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Abstract. We show that a finitely generated subgroups of a free group,
chosen uniformly at random, is strictly Whitehead minimal. Whitehead
minimality is one of the key elements of the solution of the orbit prob-
lem in free groups. The proofs strongly rely on automata theory and on
the combinatorial tools used in the analysis of algorithms. The result
we prove actually depends implicitly on the choice of a distribution on
finitely generated subgroups, and we establish it for the two distributions
which appear in the literature on random subgroups.

1 Introduction

The contribution of this paper is the solution of a problem in group theory, by
methods arising from theoretical computer science – specifically: combinatorial
and probabilistic methods that were developed to analyze the performance of
algorithms [5].

The problem in question is the generic complexity of the Whitehead mini-
mization problem for finitely generated subgroups of a free group F (A). Every
such subgroup H is a rational subset of F (A) and can be represented uniquely by
a finite state automaton Γ (H) with particular constraints, called the Stallings
graph of the subgroup; this automaton naturally constitutes a privileged tool to
compute with subgroups, and it also provides a notion of size for H: we denote
by |H| the number of states of Γ (H).

A natural equivalence relation on subgroups is provided by the action of the
automorphism group of F (A): the subgroups H and K are in the same orbit
if K = ϕ(H) for some automorphism ϕ of F (A) — that is, H and K are “the
same” up to a change of basis in the ambient group. The Whitehead minimization
problem consists in deciding whether H is a minimum size representative of its
orbit (we say that H is Whitehead minimal). We refer the readers to [15] for
a (worst-case) polynomial time algorithm deciding the Whitehead minimization
problem, based on an early result of Gersten [6] and to [12] for the usage of this
problem in solving the more general orbit problem.
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Here we are rather interested in the notion of generic complexity, that is, the
complexity of the problem when restricted to a generic set of instances (a set of
instances such that an instance of size n sits in it with probability tending to 1
when n tends to infinity; precise definitions are given below). Our main result
states that the generic complexity of the Whitehead minimization problem is
constant, and more precisely, that the set of Whitehead minimal subgroups is
generic (see [13] for an early discussion of generic complexity, specially in the
case of cyclic subgroups).

An implicit dimension of the discussion of complexity is the notion of size of
inputs. In the case of finitely generated subgroups of a free group, we can use ei-
ther a k-tuple (k fixed) of words which are generators of the subgroup H (and the
size of the input is the sum of the lengths of these words), or the Stallings graph
of H (and the size is |H|). These two ways of specifying the subgroup H give
closely related worst-case complexities (because of linear inequalities between
the two notions of size), but they can give very different generic complexities: it
was shown in [2] that malnormality is generic if subgroups are specified by a tu-
ple of generators, whereas non-malnormality is generic if subgroups are specified
by their Stallings graph. Our results show that Whitehead minimality is generic
in both set-ups.

A key ingredient of our proof is a purely combinatorial characterization of
Whitehead minimality in terms of the properties of the automaton Γ (H) (Propo-
sition 1 below), proved in [15], which involves counting the transitions labeled
by certain subsets of the alphabet in and out of each state. This is what allows
us to turn the algebraic problem into a combinatorial one, which can be tackled
with the methods of combinatorics and theoretical computer science.

Interestingly, the reasons why Whitehead minimality is generic when sub-
groups are specified by their Stallings graph, and why it is generic when sub-
groups are specified by a k-tuple of words, are diametrically opposed. The
Stallings graph of the subgroup generated by a k-tuple of words of length at
most n generically consists of a small central tree and long loops connecting
leaves of the tree, so much of the geometry of the graph is along these long
loops, where each state is adjacent to only two transitions. In contrast, an n-
vertex Stallings graph generically has many transitions and each state is adjacent
to a near-full set of transitions.

The origins of this work go back to discussions with Armando Martino and
Enric Ventura in 2009.

2 Preliminaries

Let r > 1, let A be a finite r-element set and let F (A) be the free group on A.
We can think of F (A) as the set of reduced words on the symmetrized alphabet
Ã = A ∪ Ā, where Ā = {ā | a ∈ A}. Recall that a word is reduced if it does not
contain occurrences of the words of the form aā or āa (a ∈ A). The operation
x 7→ x̄ is extended to Ã by letting ¯̄a = a.
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Fig. 1. The Stallings graph of H = 〈aab, abab, abbb〉. The reduced
word u = aabab is in H as it is accepted by Γ (H): it labels a path
starting from 1 and ending at 1, with edges being used backward
when reading a negative letter. Since every vertex has valency at
least 2, this graph is cyclically reduced.

We denote by [n] the set of positive integers less than or equal to n, and by
Rn the set of reduced words of length at most n. A reduced word u is called
cyclically reduced if u2 is reduced, and we let Cn be the set of cyclically reduced
words of length at most n.

2.1 Stallings graph

It is classical to represent the finitely generated subgroups of a free group by a
finite state automaton, subject to certain combinatorial constraints. An A-graph
is a finite graph Γ whose edges are labeled by elements of A. It can be seen also
as a transition system on alphabet Ã, with the convention that every a-edge
from p to q represents an a-transition from p to q and an ā-transition from q to
p. Say that Γ is reduced if it is connected and if no two edges with the same
label start (resp. end) at the same vertex: this is equivalent to stating that the
corresponding transition system is deterministic and co-deterministic. If 1 is a
vertex of Γ , we say that (Γ, 1) is rooted if every vertex, except possibly 1, has
valency at least 2.

We say that Γ is cyclically reduced if it is reduced and every vertex has
valency at least 2. The A-graph in Fig. 1 is cyclically reduced.

If H is a finitely generated subgroup of F (A), there exists a unique reduced
rooted graph (Γ (H), 1), called the Stallings graph of H, such that H is exactly
the set of reduced words accepted by (Γ (H), 1): a reduced word is accepted when
it labels a loop starting and ending at 1. Moreover, this graph can be effectively
computed given a tuple of reduced words generating H, in time O(n log∗ n) [16,
17]. We denote by |H| the number of vertices of Γ (H), which we interpret as a
notion of “size” of H.

2.2 Whitehead minimality

As explained in the introduction, a subgroup H is Whitehead minimal if it
has minimum size in its automorphic orbit, that is if |H| ≤ |ϕ(H)| for every
automorphism ϕ of F (A). It is strictly Whitehead minimal if |H| < |ϕ(H)| for
every automorphism ϕ that is not length preserving (i.e., that is not induced
by a permutation of Ã). Strict Whitehead minimality means that H is the only
minimum size representative of its orbit, up to a permutation of the letters (that
is, up to a relabeling of the edges of its Stallings graph).

A crucial characterization of (strict) Whitehead minimality can be expressed
in terms of the so-called Whitehead automorphisms [6]. In this paper we rather
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present directly a derived characterization, in terms of the combinatorial prop-
erties of Γ (H), proved in [15].

A pair (Y, v) consisting of a subset Y of Ã and a letter v ∈ Ã, is called
a Whitehead descriptor if v ∈ Y , v̄ 6∈ Y and 2 ≤ |Y | ≤ 2|A| − 2. There is
a bijection between the non-length preserving Whitehead automorphisms and
these descriptors, see for instance [15].

Let Γ be a reduced graph, and let (Y, v) be a Whitehead descriptor. Then
we let positive(Γ, Y, v) be the set of vertices of Γ with at least one incoming
edge labeled by a letter in Y , at least one incoming edge labeled by a letter not
in Y , and no incoming edge labeled v. Let also negative(Γ, Y, v) be the set of
vertices with an incoming edge labeled v, and all other incoming edges labeled
by letters in Y .

Example. Consider the Whitehead descriptor (Y, v) with v = a and Y = {a, b}.
For the graph Γ depicted on Fig. 1, vertex 1 is in negative(Γ, Y, v) since its

incoming edges are labeled by b and a (obtained by flipping the edge 1
a−→ 4).

Vertex 3 is in positive(Γ, Y, v) since its incoming edges are labeled by a and
b, one not in Y , one in Y and both different from v. One can also verify that
vertices 2 and 4 are neither in positive(Γ, Y, v) nor in negative(Γ, Y, v).

The following statement is an immediate consequence of [15, Proposition 2.4
and Remark 2.6].

Proposition 1. A finitely generated subgroup H of F (A) is strictly Whitehead
minimal if and only if it is cyclically reduced and, for every Whitehead descriptor
(Y, v), we have | positive(Γ (H), Y, v)| > | negative(Γ (H), Y, v)|.

2.3 Distributions over finitely generated subgroups

Complexity. Let S be a countable set, the disjoint union of finite sets Sn
(n ≥ 0), and let Bn =

⋃
i≤n Si. Typically in this paper, S will be the set of

Stallings graphs, of partial injections, of reduced words or of k-tuples of reduced
words, and Sn will be the set of elements of S of size n.

A subset X of S is negligible if the probability for an element of Bn to be in

X, tends to 0 when n tends to infinity; that is, if limn
|X∩Bn|
|Bn| = 0.

The notion is refined as follows: we say that X is exponentially (resp. super-

polynomially, polynomially) negligible if |X∩Bn||Bn| is O(e−cn) for some c > 0 (resp.

O(n−k) for every positive integer k, O(n−k) for some positive integer k). The
set X is exponentially (resp. super-polynomially, polynomially, simply) generic if
its complement is exponentially (resp. super-polynomially, polynomially, simply)
negligible. We note the following elementary lemma.

Lemma 1. With the above notation, if C ⊆ S satisfies lim infn
|C∩Bn|
|Bn| = p > 0

and X is exponentially (resp. super-polynomially, polynomially, simply) negligi-
ble in S, then so is X ∩ C in C.
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Proof. The verification is immediate if we observe that, for n large enough,

|X ∩ C ∩Bn|
|C ∩Bn|

≤ |X ∩Bn|
|C ∩Bn|

=
|X ∩Bn|
|Bn|

|Bn|
|C ∩Bn|

≤ 2

p

|X ∩Bn|
|Bn|

. ut

Genericity and negligibility can also be defined using the radius n spheres
Sn instead of the balls Bn. The same properties are generic or negligible, expo-
nentially, super-polynomially, polynomially or simply, provided |Bn| grows fast
enough, see for instance [2, Sec. 2.2.2].

The graph-based distribution. The uniform distribution on the set of size n
Stallings graphs was analyzed by Bassino, Nicaud and Weil [3]. Here we sum-
marize the principles of this distribution and the features which will be used in
this paper.

In a Stallings graph, each letter labels a partial injection on the vertex set: in
fact, such a graph can be viewed as an A-tuple f = (fa)a∈A of partial injections
on an n-element set, with a distinguished vertex, and such that the resulting
graph (with an a-labeled edge from i to j if and only if j = fa(i)) is connected
and has no vertex of valency 1, except perhaps the distinguished vertex. We may
even assume that the n-element set in question is [n], with 1 as the distinguished
vertex, see [3, Section 1.2] for a precise justification.

Let In denote the set of partial injections on [n] and let Bn be the set of
r-tuples in Irn which define a Stallings graph (recall that |A| = r). Let also Dn
be the subset of Bn, of those r-tuples which define a cyclically reduced Stallings
graph. Then Dn (and hence Bn) is generic in Irn [3, Corollary 2.7]

The fundamental observation, used in [3] to achieve this result, is the follow-
ing: the functional graph of a partial injection f ∈ In (that is: the pair ([n], E)
where i → j ∈ E whenever j = f(i)), is made of cycles and sequences.This
allows the use of the analytic combinatorics calculus on exponential generating
series (EGS) [5, Sec. II.2]. Recall that, if In is the number of partial injections
on [n], the corresponding EGS is I(z) =

∑
n≥0

1
n!Inz

n. From [3, Sec. 2.1 and
Proposition 2.10], we get

I(z) =
1

1− z
exp

(
z

1− z

)
and

In
n!

=
e−

1
2

2
√
π
e2
√
nn−

1
4 (1 + o(1)). (1)

The formula for I(z) is based on the fact that a partial injection is a set of
sequences (whose EGS is z

1−z ) and of cycles (whose EGS is log
(

1
1−z
)
). We refer

the readers to [5, Sec. II.2] and [3] for further details. We use again this calculus
in Section 3.1.

The word-based distribution. The distribution more commonly found in
the literature (e.g. [10, 8, 9]), which we term word-based, originated in the work
of Arzhantseva and Ol’shanskĭı [1]. It is in fact a distribution on the k-tuples
h = (h1, . . . , hk) of reduced words of length at most n, where k is fixed and n is
allowed to grow to infinity; one then considers the subgroup H generated by h.

This is a reasonable way of defining a distribution on finitely generated sub-
groups of F (A), and even on rank k subgroups, in spite of the fact that different
tuples may generate the same subgroup (see for instance [2, Sec. 3.1]).
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The literature also considers the Gromov’s so-called density model, which
uses much larger random tuples (of positive density within Cn). This model is
usually considered to study the asymptotic properties of finite group presenta-
tions rather than subgroups of F (A) and we will not discuss it here (see for
instance [14]).

We will use the following statistics onRn and Cn, which can be easily verified:
|Rn| = r

r−1

(
(2r − 1)n − 1

)
and 2r

(
(2r−1)n−1−1

)
≤ |Cn| ≤ |Rn|. In particular,

both |Rn| and |Cn| are Θ
(
(2r − 1)n

)
and lim infn

|Cn|
|Rn| > 0.

3 The graph-based distribution

We now study the genericity of strict Whitehead minimality for the graph-based
distribution. The proof of Theorem 1 below is given in Sections 3.1 and 3.2.

Theorem 1. Strict Whitehead minimality is super-polynomially generic for the
uniform distribution over the set of cyclically reduced Stallings graphs.

3.1 Statistical properties of size n partial injections

If f is a partial injection on [n], we let
• sequence(f) be the number of sequences in the functional graph of f ; a

sequence has at least one vertex;
• extr(f) = {i ∈ [n] | f(i) is undefined or i has no preimage by f}; it is the

set of extremities of sequences in the digraph.
We note that, for every f ∈ In,

sequence(f) ≤ | extr(f)| ≤ 2 sequence(f). (2)

Proposition 2. For the uniform distribution, the probability that the number of
sequences of a size n partial injection is not in ( 1

2

√
n, 2
√
n) is super-polynomially

small (of the form O(e−c
√
n) for some c > 0).

Proof. If T (z) is a formal power series, we denote by [zn]T (z) the coefficient
of zn in the series. For any k ≥ 0, let Sk(z), S≤k(z) and S≥k(z) be the EGSs
of the partial injections having respectively exactly k, at most k and at least k
sequences. Observe that an injection with k sequences is a set of k sequences
together with a set of cycles; the symbolic method [5, Sec. II.2] therefore yields:

Sk(z) =
1

k!

(
z

1− z

)k
1

1− z
.

The radius of convergence of this series is 1, and Cauchy’s estimate for the
coefficient of a power series states that for any positive real ζ < 1, we have

[zn]Sk(z) ≤ Sk(ζ)

ζn
.
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Taking ζ = 1− 1√
n

approximatively minimizes the right hand quantity, and after

basic computations we obtain that for n large enough,

[zn]Sk(z) ≤
√
n e2+

√
n · n

k+1
2

k!
.

Since S≤
1
2

√
n(z) =

∑ 1
2

√
n

k=0 Sk(z) and S≥2
√
n(z) =

∑n
k=2
√
n S

k(z) we get upper

bounds for coefficients of both series by bounding
∑ 1

2

√
n

k=0
1
k!n

k
2 and

∑n
k=2
√
n

1
k!n

k
2

from above. The term 1
k!n

k
2 is increasing in the first sum and decreasing in the

second one, so we can bound each term of each series by its maximum value.
This yields the following inequalities:

1
2

√
n∑

k=0

n
k
2

k!
≤

1
2

√
n∑

k=0

n
1
2 + 1

4

√
n

( 1
2

√
n)!

, [zn]S≤
1
2

√
n(z) ≤ n

3
2 + 1

4

√
n

( 1
2

√
n)!

e2+
√
n and

n∑
k=2
√
n

n
k
2

k!
≤

n∑
k=2
√
n

n
1
2 +
√
n

(2
√
n)!

, [zn]S≥2
√
n(z) ≤ n2+

√
n

(2
√
n)!

e2+
√
n.

Using the crude Stirling bound n! ≥ nne−n and the asymptotics of In in Eq. (1),
we obtain upper bounds of the announced form for

[zn]S≤
1
2

√
n(z)

[zn]I(z)
and

[zn]S≥2
√
n(z)

[zn]I(z)
,

respectively the probabilities for a partial injection on [n] to have at most 1
2

√
n

and at least 2
√
n sequences. ut

We use Proposition 2 to bound the number of vertices that are simultaneously
extremities for two partial injections.

Proposition 3. For the uniform distribution over size-n pairs of partial injec-
tions, the probability

P
(
| extr(f) ∩ extr(f ′)| ≥

√
n

4(r − 1)

)
is super-polynomially small (of the form O(e−c

√
n) for some c > 0).

Proof. Let f and f ′ be partial injection on [n]. By Proposition 2 and Eq. (2),
the probability that one of them has more than 4

√
n extremities is super-

polynomially small — so we can restrict the analysis to the cases where both
f and f ′ have at most 4

√
n extremities, up to a super-polynomially small error

term.
Let m = b4

√
nc. Let Ef and Ef ′ be two sets obtained by adding uniformly at

random elements of [n] to extr(f) and extr(f ′) respectively, until |Ef | = |Ef ′ | =
m. Note that by symmetry, and since f and f ′ are chosen independently, both
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Ef and Ef ′ are uniform and independent size m subsets of [n]. Moreover, since
extr(f) ⊆ Ef and extr(f ′) ⊆ Ef ′ , we have

P
(
| extr(f) ∩ extr(f ′)| ≥

√
n

4(r − 1)

)
≤ P

(
|Ef ∩ Ef ′ | ≥

√
n

4(r − 1)

)
.

It suffices therefore to show that, super-polynomially generically, the intersection

of two m-element subsets of [n] has less than
√
n

4(r−1) elements. Let X(n,m, k) be

the number of pairs of m-subsets whose intersection has size k. Then

X(n,m, k) =

(
n

k

)(
n− k
m− k

)(
n−m
m− k

)
.

Therefore the probability that the intersection has size k is

P(|Ef ∩ Ef ′ | = k) =
X(n,m, k)(

n
m

)2 = k!

(
m

k

)2

· (n−m)!2

n!(n− 2m+ k)!
.

Note that (n−m)!2

n!(n−2m+k)! < (n−m)−k, that
(
m
k

)
< 2m. Let α = 1

4(r−1) . Then

P(|Ef ∩ Ef ′ | ≥ α
√
n) =

m∑
k=α
√
n

P(|Ef ∩ Ef ′ | = k) < 22m
m∑

k=α
√
n

k!

(n−m)k
.

Moreover k 7→ k!
(n−m)k

is decreasing for k ≤ m (for n large enough), so we have

P(|Ef ∩ Ef ′ | ≥ α
√
n) < 22mm

(α
√
n)!

(n−m)α
√
n
< 28

√
n4
√
n

(
α
√
n

n− 4
√
n

)α√n
.

This concludes the proof since the dominant term is of the form n−
α
2

√
n.

3.2 From partial injections to Stallings graph

Notice that if (Y, v) is a Whitehead descriptor, the definitions of the functions
negative(−, Y, v) and positive(−, Y, v) make sense for all r-tuple of size n
partial injections, even if they do not form a (cyclically reduced) Stallings graph.
We will use the following combinatorial bounds to establish Theorem 1.

Lemma 2. Let (Y, v) be a Whitehead descriptor and let f = (fa)a∈A ∈ Irn. If
v ∈ Ā, we let fv = f−1

v̄ . Then we have

| negative(f , Y, v)| ≤
∑
a 6=v

| extr(fv) ∩ extr(fa)|,

| positive(f , Y, v)| ≥ sequence(fv)−
∑
a6=v

| extr(fv) ∩ extr(fa)|.
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Proof. Recall that a vertex p in negative(f , Y, v) has an incoming v-edge and
all its incoming edges have labels in Y . Since v̄ 6∈ Y , it follows that p ∈ extr(fv).
Moreover, if a 6∈ Y and a 6= v̄ (there exists such an a since |Y | ≤ 2r − 2), p has
no incoming a-edge, so p ∈ extr(fa). This establishes the first inequality.

Similarly, if v ∈ A and p is the initial vertex of a sequence of fv (and hence
a v-extremity), and if in addition p is not an a-extremity for any a 6= v, v̄, then
p ∈ positive(f , Y, v). Therefore, if begin(fv) denotes the set of initial vertices
of sequences of fv, we have

begin(fv) \
⋃
a6=v,v̄

extr(fv) ∩ extr(fa) ⊆ positive(f , Y, v),

and the announced inequality follows since | begin(fv)| = sequence(fv).
If v̄ ∈ A we consider instead the set of final vertices of sequences in fv̄. ut

Proof of Theorem 1. Let Dn be the set of r-tuples of size n partial injections
which define a cyclically reduced Stallings graph, and let En be the set of r-
tuples f of size n partial injections which fail to satisfy | positive(f , Y, v)| >
| negative(f , Y, v)| for some Whitehead descriptor (Y, v). By Proposition 1, we
want to show that En ∩ Dn is super-polynomially negligible within Dn.

Since Dn is generic in the full set of r-tuples of partial injections, namely
Irn (see Section 2.3), Lemma 1 shows that we only need to show that En is
super-polynomially generic in Irn.

For each Whitehead descriptor (Y, v), let En(Y, v) denote the set of r-tuples
f ∈ Irn such that | positive(f , Y, v)| ≤ | negative(f , Y, v)|. Then En is the
(finite) union of the En(Y, v) and it suffices to prove that each En(Y, v) is super-
polynomially generic in Irn.

For a fixed Whitehead descriptor (Y, v), Lemma 2 shows that

P
(
En(Y, v)

)
≤ P

(
sequence(fv) ≤ 2

∑
a6=v

| extr(fv) ∩ extr(fa)|
)
.

We observe that if | extr(fv) ∩ extr(fa)| < 1
4(r−1)

√
n for each a ∈ A, a 6=

v, v̄ and sequence(fv) >
1
2

√
n, then 2

∑
a6=v | extr(fv) ∩ extr(fa)| < 1

2

√
n <

sequence(fv), so that f 6∈ En(Y, v). Therefore, by considering the complements
of these properties, we see that P(En(Y, v)) is at most equal to

P
(
sequence(fv) <

1

2

√
n
)

+
∑
a6=v

P
(
| extr(fv) ∩ extr(fa)| > 1

4(r − 1)

√
n
)
.

This concludes the proof since each of the summands is super-polynomially small
by Propositions 2 and 3. ut

Theorem 1 is stated for the uniform distribution on cyclically reduced Stallings
graphs. One may wonder if a similar result holds for the uniform distribution on
Stallings graph. We show the following.

Corollary 1. Strict Whitehead minimality is polynomially, but not super-polyn-
omially, generic for the uniform distribution over Stallings graphs.
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Proof sketch. As per the proof of Theorem 1, a random reduced graph super-
polynomially generically satisfies | positive(f , Y, v)| > | negative(f , Y, v)| for
any Whitehead descriptor (Y, v). However, forH to be strict Whitehead minimal,
Γ (H) must also be cyclically reduced, that is, vertex 1 must be of valency at
least 2. If vertex 1 has valency 1, it must be an extremity for one letter and
isolated for all other letters. The probability it happens is Θ(n−(r−1)− 1

2 ), by
Proposition 2 and Eq. (1), concluding the proof. ut

4 The word-based distribution

Let k ≥ 2 be a fixed integer. We discuss the genericity of strict Whitehead
minimality for the subgroups generated by a random k-tuple of cyclically reduced
words and we show the following.

Theorem 2. For the uniform distribution over k-tuples of cyclically reduced
words of length at most n, strict Whitehead minimality is exponentially generic.

4.1 Shape of the Stallings graph

The following elementary statement combines results established in [1, 8] and in
[2, Sec. 3.1].

Proposition 4. Let α ∈ (0, 1) and 0 < β < 1
2α, let h = (h1, . . . , hk) be a tuple

of elements of Rn and let H be the subgroup generated by h. Then, exponentially
generically,

- min |hi| > dαne and the prefixes of the hi and h−1
i of length bβnc are

pairwise distinct
- the Stallings graph Γ (H) consists of a central tree of height bβnc – whose

vertices can be identified with the prefixes and suffixes of length at most bβnc of
the hi – and of k outer loops, one for each hi, of length |hi|− 2bβnc, connecting
the leaves of the central tree.

Proposition 4 describes the typical shape of a Stallings graph under the word-
based distribution: as β can be taken arbitrarily small and α arbitrarily close
to 1, an overwhelming proportion of the vertices are in the outer loops, and in
particular have valency exactly two.

4.2 Counting the occurrences of short factors

If u is a word over an alphabet B, we denote by Zn(u) the function that counts
the occurrences of u as a factor in a word in Bn.

Lemma 3. Let B be a finite alphabet with k ≥ 2 letters and let u ∈ Bm. Then
for any ε > 0 there exists a constant c > 0 such that

P
(∣∣∣Zn(u)− n

km

∣∣∣ ≥ εn) ≤ e−cn.
10



a a b b

ϕa 1 − 3 2

ϕa − 3 1 2

ϕb 1 3 2 −
ϕb 1 3 − 2

w b a b a b b b a a b a b a b a
ϕ(w) b 1 2 3 1 2 2 1 1 2 1 3 1 2 1

Fig. 2. An example of the encoding used in the proof of Lemma 4. The word w above is
encoded using the construction associated with the pattern u = ab: a is always encoded
by 1, b by a 2 and the inverse of the first letter, a, by a 3. An occurrence of u always
corresponds to an occurrence of 12 in ϕ(w), but the opposite is not true: there are
false positives, which are always preceded by a 3. Note also that an occurrence of 312
does not always correspond to a false positive.

Proof. For i ∈ [n−m], the probability X
(i)
n that u is a factor at position i in a

random word of length n is k−m. For each 0 ≤ ` < m, let Z
(`)
n (u) =

∑
j X

(mj+`)
n ,

for 0 ≤ j ≤ bn−`m c. Each Z
(`)
n (u) is the sum of independent random variables since

there is no overlap in the portions of the length n word considered. Therefore

Z
(`)
n (u) follows a binomial law of parameters k−m and bn−`m c: by Hoeffding’s

inequality [7], it is centered around its mean value which is equivalent to n
mkm ,

and it satisfies P
(∣∣∣Z(`)

n (u)− n
mkm

∣∣∣ > ε
mn
)
≤ e−c`n for some c` > 0 and for

each n large enough. The announced result follows from the fact that Zn(u) =

Z
(0)
n (u) + . . .+ Z

(m−1)
n (u). ut

Lemma 4. Let u = u1u2 be a reduced word of length 2. There exists a constant
c > 0 such that, for n large enough,

P
(
Zn(u) >

n

(2r − 1)2
+ εn

)
≤ e−c n and P

(
Zn(u) <

n(2r − 2)

(2r − 1)3
− εn

)
≤ e−c n

Proof. We first consider the case where u1 6= u2. The idea is to use Lemma 3
via an encoding of reduced words. For every a ∈ Ã, let ϕa be a bijective map
from Ã \ {ā} to [2r − 1]. Let ϕ be the map from the set of reduced words to
Ã× [2r − 1]∗ defined for every reduced word z = z1 · · · zn by

ϕ(z) = (z1, ϕz1(z2)ϕz2(z3) · · ·ϕzn−1
(zn)).

Observe that for every n > 0, ϕ is a bijection from Rn to Ã× [2r− 1]n−1, which
is computed by an automaton with outputs: the states are the elements of Ã
and for every a ∈ Ã and b 6= ā, there is a transition from a to b on input b with
output ϕa(b). Moreover, the uniform distribution on Rn is obtained by choosing
z1 uniformly in Ã, z uniformly in [2r − 1]n−1, and taking ϕ−1(z1, z).

We now choose particular functions ϕa: for every a 6= ū1, we choose ϕa(u1) =
1. This way every occurrence of u1 (except possibly for the first letter of w), is
encoded by a 1 (note that the 1s provided by ϕū1

do not encode an occurrence
of u1). We also require that ϕu1

(u2) = 2 and ϕa(ū1) = 3 for every a 6= u1: thus

11



every occurrence of u = u1u2 in w translates to an occurrence of 12 in ϕ(w), and
every occurrence of ū1 translates to a 3 in ϕ(w). See Figure 2 for an example.

Then for any t, we have P(Zn(u) > t + 1) ≤ P(Zn−1(12) > t) (the value
t + 1 in the left-hand side of the inequality corresponds to the possibility of
an occurrence of u at the leftmost position). Since the pattern 12 is taken in
[2r − 1]∗ equipped with the uniform distribution, we apply Lemma 3 to get the
first inequality.

Observe that counting occurrences of 12 over-estimates the number of oc-
currences of u. More specifically, a false positive occurs if, and only if, the said
occurrence of 12 is preceded by a 3 in ϕ(w). Hence, the number of false posi-
tives is bounded above by the number of occurrences of 312 in ϕ(u). Therefore
P(Zn(w) < t) ≤ P(Zn−1(12)− Zn−1(312) < t). We can use Lemma 3 to get the
second inequality (since 1

(2r−1)2 −
1

(2r−1)3 = 2r−2
(2r−1)3 ).

The case u = u1u1 is handled in the same fashion, except that we have to
set ϕu1

(u1) = 2 instead of 1. ut

Remark. The statement of Lemma 4, and even a slighty stronger statement,
can also be obtained using the theory of Markov chains: a reduced word can be
seen as a path in a specific Markov chain – where the set of states is Ã, and
there is a transition from a to b with probability 1

2r−1 whenever a 6= b̄. The
result in Lemma 4 then follows from [11, Thm 1.1]. We chose instead to give the
elementary and self-contained presentation above.

4.3 Proof of Theorem 2

Let α ∈ (0, 1), β ∈ (0, α2 ) and ε > 0 be real numbers, to be chosen later. Let
Zn,α,β be the set of k-tuples h = (h1, . . . , hk) of reduced words of length at most
n, such that min |hi| > dαne and the prefixes of the hi and h−1

i of length bβnc
are pairwise distinct.

For each word h of length greater than 2bβnc, let mid(h) be the factor of h
obtained by deleting the length bβnc prefix and suffix.

Now let (Y, v) be a Whitehead descriptor and let H be the subgroup gener-
ated by h ∈ Zn,α,β . We denote by Y c the complement of Y . The central tree
of Γ (H) has at most 2kβn vertices, and the outer loops of Γ (H) are labeled
by the mid(hi). The vertices in these loops all have valency 2. Any one of these
vertices is in negative(Γ (H), Y, v) if and only if it has an incoming v-edge and
an outgoing y-edge for some y ∈ Y c \ {v}. Let N = (Y v̄ ∪ vȲ ) \ {vv̄}. Then
the number of negative vertices in the outer loops is equal to the number of
occurrences of elements of N as factors in the mid(hi). That is:

negative(Γ (H), Y, v) ≤
k∑
i=1

∑
xy∈N

Z| mid(hi)|(xy) + 2kβn.

By Proposition 4, Zn,α,β is exponentially generic. Moreover, the map h 7→
mid(h) turns the uniform distribution on words in R` (` > αn) into the uniform
distribution on R`−2bβnc: indeed, if u ∈ R`−2bβnc, then P(mid(h) = u) = (2r −
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1)2bβnc, which does not depend on u. Therefore, exponentially generically, we
have

negative(Γ (H), Y, v) ≤ 2k(|Y | − 1)

(
1

(2r − 1)2
+ ε

)
(1− 2β + ε)n+ 2kβn.

Similarly, a loop vertex is in positive(Γ (H), Y, v) if it has an incoming x-edge
with x ∈ Y \ {v} and an outgoing y-edge with ȳ ∈ Y c: if P = (Y \ {v})Y c ∪
Y c(Ȳ \ {v̄}), then the number of positive vertices in the outer loops is equal to
the number of occurrences of elements of P as factors in the mid(hi). That is,
exponentially generically,

positive(Γ (H), Y, v) ≥
k∑
i=1

∑
xy∈P

Z| mid(hi)|(xy)

≥ 2k(|Y | − 1)(2r − |Y |)
(

2r − 2

(2r − 1)3
− ε
)

(α− 2β)n.

In order to conclude, we only need to show that we can choose α, β and ε such

that (2r−|Y |)
(

2r−2
(2r−1)3 − ε

)
(α− 2β) >

(
1

(2r−1)2 + ε
)

(1− 2β+ ε) + β
|Y |−1 . This

is possible by continuity, since the limits of these two quantities when (α, β, ε)
tends to (1, 0, 0) are respectively (2r − |Y |) 2r−2

(2r−1)3 ≥
4
3

1
(2r−1)2 and 1

(2r−1)2 .

This establishes that if H is generated by a k-tuple of reduced words, then ex-
ponentially generically positive(Γ (H), Y, v) > negative(Γ (H), Y, v) for each
Whitehead descriptor. The same exponential genericity holds for k-tuples of
cyclically reduced words in view of Lemma 1 and the discussion at the end of
Section 2.3. Together with Proposition 1, this concludes the proof since a sub-
group generated by a tuple of cyclically reduced words has a cyclically reduced
Stallings graph.

Remark. If one start with a k-tuple of reduced words instead of cyclically
reduced words, there is a non-negligible probability that there exists a letter
a ∈ Ã such that every word starts with a and ends with a, in which case the
graph is not cyclically reduced. Asymptotically, this happens with probability
that tends to ( 1

2r )2k−1.

5 Application to random generation

Our main theorems can be used to sample Whitehead minimal subgroups for
the two distributions, in linear average time. The idea is to use a rejection
algorithm by repeatedly drawing a Stalling graph until the result is Whitehead
minimal.

The average complexity of such an algorithm is cn
pn

, where pn is the probability
of success, and cn is the average complexity of an attempt. By Theorem 1 and
Theorem 2, pn → 1 in both settings.

For both distribution, a graph can be generated in linear average time: us-
ing the algorithm described in [3] for the graph-based distribution; relying on
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Touikan’s algorithm [17], which is linear on average as remarked in [4, Theorem
4.1], for the word-based distribution.

Observe that strict Whitehead minimality can be tested in linear time using
Proposition 1 and the fact that there are finitely many Whitehead descriptors.
If this test fails the subgroup can still be Whitehead minimal, so we use the
polynomial algorithm of [15] to test Whitehead minimality. The key point is
that, as a consequence of Theorem 1 and Theorem 2, this algorithm is called
with super-polynomially small probability, and therefore the average complexity
of the Whitehead minimality test is linear.
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