called mirror symmetric if there is a mirror symme-
try commuting with Hy and H.

One easily verifies that if Hy is mirror symmetric, then
H, ,U=UH,,, neNy, o, e{l,r}, a#d,
where
H, =h"® Igon + Iyt ® = he fnw, neNy, o €{l,r}, a#d.

In particular, this yields that v, = v,.. Moreover, one gets UHg = HgU where
Hg = hgl (9 Ihph + Ihel (9 heh,

Notice that if H and Hy commute with the same mirror symmetry U, then also the
operator H, := hel ® Ibph + Ihez ® hP" commutes with U, i.e, is mirror symmetric.

Example 2.8 Let S = {H, Hy} be the JOL-model. Let v; = v, and let 5 and ey as
well as 65 and 67 be given by (2.23). We set

ugleg = eg and uglef = —¢f (2.24)

as well as .
uP"Y, = e ™Y, neN. (2.25)

Obviously, Ug := ugl ® uP" defines a unitary operator on $7¢. A straightforward
computation shows that

UsHs = HsUs and UgsVp, = VppUs. (2.26)
Furthermore, we set
uflol =67 and w6’ =6, neEN, (2.27)
and
0 0 ufﬁ
uli=10 wug 0
u® 0 0
We have
fi < fs, (ug)*85 > o}
vau | fs | = | < fry (ufh) 6t > 65+ < f1, (uch) o7 > 67 (2.28)
fr < fs, (ug) 67 > of

13



Since 05 := = (e5 +e7) and 67 := %(eg — e?) we get from (2.24)

V2
(ud) 65 =07 and (ud)* 67 =55, (2.29)
Obviously we have
(uin) 0y =67 (uf))"o] = 4. (2.30)
Inserting (2.29) and (2.30) into (2.28) we find
fi < fs,07 > 8
vau | fs | = | < frr 07 > 65+ < f1, 08 > 67 (2.31)
j} < fs,5§ > 6{
us Further we have
fl < fSa 513 > 5l1
uog | fs | = | < f1,08 >80+ < fr,07 > 65 | . (2.32)
Ir < fo, 05 > 07

Comparing (2.31) and (2.32) we get u®vy = vguc. Setting U := u ® uP" one
immediately proves that UHy = HoU and UH = HU. Since U$H),,, = ﬁnga/ it is
satisfied § is mirror symmetric.

Notice that in addition the Example 2.8 § is time reversible symmetric.

2.5 Spectral properties of /: first part

In the following our goal is to apply the Landauer-Biittiker formula to the JC L-model.
By £, (), 1 < p < o0, we denote in the following the Schatten-v.Neumann ideals.

Proposition 2.9 If S = {H, Hy} is the JC L-model, then (H + i)' — (Ho + i)~ €
£1(9). In particular, the absolutely continuous parts H¢ and H§® are unitarily equiv-
alent.

Proof. We have

(H+i) ' = (Ho+i) ' = (Ho+4) 'V(H+i)" ' =
(Ho +4) 'V (Ho +14i)"* — (Ho+4) "'V (Ho +4) " 'V(H +i)~!
where V = H — Hy = V¢ + V). Taking into account Lemma 2.3 it suffices to prove

that (Ho +4) ™'V (Ho +i)~" € £1(9). Using the spectral decomposition of h”" with
respect to P = @, . b2, where h5" are the subspaces spanned by T,,, we obtain

(Ho+1) " = @ (h' +nw +4) 7' @ Ipn. (2.33)
n€eNy

We have (Ho + i)'V (Ho +14)~' = (Ho + i)' (Ver + Vpn)(Ho + i) . Since v
is a finite rank operator we have ||v||¢, < oco. Furthermore, h2" is obviously one-
dimensional for any n € Ny. Hence thth,gl = 1. From (2.33) and V; = ve; ® Iyon

14



we obtain

I(Ho + )" Va(Ho + ) ey = D (! + nw + ) ver(hg +nw + )7 le,

n€eNy
< DN+ w0+ )72 lvarll e,
neNp
Since h§! is bounded we get
[(h§! + nw +i) 7 = sup (V(A+nw)?+ 1)71 <c(n+1)7t (2.34)
Aea(hgh)

for some ¢ > 0. This immediately implies ||(Ho + i)' Vo (Ho + i) 7| e, < .
We are going to handle (Ho + )™V, (Ho + i)~ '. Let p2" be the projection from
hP" onto h2. We have
(Ho+1)7Y (- e5)es @ b(Hy + i)~
= Z (hg! 4+ mw 4 i) 7 (-, e5)ed (hg' +nw +14) "1 @ pPhbpkh
m,neNy

S (i 4+ (= Dw+i) 7 (ed)ed (! +nw +i) 7t @ Va1 ()
neN

From (2.34) we get
[(hG + (n = Dw +1) 7" (- e5)ef (h§ +nw +4)71) @V, Ta)|q,

< CQL
~ nn+1)
n € N, which yields
10+ 077 Coef)ed @ bt +) s, <3 <.
Since
I(Ho+1)~" (- ef)es @b* (Ho+i) e, = [I(Ho+i) ™" (- e5)ef @b (Ho+i) " [le,
one gets (Ho + 1) 'V (Ho + )~ € £1($) which completes the proof. O

Thus, the JCL-model S = {H, Hp} is a £;-scattering system. Let us recall that
het = —AP + ., a € {I,7}, on bt = et = (2(N).

Lemma 2.10 Ler o € {l,r}. We have
o(he) = 0ac(h) = [va, 4+ val.
The normalized generalized eigenfunctions of he' are given by
9a(2, ) = 77 F(1 = (=X + 2+ va)?/4) " T sin (arccos((—A + 2 + v4)/2)x)
forxz €N, A € (v4,4 + vy).
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Proof. We prove the absolute continuity of the spectrum by showing that

{ga(z, )| A € (=2,2)}

is a complete set of generalized eigenfunctions. Note that it suffices to prove the lemma
for

(AP +2)f)(@) = fle+ 1) + fl=1),  f(0)=0.
The lemma then follows by replacing A with —\ + 2 + v,. Let A € (—2,2) and
gan(z,A) = W7%(1 - )\2/4)7i sin (arccos(\/2)z)

Note that gap (0,\) = 0, whence the boundary condition is satisfied. We substitute
p = arccos(A/2) € (0,7),i.e. A = 2cos(u) and obtain

sin(u(z + 1)) + sin(u(z — 1)) = 2sin(ux) cos(u),

whence gap(x,\) satisfies the eigenvalue equation. It is obvious that gap (-, A) ¢
0?(Np) for A € (—2,2). To complete the proof of the lemma, it remains to show the
ortho-normality and the completeness. For the ortho-normality, we have to show that

> gan (@, Ngan (z,v) = 6(A —v).

€N

Let 1) € C5°((—2,2)). We use the substitution ;1 = arccos(v/2) and the relation
sin(arccos(y)) = (1 — y2)_%
to obtain

[ o ng(x,»gm(x, V)(v)

-2 zeN
) sin (arccos A/2)x) sin(pa)
1
2

= /0 du Z sin(arccos(\/2)))2

1

(sin(p))2 ' -
27‘- d ez(arccos(z\/Q) #)z_’_
( /0 Z sm arccos )\/2))) (

e—i(arccos(z\/Q)—u)m . ez(arccos()\/2)+u)m . e—i(arccos(/\/2)+u)z),¢)(2 COS(,LL))

P(2cos(p))

Sln

Observe that for the Dirichlet kernel
Z (€™ e ™) — 1 =27 6(y),
x€eNg

whence

[ @Y gsn (e Ngan (@ )u)

-2 zeN

" (sin(u))?
:/O du (ein T (6(arccos()\/2) — )+

arccos(A/2)))
b(arccos(A/2) + 1) ) (2 cos(i)) = ¥(A).
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In the second equality we use that the summand containing 6 (arccos(A/2) + p) is zero
since both arccos(A/2) > 0 and p > 0. Thus, the generalized eigenfunctions are
orthonormal. Finally, using once more the substitution ;1 = arccos(v/2), we get

2
/ dv gan (x,v)gap (y,v)
—2

= / dv (1 - (1//2)2)_% sin (arccos(v/2)x) sin (arccos(v/2)y)

=201 [ dpingu)) sin)sin() sin()

= 6my

for z,y € N, whence the family of generalized eigenfunctions is also complete. (]

From these two lemmas we obtain the following corollary that gives us the spectral
properties of Hy.

Proposition 2.11 Ler $ = {H, Hy} be the JCL-model. Then o(Hy) = 04.(Hp) U
opp(Ho), where

0ac(Ho) = U [v + nw, v + 4 + nw] U [v, + nw, v, + 4 + nw|
neNp

and
opp(Ho) = U {)\f +nw:j=0,1}
n€eNg

The eigenvectors are given by g(m,n) = eTSn®Tn, m = 0,1, n € Ny. The generalized
eigenfunctions are given by go (-, \,n) = ga (-, \=nw)@Y,, for X € 04.(Ho), n € Ny,
ae{l,r}

Proof. It is well known (see e.g. [15]) that for two self-adjoint operators A and B with
0sc(A) = 0s.(B) =0, wehave 0. (A®1+1® B) =0,

0ac(A®1+1® B) = (0ac(A) + 0(B)) U (0(A) + 04c(B))

and

opp(A®@1+1® B) = 0pp(A) + opp(B).
Furthermore, if 1) 4(A4) and ¥ p(Ap) are (generalized) eigenfunctions of A and B,
respectively, then ¥4 (A a) ® Y (Ap) is a (generalized) eigenfunction of AQ I +1® B
for the (generalized) eigenvalue A4 + A\p.

The lemma follows now with A = hgl and B = hP" using Lemmata 2.10 and (2.18)
and the fact that hg has eigenvectors {e5, 7 } with eigenvalues {\§, A} = \§ +¢}. O
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2.6 Spectral representation

For the convenience of the reader we define here what we mean under a spectral rep-
resentation of the absolutely continuous part K§ of a self-adjoint operator K on a
separable Hilbert space K. Let ¢ be an auxiliary separable Hilbert space. We consider
the Hilbert space L?(R, d), £). By M we define the multiplication operator induced
by the independent variable X in L?(RR, d), £). Let ® : 89¢(Ky) — L2(R,d\, €) be
an isometry acting from £%¢(K) into L?(R, d, £) such that ®dom(K§¢) C dom(M)
and
MOf =dK(f, fedom(K°).

Obviously, the orthogonal projection P := ®®* commutes with M which yields the
existence of a measurable family { P(\)} xcr such that

PHN=PNFN, [ eL’®A\0.
We set L2(R, d\, €(\)) := PL?(R, \, £), £(\) := P()\)€, and call the triplet
T(KG) = {L*(R, d), (X)), M, @}

a spectral representation of K. If { L*(R, d\, £()\)), M, ®} is a spectral representa-
tion of K%, then K is unitarily equivalent Mg := M | L3(RR,d), £(\)). Indeed,
one has ®K§°®* = M. The function {78 (A) := dom(E(A)), A € R, is called the
spectral multiplicity function of K §¢. Notice that 0 < f‘}(co()\) < oofor A € R.

For a € {l,r} the generalized eigenfunctions of h¢ define generalized Fourier
transforms by ¢¢ : hel = hba¢(hel) — L2([va, va + 4]) and

(@ fa)N) = Y gal®, N fal@),  fa €bY. (2.35)

€Ny
Setting

(2.36)

el N C xe [va,va+4]
h“m'_{o A€ RN\ [va, Vo + 4].

one easily verifies that TI(h¢') = {L2(R, d)\, h¢ (X)), M, <} is a spectral representa-
tion of h¢! = heh2¢ o = I, r, where we always assumed implicitly that (¢ f,)(\) = 0
for A € R\ [vg,vq + 4]. Setting

ey
N := @ CC? NeR, (2.37)
b (A)
and introducing the map
hel
¢ i hhee(hgl) = @ — L*(R,dA,h (V) (2.38)
hel
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defined by
el
el f = (Zfll?) where f := (J{fl) (2.39)

we obtain a spectral representation TI(h5"*) = {L2(R,dA, h'(N)), M, ¢} of the
absolutely continuous part h&"* = h¢' @ hel of h&l. One easily verifies that 0 <
ghd( ) <2 for A € R. Introducing

)\el

e = min{v,v,} and A%

max

= max{v; +4,v, + 4} (2.40)

one easily verifies that ghd (A) =0for A € R\ [\, , A& ].
Notice, if v, + 4 < v;, then

b (2) = C, Me€[v,v.+4]UJv, v +4],
{0}, otherwise

which shows that A& has simple spectrum. In particular, it holds ghd( ) = 1 for
A € [vr,vr + 4] U [, v; + 4] and otherwise fhgl( ) =0.

Let us introduce the Hilbert space h := [*(No,C*) = @,,cp, bn» bn = C2,
n € Ny. Regarding h*!(\ — nw) as a subspace of h,, one regards

=P 1. (), ba(N) :=b"A—nw), AER, (2.41)

neNp

as a measurable family of subspaces in h. Notice that 0 < dim(h()\)) < oo, A € R.
We consider the Hilbert space L2(RR, d\, h()\)).

Furthermore, we introduce the isometric map ® : $(H§¢) — L*(R,d), h(N))
defined by

wn- @ (). ven ae

n€eNp
where
! h
TL el,ac el ph ble “ h’?z
B (1) e oo -@|
neNp neNp neN [)il ® hﬁh
where b,, = @neNO hP" and hP" is the subspace spanned by the eigenvectors

Y, of hP". One easily verifies that ® is an isometry acting from $?°(Hg¢) onto
L2(R,d), h(N)).

Lemma 2.12 The triplet { L*(R, dX, h(X)), M, @} forms a spectral representation of
Hge, that is, TI(H§®) = {L*(R,d\, h(\)), M, ®} where there is a constant d € NO

such that 0 < 5?};()\) < 2dpmax for A € R where dpax := iﬂ"w)‘@ and \¢, an
el are given by (2.40).

min
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Proof. It remains to show that ® transform H§¢ into the multiplication operator M.
We have (n)
ac hl f l 7’L + nwf 1n
HO f @ ( helf TL + nwfr(n)

which yields

(PHGF)(N)

=P <( P (R 1) () ) (A = nw) + nw( 7lfl(n))(>\nw))
(g5 (hilfr)(n))(A — nw) + nw(¢ f,(n)) (A — nw)

— (@7 filn)(A —nw) ) _
- @ ( (¢>€l Fr(n))(A nw)) = (M2f)(A), AeR.

which proves the desired property.
One easily checks that h(\) might be only non-trivial if A — nw € [A¢, A ],
Hence we get that h(\) is non-trivial if the condition

)\ )\fr{ax )\ Aiﬁin
TmeX oy < L Tmin
w w
is satisfied. Hence
A — \él A — \el
0§§%(A)§2card{n€No:ﬂ< <7m”“}, AeR.
w w
or
)‘max B )‘relllax
0<¢&H(A) <2cardqn €Np:0<n< —2—2%0  XcR.
w
Hence 0 < f%’o()\) < dmax for A € R. O

In the following we denote the orthogonal projection from h(\) onto b, (\) by

Pn(A), A € R, cf (2.41). Since h(A) = €D,,cn, hn(A) we have Iy(n) = D, o, Pn(N),
A € R. Further, we introduce the subspaces

B, (V) == b (A —nw), AER, neN.

Notice that
@ bna()\)z ANeER, neNg.
ae{l,r}

By P, (\) we denote the orthogonal projection from h(\) onto b,,_ (A), A € R. Obvi-
ously, we have P, (A) = 3 ey Pra (M), A €R.

Example 2.13 In general the direct integral IT( H§¢) can be very complicated, in par-
ticular, the structure of h(\) given by (2.41) is difficult to analyze. However, there are
interesting simple cases:
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(i) Letv = v; = v, and 4 < w. In this case we have h*!(\) = C2 for [v, v + 4] and

b() = C%, Ne[v+nw,v+nw+4], neN,
{0}, otherwise.

(ii)) Letwv, =0, v; =4, wy = 4. Then

hil()‘) =C, A€ [0a4)’

B eﬁ(A) = C27 NS [4;8)7
M=V gany =2 acsi2),

rl

where z
ba (A)
bl (N = @ |, a, o €{l,r}, a#d.
he (V)
Hence dim(h(N\)) = 2 for A > 4. O

Let Z be a bounded operator acting on $*“(Hj) and commuting with Hj¢. Since
Z commutes with H{¢ there is a measurable family {Z ()} xer of bounded operators
acting on h(\) such that Z is unitarily equivalent to the multiplication operator induced
by {Z(A) }aer in ITI(H®). We set

Zman.(A) = Py (N Z(A) [bn, (A), A€R,  mneNo, a,xe{l,r}

Let Zy,n, = Pm,ZP,,_ where P, is the orthogonal projection from § onto
Dm., S H*(Hp), cf. (2.22). Obviously, the multiplication operator induced
{Zmon,.(N) Faer in TI(H§) is unitarily equivalent to Z, ..

Since by Lemma 2.12 h(\) is a finite dimensional space, the operators Z(\) are
finite dimensional ones and we can introduce the quantity

Tmgnse(N) = 0(Zmon,. (N Zimon,, (N), A ER, m,n € No, a,x € {l,r}.

Lemma 2.14 Let Hy be the self-adjoint operator defined by (2.19) on $). Further let
Z be a bounded operator on $*°(Hy) commuting with H§¢

(1) Let I' be a conjugation on 9, cf. Section 2.3. If I' commutes with Hy and P,_,
n € No, a € {l,r} and T ZT = Z* holds, then oy, .. (N) = 0n,m,(A), A € R.

(1) Let U be a mirror symmetry on 9. If U commutes with Hy and Z, then
Oman.(N) = Omn, (A, ANER m,n €Ny, o, , 5,5 € {l,r}, a # o, 3 # 5.

Proof. (i) Since I' commutes with Hj the conjugation T is reduce by $(Hy). So
without loss of generality we assume that I' acts on H*¢(Hy). Weset Ty, :=T | H,,_.

Notice that
r= € oI
n€Ng,ac{l,r}

21



There is a measurable family {I'(\)} yer of conjugations such that the multiplication
operator induced by {I'(A\)}aer in II(H§°) is unitarily equivalent to I'. Moreover,
since I' commutes with P, we get that the multiplication operator induced by the
measurable family

o) =T\ b, (N), AeR, meNy, ac{lr}

is unitarily equivalent to I',, . Using I'ZT" = Z* we get Uy, Zinyn, U'n,. = Z;, .-
Hence

Lo N Zmn, A0, (AN) = Z o, (N, A ER. (2.43)

If X is trace class operator, then tr(I'XT') = tr(X). Using that we find

Oman,, (A) =tr(Th, (N Zimon,. N)* Zimon,, A)Th, (N) =
tr (T, (N) Zmn,, N T T Zian,, (M) (N))

From (2.43) we obtain

Oman,,A) =t0(Zn,me (N Zn e N)*) = 0noma (N, A ER,

which proves (i).

(ii) Again without loss of generality we can assume that U acts only $*¢(H).
Since U commutes with H, there is a measurable family {U ()} er of unitary op-
erators acting on h() such that the multiplication operator induced by {U(\) }aer is
unitarily equivalent to U. Since U$),, = $,_, we have U(A)b,, (A) = by, (N),
A € R. Hence

Tmann (V) = tr(UN) Zinon, N Zion, (NU (X)) =
tr(U(A) Zinan A UA) U A) Zinan, (AU A)).

Hence

Tman.(A) = tr(Po UNZA) U P, (U ZAUA)" P, (A))-

o P

Since U commutes with Z we find

Tman(N) = t0(Po_, Z(\)* Pon , (NZ(N)Po_, () = Omin, (), A ER,

P

which proves (ii). U

2.7 Spectral properties of /7: second part

Since we have full information on the spectral properties of Hy we can use this to show
that [ has no singular continuous spectrum. Crucial for that is the following lemma:
with the help of [6, Cor. IV.15.19], which establishes existence and completeness of
wave operators and absence of singular continuous spectrum through a time-falloff
method. We cite it as a Lemma for convenience, with slight simplifications that suffice
for our purpose.
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Lemma 2.15 ([6, Corollary IV.15.19]) Let { Hy, H} be a scattering system and let A
be a closed countable set. Let F'\ and F_ be two self-adjoint operators such that
Fi +F_ = Pg and

s — tllglo exthoFie:ttho 0.

If(H =)™ = (Hy — i)' € £xc(9), (1 — P )y(Ho) € £xc(H), and

y ) (Ho— 71 — (- i) e oy | < o0

forall v € C§°(R\ A), then Wy (H, Hy) exist and are complete and c4.(H) =
osc(Ho) = 0. Furthermore, each eigenvalue of H and Hy in R \ A is of finite multi-
plicity and these eigenvalues accumulate at most at points of A or at +o0.

We already know that the wave operators exist and are complete since the resolvent
difference is trace class. Hence, we need Lemma 2.15 only to prove the following
proposition.

Proposition 2.16 The Hamiltonian H defined by (2.21) has no singular continuous
spectrum, that is, os.(H) = .

Proof. At first we have to construct the operators F.. To this end, let F : L? (R) —
LQ(R) be the usual Fourier transform, i.e

f 1 e () dx 2 T
FNW) = F) = —= [ f@dn, feI*Roda), peR

Further, let IT1 be the orthogonal projection onto L?(R.) in L?(R). We set
Fy =®*FIILF*®

where ® is given by (2.42). We immediately obtain F_ + F, = P,.(Hy). We still
have to show that

s — lim [T 00T FIL F*@e o f|| = 0
—00

for f € $H%(Hy). We prove the relation only for F;. since the proof for F_ is essen-
tially identical. We have

(I F*@e'™o f) (z) = (27) "2 xw, () /R dp e HONF () = X, (2)(z + 1)

with ¢ = }'f. Now
||67’L'tHU@*]_‘HJ’_]:*(I)eitHofHQ —

e raetor? = [ afueof = [ sl =Fo.
]R+ t

23



Concerning the compactness condition, we already know that (H —i) ' —(Ho—i)~! €
£1(9) C £oo($H) from Proposition 2.9. Let

A= U {v; + nw, v, + nw, v + 44 nw, v, + 4+ nw},
neNp

which is closed and countable. We know from Corollary 2.11 that H has no singular
continuous spectrum and the eigenvalues are of finite multiplicity. It follows that (1 —
P,.(Hyp))v(Hy) is compact for every v € C§°(R \ A). The remaining assumption of
Lemma 2.15 is

| /Oioodt (=)™ = (Ho = )™ )y (Ho)e 0 || < oo

If we can prove this, then we immediately obtain that A has no singular continuous
spectrum. Now (H —4)™' — (Ho — i)™ = (H — i) "*(Ver 4+ Vi) (Ho — 9) ™. But
(H —i)~!is bounded,

ran(FL) C $%(Ho) = (b’ & b!) @ b*",
and V,,, P“(Hy) = 0. Also, Vo; = ve; ® Ippn and
ker(ve)™ € Co @ hs @ CoY.

Hence, it suffices to prove
+o0 )
[ atlpes = e | < .
0

o € {l,r}, where P{ = p @ Iy and p§ is the orthogonal projection onto he.
In the following we treat only the case Fy. The calculations for F_ are completely
analogous. We use that ® maps H ¢ into the multiplication operator M induced by A.
Hence we get

||PO‘~ (H )e,itﬂo@*}—fu _ leaq)*q)fy(Ho)e*itHoq)*}"fH =

27r—% Z / A\ ga (1, A — nw)y (A)/

. 2\ 3
dx e—zx\(m-i-t)f(z)’ )
n€Ng Ry

where supp (f) C Ry, ¥(A) := (A —4)"1y(A), A € R, and 04, == [v4 + nwo, Vo +
nw + 4]. Notice that ¥(\) € C3°(R \ A). We find

/ dX go (1, A — nwﬁ()\)/ dz e AN+ f(z) =

S R

Vo +4 )
/ d g (1, N)F(A + nw) / da e 7 {OFm)@HD) ()
v, R

a +
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which yields
| P @* @y (Ho)e Mo d* Ff| =

=em (Y| / :MdA 9o (1, A (A + nuwg)

neNp
1

/ dz e*i()\Jrnwo)(ert)f(x) ‘2) 2 -
Ry

Since the support of () is compact we get that the sum ), . is finite. Changing
the integrals we get

/ dA ga (1, A = nw)F(A) / dz e” M f () =
6&,71, ]R+
Vo +4

/ da f(x)e”meolett / dA ga (1, VTN 4 nw)e” A+
R4 Vo
Integrating by parts m-times we obtain

/ dX ga (1, N — nw)ﬁ()\)/ dz e ) £(2) =

Sa,n R4

e—inw(z+1) Va+4 ) dm _
(—iym /]R do fla) / dr =@+ L0 NFO A+ nw)
+ Vo

(x+t)m dxm™
Hence
‘ / dX ga (1, — nw)F(N) / dx (fi)‘(zﬂ)j:(:r)’2
e Ry
2
< (/ & If(x)|;>
R, (x +t)m™

which yields

[ el mi ) [ dre e s
5(1,,,7, R+

1
< Cﬁm”ﬂﬁ

for m € N where

Cp = /Uva+4 dX ‘(Z—mm (ga(l, N+ nw)D .

Notice that C',, = 0 for sufficiently large n € N. Therefore

1/2

U 1

| PR3 (Ho)e*Hod* F f|| < (Z Cﬁ) ol fll e L*(Ry, dx),
neNg

which shows that || PP (Ho)e "o F. || € L' (R4, dt) form > 2. O
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3 Landauer-Biittiker formula and applications

3.1 Landauer-Biittiker formula

The abstract Landauer-Biittiker formula can be used to calculate flows through devices.
Usually one considers a pair § = {K, K} be of self-adjoint operators where the un-
perturbed Hamiltonian Ky describes a totally decoupled system, that means, the inner
system is closed and the leads are decoupled from it, while the perturbed Hamiltonian
K describes the system where the leads are coupled to the inner system. An important
ingredient is system § = {K, K} is represents a complete scattering or even a trace
class scattering system.

In [1] an abstract Landauer-Biittiker formula was derived in the framework of a
trace class scattering theory for semi-bounded self-adjoint operators which allows to re-
produce the results of [18] and [7] rigorously. In [13] the results of [1] were generalized
to non-semi-bounded operators. Following [1] we consider a trace class scattering sys-
tem S = {K, Ko}. Werecall that § = { K, K} is called a trace class scattering system
if the resolvent difference of K and K, belongs to the trace class. If § = {K, Ky} is a
trace class scattering system, then the wave operators W (K, Ky) exists and are com-
plete. The scattering operator is defined by S(K, Ky) := Wi (K, Ko)*W_ (K, Kp).
The main ingredients besides the trace class scattering system § = {K, Ky} are the
density and the charge operators p and @, respectively.

The density operator p is a non-negative bounded self-adjoint operator commuting
with K. The charge () is a bounded self-adjoint operator commuting also with K. If
K has no singular continuous spectrum, then the current related to the density operator
p and the charge () is defined by

TS o = —itr (W_(K, Ko)pW_ (K, Ko)"[K,Q]) 3.1)

where [K, Q)] is the commutator of K and (). In fact, the commutator [K, ()] might be
not defined. In this case the regularized definition

. 1 1
5o =—itr (W— (K, Ko)(I + K3)pW_ (K, Ko) m[K, Q]K—H) (3.2)

is used where it is assumed that (I + K2)p is a bounded operator. Since the condition
(H —i)7H,Q](H +1i)~! € £1(9) is satisfied the definition (3.2) makes sense. By
£1(9) is the ideal of trace class operators is denoted.

Let K be self-adjoint operator on the separable Hilbert space K. We call p be a
density operator for Ky if p is a bounded non-negative self-adjoint operator commuting
with K. Since p commutes with Ky one gets that p leave invariant the subspace
R*(Kp). We set

Pac = p | R*(Ko).

call p,. the ac-density part of p.
A bounded self-adjoint operator () commuting with K is called a charge. If Q is
a charge, then

Qac = Q fﬁac(Ko)-
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is called its ac-charge part.

Let II(K§) = {L?(R,d\,&(\)), M, ®} be a spectral representation of K§¢. If
p is a density operator, then there is a measurable family {p,.(\)}rer of bounded
self-adjoint operators such that the multiplication operator

(Mpoe FYN) = pacN) F(N), ] €dom(M,,,) := L*(R, dX, t(V)),

is unitarily equivalent to ac-part p,., that is, M, == ®p,.P*. In particular this
yields that ess-sup \cgl|Pac(N)|Be(n) = [lPacllB(rac(ky))- In the following we call
{pac(\) }rer the density matrix of pge.

Similarly, one gets that if @, then there is a measurable family {Qac(\)}rer of
bounded self-adjoint operators such that the multiplication operator

~

(Ma,. D) = Quc(N) F(N),
Fedom(Que) = {fe€ LR, d\EN): Que(N) F(N) € L2(R, d), ¢(\)},

is unitarily equivalent to Qqc, i.e. Mg,. = PQq.P*. In particular, one has

ess-Sup xeg [|Qac(MBee(n) = [|QacllB(aee (o)) - (3.3)

If Q is a charge, then the family {Q,.()\)} xer is called the charge matrix of the ac-part
of Q.

Let s = {K, Ko} be a trace scattering system. By {S(\)}rer we denote the
scattering matrix which corresponds to the scattering operator S(K, K) with respect
to the spectral representation IT(/K§¢). The operator T := S(K, K() — P*(Ky) is
called the transmission operator. By {T'(\)} xcr we denote the transmission which is
related to the transmission operator. Scattering and transmission matrix are related by
S(A) = Ty +T(N) forae. A € R. Notice that T'(\) belongs for to the trace class
ae A e R

Theorem 3.1 ([13, Corollary 2.14]) Let 5 := {K, Ko} be a trace class scattering
system and let {S(\)}xer be the scattering matrix of S with respect to the spectral
representation I1(K§¢). Further let p and @Q be density and charge operators and let
{pac(A) }rer and {Qac(N) } aer be the density and charge matrices of the ac-parts pa.
and charge Q4. with respect to TI(K&°), respectively. If (I + K@)p is bounded, then
the current J/f_’Q defined by (3.2) admits the representation

1

Jo= o /R tr (pac(N)(Qac(N) — S*(N)Quc(N)S(N)))dA (3.4)

where the integrand on the right hand side and the current J;f o satisfy the estimate

67 (Pac(M) (Qac(N) — 5™ (N)Qac(A)S(N))] < (3.5)
oMl eeon T M2, e RN lecexy)
fora.e. A\ € Rand
175 ol < Coll(H +4)™1 = (Ho+ 1) ey (s (3.6)

where Co := 2||(1 + Hg)pl| 2 (s)-
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In applications not every charge () is a bounded operator. We say the self-adjoint
operator () commuting with K is a p-tempered charge if Q(Hy — ¢)~? is a bounded
operator for p € Np. As above we can introduce Q. := Q | dom(Q) N R*(Ky).
It turns out that Q E'x,, (A) is a bounded operator for any bounded Borel set A. This
yields that the corresponding charge matrix {Qqac(\)}xer is @ measurable family of
bounded self-adjoint operators such that

ess-sup ycp (1 + A%/ 2(|Qac(N) [ 2(e(rn)) < o0

To generalize the current J S,Q to tempered charges () one uses the fact that Q(A) :=
QFk,(A) is a charge for any bounded Borel set A. Hence the current JiQ(A) is well-
defined by (3.2) for any bounded Borel set A. Using Theorem 3.1 one gets that for
p-tempered charges the limit

S T S
Jp,Q T AthR Jp-,Q(A) (3.7

exists provided (Ho — i)PT2p is a bounded operator. This gives rise for the following
corollary.

Corollary 3.2 Let the assumptions of the Theorem 3.1 be satisfied. If for some p € Ny
the operator (Hq — i)PT2p is bounded and Q is a p-tempered charge for Ko, then the
current defined by (3.7) admits the representation (3.4) where the right hand side of
(3.4) satisfies the estimate (3.5). Moreover, the current ‘]/iQ can be estimated by

|5 ol S Cull(H +i)~" = (Ho +4) " e, (s (3.8)

where Gy := 2||(1+ H3)" /2 pll o) |QU + HE) 7P| ¢(5)-

At first glance the formula (3.4) is not very similar to the original Landauer-Biittiker
formula of [7, 18]. To make the formula more convenient we recall that a standard ap-
plication example for the Landauer-Biittiker formula is the so-called black-box model,
cf. [1]. In this case the Hilbert space 8 is given by

N
fA=RsoPR, 2<N<x. (3.9)
j=1
and K by
N
Ky=KsaPK;, 2<N<c. (3.10)
j=1

The Hilbert space K is called the sample or dot and Kg is the sample or dot Hamil-
tonian. The Hilbert spaces £, are called reservoirs or leads and K ; are the reservoir or
lead Hamiltonians. For simplicity we assume that the reservoir Hamiltonians K; are
absolutely continuous and the sample Hamiltonian K g has point spectrum. A typical
choice for the density operator is

N
P:fS(KS)EB@fj(Kj)v (3.11)

j=1
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where fs(-) and f;(-) are non-negative bounded Borel functions, and for the charge
N
Q = gs(Hy) & @ g;(Hy), (3.12)
j=1

where gs(-) and g;(-) a bounded Borel functions. Making this choice the Landauer-
Biittiker formula (3.4) takes the form

1 N
Ba=g0 2 [ (50— Ag (N (ay (.13
k=1
where
o (N) = (TN Tie(N), . k=1,...,N, AeR, (3.14)

are called the total transmission probability from reservoir k to reservoir j, cf. [1].
We call it the cross-section of the scattering process going from channel k to channel
jatenergy A € R. {Tjx ()} rcr is called the transmission matrix from channel % to
channel j at energy A € R with respect to the spectral representation II(K§¢). We note
that {7, (\) } xer corresponds to the transmission operator

Ty, = P;T(K,Ko)Pe, T(K,Ko):=S(K,Ko) — P*(Kp), (3.15)

acting from the reservoir k to reservoir j where T'(K, K) is called the transmission

operator. Let {T'(\)} xcr be the transmission matrix. Following [1] the current J/f 0
given by (3.13) is directed from the reservoirs into the sample.

The quantity [|T(A)]| e, = tr(T(N)*T()N)) is well-defined and is called the cross-
section of the scattering system § at energy A € R. Notice that

N
o(A) = [TWlle, = 2TV TA) = Y oV, AR,
o

J,k=1

We point out that the channel cross-sections o, (A) admit the property

N N
S o) =D oV, A€ER, (3.16)
j=1 j=1

which is a consequence of the unitarity of the scattering matrix. Moreover, if there is
a conjugation J such that K.J = JK and KyJ = JKj holds, that is, if the scattering
system  is time reversible symmetric, then we have even more, namely, it holds

oie(\) =0k (A), AER. (3.17)

Usually the Landauer-Biittiker formula (3.13) is used to calculated the electron
current entering the reservoir j from the sample. In this case one has to choose ) :=
Q;l := —eP; where P; is the orthogonal projection form £ onto £; and ¢ > 0 is
the magnitude of the elementary charge. This is equivalent to choose g;(\) = —e and
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gr(A) = 0fork # j, A € R. Doing so we get the Landauer-Biittiker formula simplifies
to

TS g = QWZ / £ = fr0)e (V). (3.18)

To restore the original Landauer-Biittiker formula one sets

fi) =f(A—py), NeR, (3.19)

where ; is the chemical potential of the reservoir &; and f(-) is a bounded non-
negative Borel function called the distribution function. This gives to the formula

Qel: %Z/ FON= ) = FON = 1)) ojr (N)dA. (3.20)

In particular, if we choose one

1

f(>\) = fFD()\) = mv /8 > 07 A€ Ra (3:21)

where frp(+) is the Fermi-Dirac distribution function, and inserting (3.21) into (3.20)
we obtain

N
s & ) — _ .
T g = QW;;AUHxA w) — o — o Ndn  (3.22)
If we have only two reservoirs, then they are usually denoted by [ (left) and r (right).

Letj =l and k = r. Then

¢

Toat = 5 /R(fFD()\ — ) = frp(X = pr))ou-(N)dA. (3.23)

One easily checks that J; j o < 0if gy > pp-. That means, the current is leaving the left
reservoir and is entering the right one which is accordance with physical intuition.

Example 3.3 Notice that 5. := {h® h¢'} is a £1 scattering system. The Hamiltonian

he! takes into account the effect of coupling of reservoirs or leads h; := [?(N) and
b, := [*(N) to the sample hs = C? which is also called the quantum dot. The leads
Hamiltonian are given by h®’ = —AP 4 v,, a = [,r. The sample or quantum dot

Hamiltonian is given by hgl. The wave operators are given by

w (h, ) = s- hrn elth&le_ithglpac(hgl) (3.24)

—00

The scattering operator is given by s, := wy (b, hg')*w_(h®, hel). Let TI(hG ")
the spectral representation of hgl’ac introduced in Section 2.6. If p° and ¢ are density
and charge operators for h§!, then the Landauer-Biittiker formula takes the form

S, 1 €. € * €
%wzgémﬁm@bwwﬁm(m) (3.25)
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where {s.(\)}acrs {¢°/(N)}acr and {p® (\)}rer are the scattering, charge and den-
sity matrices with respect to IT(hE""%), respectively. The condition that ((h&)% +
Iyer) p° is a bounded operator is superfluous because hgl is a bounded operator. For the
same reason we have that every p-tempered charge ¢ is in fact a charge, that means,
¢! is a bounded self-adjoint operator.

The scattering system s, is a black-box model with reservoirs [)fl and h¢. Choosing

p = fi(h) @ fs(hE) @ fr(heh)

where f,(-), & = [, r, are bounded Borel functions, and
¢ = q(hi") & gs(h¥) & g-(he),

where g, (+), a € {l,r}, are locally bounded Borel functions, then from (3.13) it fol-
lows that

Toogs =5 2 [ (al) = £0)ga A

where {o.(\)}xecr is the channel cross-section from left to right and vice versa. In-
deed, let {¢.(\)}aer the transition matrix which corresponds to the transition operator
te := 5c — Iyer. Obviously, one has t.(A) = Iyx) — sc(A), A € R. Let {p&(\)} rer be
the matrix which corresponds to the orthogonal projection p¢ from h*! onto h¢'. Fur-
ther, let t&,(\) := p (A\)t.(\)p§’ and tf, := p§'(A\)t.(A\)pe. Notice that both quantities
are in fact scalar functions. Obviously, the channel cross-sections o, (A) and o¢; () at
energy A € R are given by 0.()\) := of.(\) = [t&.(N) |2 = [t5,(V) > = 04 (N), A € R.
In particular, if g;(\) = 1 and g, = 0, then
T,

N

1
o =5 [N = £y (3.26)

and ¢f! := pf'. Following [1] J;Cel 4! denotes the current entering the quantum dot
T
from the left lead.

3.2 Application to the JC'L-model

Let S = {H, Hy} be now the JC L-model. Further, let p and ) be a density operator
and a charge for H, respectively. Under these assumptions the current J/f o 1s defined
by

1
H —

. » 1
IS o 1= —itr (W_ (H,Ho)(I + H2)pW_(H, Hy) S, Q) Z) ., (3.27)

and admits representation (3.4). If Q is a p-tempered charge and (Ho — i)?*2?p is a
bounded operator, then the current J,f,Q is defined in accordance with (3.7) and the
Landauer-Biittiker formula (3.4) is valid, too.
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We introduce the intermediate scattering system S, := {H, H.} where
He = h @ Igpn + Iyet @ WP = Hy + V.

The Hamiltonian H . describes the coupling of the leads to quantum dot but under the
assumption that the photon interaction is not switched on.

Obviously, S, = {H,H.} and S, := {H, Ho} are £;-scattering systems.
The corresponding scattering operators are denote by S, and S., respectively. Let
H(H2) = {L*(R,d), h.(N)), M, .} of H? be a spectral representation of H,.. The
scattering matrix of the scattering system { H, H.} with respect to II(H2¢) is denoted
by {Spn(A)}aer. The scattering matrix of the scattering system { H,., Hy } with respect
to II(HG®) = {L?(R,d\, ho(\)), M, ®¢} is denoted by {S.(\) } rcr.

Since S, is a £1-scattering system the wave operators W (H,, Hy) exists and are
complete and since . W (H,., Hy)®j commute with M, there is a measurable fam-
ilies {Wx(A)}rer of isometries acting from ho(A) onto h.(\) for ae. A € R such
that

~

(@ Wy (He, Ho)®5 F)N) = Wa(N) F(N), AeR, f eL*(R,d)\bo(N).

The families { W1 (\) }aer are called wave matrices.

A straightforward computation shows that §ph =Wy (He, Ho)*Spn W4 (H., Hyp)
commutes with Hy. Hence, with respect to the spectral representation II(H§¢) the
operator §ph is unitarily equivalent to a multiplication induced by a measurable family
{ §ph (M) }aer of unitary operators in ho(\). A straightforward computation shows that

o~

Sun(N) = Wi (V) S VW () (3.28)

for a.e. A € R. Roughly speaking, { §ph (M)} aer is the scattering matrix of Sy, with
respect to the spectral representation IT(H§€).
Furthermore, let
p° i= W_(H,, Ho)pW—(H.,, Ho)" (3.29)

and
QC = W—l—(HchO)QW-l-(HCaHO)*' (330)

The operators p© and Q¢ are density and tempered charge operators for the scattering
system Sp. Indeed, one easily verifies that p¢ and Q° are commute with H.. Moreover,
p° is non-negative. Furthermore, if () is a charge, then Q¢ is a charge, too. This gives
rise to introduce the currents J ;_’Q = Jng,

) , o1 1
p,Q = —utr (W—(Hc,HO)pW—(Hc,HO) m[HaQ]m) , (330D

ph . 75ph
and Jp,Q = in,Qc

1

1
ph . . c * c
TP = —ite (W(H, Ho)p"W-(H, Ho)" —[H.Q ]—H) (3.32)
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which are well defined. If Q is p-tempered charge and (Hy — i)P*2p is a bounded
operator, then one easily checks that Q° is a p-tempered charge and (H,. —i)P*2?p°is a
bounded operator. Hence the definition of the currents J/finc can be extended to this
case and the Landauer-Biittiker formula (3.4) holds.

Finally we note that the corresponding matrices {pS.(\)}rer and {QS.(A)}rer

are related to the matrices {pac(N) }aer and {Qqc(A)}rer by

Pee(N) = W_(Npac W (A7 and - Q5 (A) = Wi (\)Que W2 () (3.33)
forae. A € R.

Proposition 3.4 (Current decomposition) Ler S = {H, Hy} be the JCL-model.
Further, let p and Q) be a density operator and a p-tempered charge, p € Ny, for
Hy, respectively. If (Ho — )P ™2 p is a bounded operator; then the decomposition

c h
Too =0+ 50 (3.34)

holds where J¢ 0.0 and J* Q are given by (3.31) and (3.32).

In partzcular let {S (M Iaers {PacN)}rer and {Qac(\) Y aer be scattering, den-
sity and charge matrices of S, p and Q with respect to II(H§) and let {Spn(\) } xer,
{p5.(N) }rer and {Q5.(N) }aer be the scattering, density and charge matrices of the
scattering operator Sy, density operator p°, cf. (3.29), and charge operator Q°, cf.
(3.30), with respect to the spectral representation II(H2}. Then the representations

1
hQ T o tr(pac( N (Qac(X) = Se(N)*Qac(N)Sc(N))dA, (3.35)
Ty = g [ ol OQeN) ~ SO QNS A, (336
take place.

Proof. Since S. and S, are £-scattering systems from Theorem 3.1 the representa-
tions (3.35) and (3.36) are easily follow. Taking into account (3.33) we get

tr(pge(A(Qac(A) = Spr(X) QGe(N) Spn (M) =
V- ()W ()" (W5 () Qe COW4 () — S () Q5 () Sy (V).

Using S.(\) = W (A)*W_(X) we find
tr(pge (M) (Qae(A) = Spr(A)* Qae(A)Spr(A))) = tr (pac(A)x (3.37)

(Se(A)*Qac(A)Se(A) = W_(A)" Spr(A) Wi (A)Qac (M)W (A) " Spr(NW-(A))) .
Since {H.,Ho} and {H, H.} are £;-scattering systems the existence of the wave
operators W (H,H.) and Wy (H., Hy) follows. Using the chain rule we find
W (H, Hy) = W (H, H.)Wy (H,, Hy) which yields

S = W+(H7 HO)*WJF(Ha HO)
= W (H., Ho)*W, (H, H)W_(H, H)W_ (H.,, Ho)
Wy (He, Ho)* Sy W_ (H,, Hy).
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Hence the scattering matrix {S(\) }aer of { H, Hy} admits the representation
SA) = WL (AN Spn(MW_(N), AeR. (3.38)
Inserting (3.38) into (3.37) we get

Tho = % Rtr(ﬂac(M(SC(M*QM(A)SC(A) — SN Qac(NS(A)))dA  (3.39)
Using (3.39) we obtain
Toa+ T2l = 5 [ (00 0)(@ue) = SO) QueNS )

Finally, taking into account (3.4) we obtain (3.34). O

Remark 3.5

(i) The current J; , is due to the coupling of the leads to the quantum dot and is
therefore called the contact induced current.

(i1) The current J/f }22 is due to the interaction of photons with electrons and is there-
fore called the photon induced current. Notice the this current is calculated under the
assumption that the leads already contacted to the dot.

Corollary 3.6 Let the assumptions of Proposition 3.4 be satisfied. With respect to
the spectral representation II(H§®) of H{¢ the photon induced current J;Z;.}ZQ can be
represented by

Tho = QL tr( Pac(A) (Qac(N) = Spn(N)* Qac(N) Spn (N))dA — (3.40)
T JR

where the measurable families {§ph()\) trer and { pac(N) }acr are given by (3.28)
and

ﬁac()\) = SC()\)paC(A)SC(A)* AER, (3.41)
respectively.
Proof. Using (3.33) and S.(\) = W (A\)*W_()\) we find
tr(pg. (A(QGe(A) = Spr (X)) QGe(X)Spn(N)) = tr (Se(A)pac(A)Se(A)* %
(Qac(A) = Wi (A)"Spr(A) Wi (A)Qac (N W (A)*Spr(A) W (X)) -
Taking into account the representations (3.28) and (3.41) we get
tr(pGe(M)(Qac(A) = Spn(A) Qac(X)Spn(A))) =
tr(SC()‘)pac()‘)SC()‘)* (Qac()‘) - S;Dh()‘)* QGC()‘) S:Dh ()‘) ))
which immediately yields (3.40). (I

Remark 3.7 In the following we call { puc(\) }aer, cf. (3.41), the photon modified
electron density matrix. Notice that { pac()\) } xer might be non-diagonal even if the
electron density matrix {pa.(A)}rer is diagonal.
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4 Analysis of currents

In the following we analyze currents J7 , and J,’)’ }}Q under the assumption that p and Q
have the tensor product structure

p=p'@p" and Q=q¢"®q¢" .1

where p¢ and pP" as well as ¢° and ¢”" are density operators and (tempered) charges
for h& and hP", respectively. Since pP" commutes with hP", which is discrete, the
operator pP"has the form

PPl = pPh(n) (-, T) Y, n € N, 4.2)
where pP"(n) are non-negative numbers. Similarly, ¢”" can be represented by

" =" (n)(-,Tn) s, n €Ny, 4.3)
where ¢P" (n) are real numbers.

Lemma 4.1 Let S = {H, Ho} be the JC L-model. Assume that p # 0 and Q have the
structure (4.1) where p° is a density operator and ¢ is a charge for hg'.

(i) The operator (Hy — i)P™2p, p € Ny, is bounded if and only if the condition

sup pP"(n)nP? < oo (4.4)
neNp

is satisfied.

(ii) The charge Q is p-tempered if and only if

sup |¢”" (n)|n"P < oo. (4.5)
neN

is valid

Proof. (i) The operator (Hy — 7)P*2p admits the representation

(Ho —i)"*2p = €D p""(n)(h§ + nw —i)"+2p.

pENp
We have
[(Ho — )" pllos) = SélNP PP ()| (A + nw — 0)PT2 p| g pery (4.6)
P 0
= sup p"" ()2 ||(hg! + nw — i)p+2pelH£(hel) .
pENp

Since limy o0 0™ P [|(AF + nw — )72 p |
sufficiently large n € Ny that

ay = wPT2|[p!|| g (pery we get for

wbt2

2

0% |2 pery < n™PFD[(RE! + nw — i)PT2p% || ¢ gery -
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Using that and (4.6) we immediately obtain (4.4). Conversely, from (4.6) and (4.4) we
obtain that (Hy — i)P*2p is a bounded operator.
(i) As above we have

Q(Hy—i)™" = P ¢*"(n)g"
neNp

Hence

1Q(Ho = 8)"lle(s) = sup " ()[[lg*! (h§' + nw — 0) 7P|l (pery-
n 0

Since limp o0 nP||(h§ + nw — i) 7P| gpery = wPl|lg%| g(pery we get similarly as
above that (4.5) holds. The converse is obvious. [l

4.1 Contact induced current

Let us recall that 5. = {H,, Hy} is a £1-scattering system. An obvious computations
shows that
Wy (Hc, HO) = wi(hel, hsl) ® Ihph

where w (h°!, h&') is given by (3.24). Hence
Se = 8@ Iypn, where s.:=wi(he h§)*w_(he, he).

Proposition 4.2 Let s = {H, Hy} be the JC L-model. Assume that p and Q are given
by (4.1) where p¢ and q° are density and charge operators for h§ and pP"* and q*"
for hP" respectively. If for some p € Ny the conditions (4.4) and (4.5) are satisfied,
then the current J; o, is well defined and admits the representation

Co =1 s = Y, @) (n) 4.7)
neNp
where J;Cel 4ol is defined by (3.2). In particular, if tr(pP*) = 1 and ¢*" = Iyon, then
J;_,Q = J;izl’qel'
Proof. First of all we note that by lemma 4.1 the operator (H — i)P™2p is bounded and
@ is p-tempered. Hence the current JjCQ is correctly defined and the Landauer-Biittiker
formula (3.4) is valid.

With respect to the spectral representation II( H§¢) of Lemma 2.12 the charge ma-
trix {Qac(N\) }acr of Que = ¢¢L ® ¢P" admits the representation

c

Que(N) = € (A —nw)g”" (n), AER. (4.8)

n€eNg

Since S. = s, ® Iysn the scattering matrix {S.(A)}xer admits the representation

Se(\) = @ Se(A—nw), A eR.

neNp
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Hence

Qac( ) - ( )*Qac( ) c()\) = (49)
@ ¢ (n) (g5L (N — nw) — se(A — nw)*gEL (A — wn)se(A — nw)) .
neNg

Moreover, the density matrix {pa.(\)} g admits the representation
pocl) = @D 0" (W)L (A ) .10)
neNp
Inserting (4.10) into (4.9) we find
pac()\) (Qac()\) - ( ) Qac c @ qph

n€eNy
Pae(X = nw) (g5e(X —wn) = se(A = nw)*gge(A — wn)sc(A — nw))

Since v = >, cn, qP"(n)pP" (n) is absolutely convergent by (4.4) and (4.5) we obtain
that

tr (0% (V) (Qae(N) = Se(N)*Qae(M)Se(A\) = D ¢ (n @.11)

n€eNg
b (PO — nw) (42— wn) — so(A — nw)* gL (A — wn)se(A — nw)))

Obviously, we have
‘tr (pzlc()\ — nw) (qslc()\ —wn) — sc(A— nw)*qglc()\ —wn)se(A — nw)))’ <
Al pet (X = 1)l e, ) e (X = 1)l e, (2)s A € R,

We insert (4.11) into the Landauer-Biittiker formula (3.35). Using (4.4) and (4.5) as
well as

I, o a2 9,y A < o0
we see that we can interchange the integral and the sum. Doing so we get

Ta= 3 @ g [ e (pihin - )

n€eNy
(qac()\ wn) — se(N — nw)*qzlc()\ —wn)se(\ — nw))) d\.
Using (3.25) we prove (4.7).

If tr(pP?) = 1, then > No pP(n) = 1. Further, if pP" = Iy.n, then ¢ (n) = 1.
Hence v = 1. O
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4.2 Photon induced current

To calculate the current J 5_22 we used the representation (3.40). We set

SPE(A) == Pon(A) Spn (V) [ ba(N), A€ R.

where { §ph (A) }aer is defined by (3.28) and P,,, () is the orthogonal projection from
H(N), cf. (2.41), onto b, (A) := h' (A — mw), A € R.

Proposition 4.3 Ler S = {H, Hy} be the JC L-model. Assume that p and Q) are given
by (4.1) where p* and q°* are density and charge operators for hﬁl and pP" and ¢*"
for hP" respectively. If for some p € Ny the conditions (4.4) and (4.5) are satisfied,
then the current J ,’;Z? is well-defined and admits the representation

Jph Z PP (m Z " (n /d)\ tr ( PEL(X — mw) X 4.12)

m&ENg n€Ng
(58 = ) — 8B, (V)5 (A — ) S28, (V) )

where { p¢L(A\) }aer is the photon modified electron density defined, cf. (3.41), which
takes the form

LA = s.N)p(N)se(N)*, NeER. (4.13)
Proof. By Lemma 4.1 we get that that the charge Q) is p-tempered and (Hy — i)Pp is a
bounded operator. By Corollary 3.2 the current J 57}1 = 52’ ,hQC is well-defined.

Since (Qac()\) — §ph()\)* Qac(N) §ph ()\)) is a trace class operator for A € R we
get from (3.40) and (4.10) that

t (BueV) (QueN) = SN QueN) S () ) = D= o () x

T
tr (70 = mw) P (X) (QuelN) = Spn(N)* QuelA) Spn (1)) Pu(N))
Further we have
P (QaelX) = Spr(N) QuelX) Sy (V) Pra(A)
= ¢ (m) (qelu = ) = Pa(3) Sy ()" QaelN) Sy (V) Pr(N)
= (g (O —mw) — 3 ¢ (n) S2 ()" g — ) St (V)

n€eNy

for A € R where SZ% (A)* := P, (A) Sy (\) P (M), A € R. Notice that 37, is a
sum with a finite number of summands. Hence

tr (Buc(N) (QuelX) = SN QueN) Sn ()) = 3= #"(m) 3 ¢ (m) x

méENg n€Ng

tr (21 = mw) (1A = me)dmn — S (V) ¢ (A = nw) St (M) ) )
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We are going to show that

Z PP (m Z "™ (n |/ ‘tr LN = mw) x

m&ENg neNg

(qe (A — mw)bmmn — S22 (A)* gL (X — nw) SP! (A ))}d)\ < 0.
Obviously one has the estimate
o (27— mw) (4O = mew)omn — Sttt (V)" ¢ (A = ) Si () ) )| <

2[| 5N = mw) [l 2o, ) (177 = mw) [l 2,0 () Fnm + 1167 (A = nw) |l 26, (1)) -

Further, we get
A 7 = 1) ol = ) s, <
S

/ 155N Lo o 12 ) L2t (1) AN
AER

and
/ 151 (A = mw) [l e, (a0 14 A = 100) [ e, 2y @A <
||qtezc|‘2(hel) / || ﬁel(A - (m - TL)(AJ) H‘Q(bmfn(k))dA
AER

If the conditions (4.4) and (4.5) are satisfied, then

S Pl )] [ 1570 sty o™ )l 8A < o0
m&ENy

Further, we have

S o) 3 g () |/ M = 1)w) || &(h (A A <

meENg neNy

(Umax — Umin + 4 szchE(hEL) Z pph(m) Z |qph(n)| < oo

mENy [m—n|<dmax

where dpay 1S introduced by Lemma 2.12. To prove

Yo m) Y e ()] < oo

meNy Im—n|<dmax

we use again (4.4) and (4.5). The last step admits to interchange the integral and the
sums which immediately proves (4.12) O
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Corollary 4.4 Let s = {H, Hy} be the JCL-model. Assume that p and Q) are given
by (4.1) where p and q°* are density and charge operators for hﬁl and pP" and ¢""
for kPP, respectively. If p© is an equilibrium state, i.e. p® = fel(hgl), then

o= 2 qph(n)% /R (07" () F (X = nw) = pP" (m) f1 (A — mw) ) x

m,nENy

tr ( Sh, () gt (0 — nw) Sz, () d (4.14)

Proof. From (4.12) we get

Jph Z " (n Z PP (m /d)\ AN = mw)x

n€eNg mENy
tr (gEh () = n)dmn — Sy (A @i (A = nw) S, ().
Hence
TP =" ¢"(n / dx > M (m) N = mw)
neNp meENy
tr (gL (A = ne)dman — Sty (A gih (A — naw) S25, (1))
This gives
1
Jg% = Z qph(n)%/md)\ (pph(n)fel()\ — nw)tr (qgi()\ —nw)) =  (4.15)
neNy
S o) e = ma)tr (S5, () gL\ = nw) 2, (V).
mENy
Since
> o) = me)tr (SEh, (V) g5 (A — nw) Sk, (V) =
meENy
ST (PP m) £ = mw) = o (n) £ (N = w)) x
mENy
tr (St (V)" gk (r — neo) St (V) +
) f N = mw) Yt ((SEh ()7 gt (0 — nw) Sz, (V)
mENy
Inserting this into (4.15) we obtain (4.14). ]
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S Electron and photon currents

5.1 Electron current

To calculate the electron current induced by contacts and photons contact we make the
following choice throughout this section. We set

Q% :=q¢l ¢, ¢ = —epd and ¢ = Lyon, ac€{l,r}, (5.1

where p¢! denotes the orthogonal projection from h* onto h¢. By ¢ > 0 we denote the
magnitude of the elementary charge. Since p¢/ commutes with h¢! one easily verifies

that Q¢ commutes with Hy which shows that Q¢ is a charge. Following [1] the flux
related to Q% gives us the electron current J g Qe entering the lead o from the sample.

Notice Q¢! = —e¢P,, where P, is the orthogonal projection from ) onto $, := h% ®
hP". Since g’ = Iy,n the condition (4.5) is immediately satisfied for any p > 0.
Let f(-) : R — R be a non-negative bounded measurable function. We set

p =i ®pS @y, pd = f(hE = pa), € {lr}. (5.2)

and p = p ® pP". By p, the chemical potential of the lead « is denoted. In appli-
cations one sets f(\) := frp(A), A € R, where frp(\) is the so-called Fermi-Dirac
distribution given by (3.21). If 5 = oo, then frp(\) := xr_(A), A € R. Notice that
[p°!, p¥'] = 0. For pP"* we choose the Gibbs state

S P S (53)

CZ ’ 1—ePw’ '

Hence pP" = (1 — e #)e=P""" If B = o0, then pP := (-, To)Yy. Obviously,
tr(pP") = 1. We note that pP" (n) = (1 — e=5@)e~"8« n € Ny, satisfies the condition
(4.4) for any p > 0. Obviously, pg = p @ pP" is a density operator for Hy.

Definition 5.1 Let 5 = {H, Hy} be the JCL-model. If Q := Q¢, where Q¢ is

given by (5.1), and p := pg := p @ pP"*, where p° and pP" are given by (5.2) and

(5.3), then J;é Qet = J /fo Qe is called the electron current entering the lead «. The

currents JSO Qe and J 5{? Qe are called the contact induced and photon induced electron
currents. ° °

5.1.1 Contact induced electron current

The following proposition immediately follows from Proposition 4.2.

Proposition 5.2 Let s = {H, Hy} be the JC L-model. Then the contact induced elec-

tron current J;o,QfJ’ a € {l,r}, is given by J;onfJ = J;lengl. In particular, one
has
Tz = =55 [ FA—pa) = FA—p)ocNdX, o,z € (L1}, a s = (54)

where {o.(\)} xer is the channel cross-section from left to the right of the scattering
system s, = {h®, he!}, cf. Example 3.3.
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Proof. Since tr(p?") = 1 it follows from Proposition 4.2 that Jgu Qi = J;il_qel. From

(3.26), cf. Example 3.3, we find (5.4). ]

If uy > p, and f(-) is decreasing, then J;O 0¢! < 0. Hence the electron contact
g

current is going from the left lead to the right which is in accordance with the physical
intuition. In particular, this is valid for the Fermi-Dirac distribution.

Proposition 5.3 Let S = {H, Hy} be the JC L-model. Further, let p° and pP" be
given by (5.2) and (5.3), respectively. If the charge Q% is given by (5.1), then the
following holds:

(E) If‘l’[’l = l’[”r’) then JPCO;Q;L = 0) «@ G {Z7T}'
(S) If vy > v, + 4, then Jp':0 0l = 0, w € {l,r}, even if ; # u.
(C) Ife§ = 65 and ef = 57, then Sy ga =0, € {l,r}, evenif u # .

Proof. (E) If 11; = -, then f(A— ;) = f(\— ). Applying formula (5.4) we obtain
;ngl =0.

(S) If v; > v, + 4, then k5" has simple spectrum. Hence the scattering ma-
trix {sc(A)}aer of the scattering system s, = {h!, h&'} is a scalar function which
immediately yields o.(A\) = 0, A € R, which yields J;U_’le =0.

(C) In this case the Hamiltonian 2! decomposes into a direct sum of two Hamilto-
nians which do not interact. Hence the scattering matrix of {s.(\)}aer of the scatter-
ing system s, = {h®, h¢'} is diagonal which immediately yields Joo. Qut = 0. O

5.1.2 Photon induced electron current

To analyze (4.12) is hopeless if we make no assumptions concerning p° and the scat-
tering operator s.. The simplest assumptions is that p¢ and s. commute. In this case
we get p° (\) = p(\), A € R.

Lemma 5.4 Let S = {H, Hy} be the JCL-model. Further let p° be given by (5.2).
If one of the cases (E), (S) or (C) of Proposition 5.3 is realized, then the p® and s.
commiite.

Proof. If (E) holds, then p® = f(hg!) which yields [p¢, s.] = 0. If (S) is valid,
then the scattering matrix {s.(\)}aer is a scalar function which shows [p¢,s.] = 0.
Finally, if (C) is realized, then the scattering matrix {s.(\)} er diagonal. Since the
p is given by (5.2) we get [p®, s.] = 0. O

We are going to calculate the current J§ : Qet» S€€ (4.12). Obviously, we have

Po(N) =X en, PEHN — nw) and Ty = Pi(A) + Pr(X), A € R. We set

Py, ()‘) = Pa()‘)Pn()‘) = Pn()‘)Pa()\) = PZZ()\ - nw)? o€ {l,?‘},
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n € Ny, A € R. In the following we use the notation fph N = Aph (A) = Tyn)»

A € R, where { fph()\) }er is called the transition matrix and { §ph()\) }aer is given
by (3.28). We set

T" (N = PN Top NP (N, AER, a,xe{l,r}, kymeN,.

and N
(}\)* Tph

kam,.

& (\) = te(TP" (\), A€ER, (5.5)

Kam,.

which is the cross-section between the channels k., and m,..

Proposition 5.5 Let S = {H, Hy} be the JC L-model.

(i) If p°* commutes with the scattering operator s. and q°, then

h o ¢
I et = = > %/]Rx (5.6)

m,n€ENg
xe{l,r}

(PP (1) O\ — o — 10) — P () f N — e — 1)) G2 (M) dA.
(ii) If in addition S = {H, Ho} is time reversible symmetric, then

ph ¢
I et = Z %/Rx (5.7)

m,neENy
(P () X = pra = nw) = pP"(m) f(A = prar — me)) TR, (A) dA,
a, e{l,r}, a#d.
Proof. (i) Let us assume that
= > g.(hd),
we{l,r}

Notice that
N = > g.Mpd(N), AeR. (5.8)
xe{l,r}

Inserting (5.8) into (4.12) and using ¢”" = Typn we get

1
o= 3 M 3 g [[ahou - mega0 )

meENy n€Ng
ac{l,r} xe{l,r}

tr (pE O = ) (PO = 1) — B2, () DN — ) 2, (1)) )
where for simplicity we have set

a(N) = fA—pa), AER, neNy, a«ac{lr} (5.9
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Obviously, we have

J,};(i = Z pph(n)% /Rd)\ Dse( N — nw) g, (N — nw)tr (pffl (A= nw)) -
neNg
xe{l,r}

S Y im / 0N G0 (r— m)gu(r — n)x  (5.10)

n€Ng meNg
we{l,r} ae{l,r}

o (D — mew) St (NP — me) S, (VpE (A = ) )
Since the scattering matrix { S?* (\)} e is unitary we have

P =—mw) = Y plA—nw) B (A) Pl (A—mw) SER, (\pS(A—nw) (5.11)

meENy
ac{l,r}

forn € Ny and s € {l, r}. Inserting (5.11) into (5.10) we find

me = Z Z ph /d)\ Dse(A — nw) g . (N — nw) x

n€Ng  meNy
we{l,r} ae{l,r}

tr (pEL A — ) S, ()L (0 — meo) S5, (it (A — ) —

Z Z P (m /d)\ Oa(A — mw)gs (A — nw) x

neENg meNy
we{l,r} ae{l,r}

tr (pE! (A — ) SE ()" — ) S, (! (A = mw) ).

Using the notation (5.5) we find

on Z Z ph W/d/\ &5 (A fnw)g%()\fnw)ogfn (A) —

n€Ng  meNg
we{l,r} ac{l,r}

Z Z PR (m /d)\ Do (A — mw) g, (A — nw) Jﬁhma()\) :
neNyg  meNy
we{l,r} ae{l,r}

By (3.16) we find

S, =Y .0 AeR

meENy meENg
ae{l,r} ae{l,r}
Using that we get
1
ph
Tea= > o % (5.12)
m,neNgy
a,xe{l,r}

(PP (W) (A — 1) — " () (A — m2)) (A — 1) B8, (N) A
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Setting g, (A\) = —e and g,.(\) = 0, »r # «, we obtain (5.6).
(i1) A straightforward computation shows that

S [ (MO = =) = ) O = = ) B, (N 0D =

n,meNg
) / (0P (m) F 8~ i — i) = P () F(N — s — ) G, () A
n,meNy R
Since 0B | (A) =02, (X), A € R, we get

z L0050 0 = 1) = 7 )3 = 1 = 1) 2, () 0 =

> L0050 = 0 = 1) = 9 )3 =t = 1) 2, (1) 0

¥ [P0 £ = =) = P )8 = o = 1) 2, ()0 =
Using that we get immediately the representation (5.7) from (5.6). O

Corollary 5.6 Let S = {H, Hy} be theJC L-model.

(i) If the cases cases (E), (S) or (C) of Proposition 5.3 are realized, then the repre-
sentation (5.6) holds.

(ii) If the case (E) of Proposition 5.3 is realized and the system S = {H, Hy} is time
reversible symmetric, then

h _
Sponget = (5.13)
= Y 5 [P O ) = ) g )BT, (VN
T
m,neNy

n € No, a € {l,r} where p := py = p, and o # .
(iii) If the case (E) of Proposition 5.3 is realized and the system S = {H, Hy} is time
, =0.

reversible and mirror symmetric, then J ph 0, Q¢!

Proof. (i) The statement follows from Proposition 5.5(i) and Lemma 5.4.

(i1) Setting pto, = ptos formula (5.13) follows (5.7).

(iil) If s = {H, Ho} is time reversible and mirror symmetric we get from Lemma
2.14 (ii) that Jﬁhm L (N = O’,ﬁh/m A, A e R, n,m € Ny, o, € {l,r}, a # .

Using that we get from (5.13) that

ph _
JP(MQEZ -

- > 5 / PP () FON = = nw) — pPM(m) FO = g — mw)) 55", (A)dA.

m,n€ENg
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Interchanging m and n we get

ph _
Jponf;l -
e A~
- > o /R(pph(m)f()\ — p—mw) — p™(n) fF(A — pp— nw)) GE . (A)dA.
m,n€ENg

Using that § is time reversible symmetric we get from Lemma 2.14 (i) that

ph

JPmQZl =
4 ~
= Y o [ mFO ) = PO = ) 5T, (VA
m,n€ENg R
. ph _ __ gph ph —
which shows that Jpo,Qf;l = Jpo,QfJ' Hence mele =0. O
We note that by Proposition 5.3 the contact induced current is zero, i.e. pco Ot = 0.
Hence, if the § is time reversible and mirror symmetric, then the total current is zero,
ie. Jgo ou =0

Remark 5.7 Let the case (F) of Proposition 5.3 be realized, that is, y; = p,. More-
over, we assume for simplicity that 0 =: v, < v :=v;.

(i) If B8 = oo, then p?(n) = Son, n € Ny. From (5.6) we immediately get that
J/f Z Qu = 0. That means, if the temperature is zero, then the photon induced
electron current is zero.

(i1) The photon induced electron current might be zero even if 8 < oo. Indeed, let
S = {H, Hy} be time reversible symmetric and let the case (E) be realized. If
w > v+ 4and, then h¥(N) := h¢(N) = (N — nw), n € Ny. Hence one

always has n = m in formula (5.13) which immediately yields Jf:_Qel =0.

(iii)) The photon induced electron current might be different from zero. Indeed, let
S = {H, Ho} be time reversible symmetric and let v = 2 and w = 4, then one
gets that to calculate the J” h , one has to take into account m = n + 1 in

p0,Q7
formula (5.13). Therefore we find

ph _ ©
T et = > 27r/RdA X

n€eNg
(M) F A — = ) = p™ (0 + 1) = = (0 4+ D)) 577y (-

If pP" is given by (5.3) and f(A\) = frp(A), cf. (3.21), then one easily verifies
that
0
Ox
Hence pP"(n)frp(A — p — nw) is decreasing in n € Ny for \,p € R
which yields (pP" (n) f(A — p — nw) — pP"(n + 1) f(A — g — (n+ 1)w)) > 0.

Ph(z)frp (N — p—2w) <0, A ER.
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Therefore J*" < 0 which means that the photon induced current leaves the

o, Qf!
left-hand side and enters the right-hand side. In fact J: Uh Qe = 0 implies that
ey
Eihnﬂ) (A\) = 0forn € Ny and A € R which means that there is no scatter-

ing from the left-hand side to the right one and vice versa which can be excluded
generically.

5.2 Photon current

The photon current is related to the charge
Q:=Q" = ~Iyu @n,

where n = dI'(1) = b*b is the photon number operator on h** = F, (C), which is self-
adjoint and commutes with 2P". It follows that Q" is also self-adjoint and commutes
with Hp. It is not bounded, but since dom(n) = dom(hP"), it is immediately obvious
that QP"(Hy + 0)~! is bounded, whence 1 is a tempered charge. Its charge matrix
with respect to the spectral representation II(H§¢) of Lemma 2.12 is given by

QN = — @D nPu(N).

neNp

We recall that P,, () is the orthogonal projection form h(\) onto b, (A) = b (A —nw),
A € R. We are going to calculate the photon current or, how it is also called, the photon
production rate.

5.2.1 Contact induced photon current
The following proposition is in accordance with the physical intuition.

Proposition 5.8 Let S = {H, Hy} be the JC L-model. Then Iy gon =0

Proof. We note that ¢5.(A) = Ige(y), A € R. Inserting this into (3.25) we get
J'e = 0. Applying Proposition 4.2 we prove J:; =0. O

pet,qe! 0,QP"

The result reflects the fact that the lead contact does not contributed to the photon
current which is plausible.

5.2.2 Photon current

From the Proposition 5.8 we get that only the photon induced photon current .J 5 : Qrh

c'ontributes to the photon current J/nyQph. Since Jjonph = J/Za)(iQPh we call J/Za)(iQPh
simply the photon current. N
Using the notation 72" (X) := P, (A) Tpn (A) T h(A — mw), A € R, m,n € No.
We set _ R
TPh (X)) = TP" (N)se(A —mw), AER, m,n €Ny (5.14)
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and
TP (A) i= Po_(NTPE(A) T H (N — mw), A €ER, (5.15)

NeMa

m,n € No, a, € {I,r},as well as 52" | (\) := tr(T2", (\)*T2". (\), A € R.

Proposition 5.9 Let S = {H, Hy} be the JC L-model.
(1) Then

1
ph — _ ph = _ _ Fph
I on = Z (n—m)p (m)Qﬂ_/Rf(/\ fo —mw)oh” (N)dA  (5.16)
m,n€ENg
a,xe{l,r}

(i) If p' commutes with s.., then

1
ph - _ ph il o 5ph
S oon = Z (n—m)p (m)Qﬂ_/Rf(/\ fo —mw)ab o (N)dA (5.17)
m,neNy
a,xe{l,r}

(i) If p°' commutes with s. and S = {H, Hy} is time reversible symmetric, then

1
J/f(foph: Z o [ dAx (5.18)
R

m,neENg,n>m
sac{l,r}

(n—m) (p"" (M) F (A = pa — mw) = p"" () f(A = ptsc = ) T2 (V)
where o/ € {l,r} and o/ # a.
Proof. (i) From (4.12) we get
1
J;’ZQP,I =— Z npph(m)% / d\ tr (L (A — mw) x

m,n€ENg R

(Pa(A)dmn — S5, (V)7 a2\ — neo) 52, (1)) ).
Hence

h
g == X m? )
mENy

-~

% /Rtr (P = me) (Pu(X) = St ()" Pua() 52, () ) ) dA +

S () [ o (B = ) SELO) P 2 ) ) i

m,neENy
m#n
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Using the relation P, (A) = Iy(x) = 2 ey maen Pn(A), A € R, we get

ph _
JPmeh o
_ Z m ph i (/\el _ aph * aph
Y (m) tr pac()‘ mw) Snm()‘) P"()‘) Snm()‘) d)‘+
m,neNy 2m R
m#n
St mige [ o (O me) SO P SR O )
m,neNy 2m R
m#n

Since Tpn (A) = Sy (\) — Ty(a)s A € R, we find

ph _
JPmeh -
1 ~ ~
= % - g [ (O me) TEAO) TE) )
m,neNy

Using (4.13) and definition (5.14) one gets

ph _
JPmeh -
1 ~ -
= Y e mp g [ o (g - ) TEROY TEAO)) 2.
m,nENy 2 R

Since peL = pf! @ p¢! where p¢! is given by (5.2) we find

ph _
Jponph -
1 - -
= X e mge [ O s = mtr (T, () TR, () dA
m,neNy TJR
a,xe{l,r}

where we have used (5.15). Using 52" (\) = te(T2",, (\)*T?",. (X)) we prove
(5.16).

(i) If p¢t. commutes with s, then pcl (\) = pl(A), A € R which yields that one
can replace 2" | (X\) by a2" (X), A € R. Therefore (5.17) holds.

(iii) Obviously we have

L — (5.19)

po,QPh
1 ~
S e m g [ O o =) T, (VA +
m,neENg,n>m
a,xe{l,r}

1
S - m s [ O s ) G, VA,
m,n€ENg,n<m TJR
a,xe{l,r}
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Moreover, a straightforward computation shows that

1
S - mem)gs [ FO - e - ), ()i =
27T R 2 o7
m,nENg,n<m
a,xe{l,r}

1
S m- s [ - e m)32,, A
2T R o
m,nENg,n>m
a,xe{l,r}

Since § = {H, Hy} is time reversible symmetric we find

1
S - m )y [ FO - e - )5, (NdA = (520)
2 R >
m,nENg,n<m
a,xe{l,r}

1
S e me g [ O - )3z, (ax
2ﬂ' R 3 o
m,nENg,n>m
a,xe{l,r}

Inserting (5.20) into (5.19) we obtain (5.18). O

Corollary 5.10 Let S = {H, Hy} be the JCL-model and let f = fpp. If case (E)
of Proposition 5.3 is realized and S = {H, Hy} is time reversible symmetric, then

ph
JPmeh 2 0.

Proof. We set 11 := p; = p,-. One has

PP (m) fON = p = mew) — pP(n) fF(A = p = nw) =
e™mP9 (1 — em (B fr (A = — mw) frp(A — = nw) > 0

for n > m. From (5.18) we get J/foph > 0. O

Remark 5.11 Let us comment the results. If J 5 Uh orn

emitting. Similarly, if J§ Uh orh < 0, then we call it light absorbing. Of course if § is

> 0, then system S is called light

light emitting and absorbing, then J 5 : o = 0.

(i) If B = oo, then p?"(m) = Sgm, m € Np. Inserting this into (5.16) we get

1
ph _ L B ~ph
Tham= 3 nge [ O )t )ix 0
neNg
a,ze{l,r}

Hence & is light emitting.
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(i1)

(iii)

Let us show § might be light emitting even if 5 < oco. We consider the case
(E) of Proposition 5.3. If S is time reversible symmetric, then it follows from

Corollary 5.10 that the system is light emitting.

If the system § is time reversible and mirror symmetric, then J/ff Qe = 0,a €
{l,r}, by Corollary 5.6(iii) . Since J4, g« = 0 by Proposition 5.3 we get that
J;fo Qe = 0 but the photon current is larger than zero. So our JC L-model is

light emitting by a zero total electron current .J 50 Qet-

Letv, = 0, v; = 2 and w = 4. Hence S is not mirror symmetric. Then we get

from Remark 5.7(iii) that J:):Qez = —J/f:Qel < 0. Hence there is an electron
.Q; Q5
current from the left to the right lead. Notice that by Proposition 5.3 J¢ =0.

Ponfl
Hence J° __, <0.
p0,Q;

To realize a light absorbing situation we consider the case (.5) of Proposition 5.3
and assume that § is time reversible symmetric. Notice that by Lemma 5.4 s,
commutes with p°’. We make the choice

v=0, =4, w=v, w=0, p=w=u.

It turns out that with respect to the representation (5.18) one has only to m =
n — 1, 2 =rand o = [. Hence

T o = %%/Rd/\x
(" (=1 f(A = (n = 1w) = pP" () f(A = (n+ D)w)) 35— ()
Since f(A) = frp(A) we find
PP = 1) f (A = (n = Dw) = p"(n) f(A = (n + Dw) =

P (n = 1) = (1 — D) FA— (0 + 1)) x
(1 4 PO—(nt)w) _ =By 4 eB(/\—w(n—l))))
P = 1A= (0= Dw) = " () A = (n+ Dw) =
PP = DFO = (0= D) FA — (- D)1 = 75)(1 = )
Since A—nw > 0 we find p?" (n—1) f(A\—(n—1)w)—pP" (n) f(A—(n+1)w) <0

. . ph
which yields meQph <0.

To calculate Jﬁ:Qel we use formula (5.7). Setting o = | we get o/ = r which
il
yields

ph — L
meQfl o Z QW/RCD‘X

m,neNy

(PP () f (X = pr — ) = P (m) f(A = p — mw)) T80, (N),
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One checks that Egﬁ)r()\) =0and 58" (A\) =0form # n+1,n €N
Hence

ph _ £
T g = > o /Rd)\x
neN
(0" () f N = p = nw) = pP (n = 1) f(A = pu = (n+ Dw)) 3571y (V)
Since p, = w and p; = 0 we find
ph - _ £
T == 5= | %
neN
_Bwy ~ph
fO =+ 1Dw)p!(n—-1)(1—e? )Uﬁl(nﬂ)r()\) dx <0.

Hence there is a current going from the left to right induced by photons. We

recall that J;o,Qfl =0.
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