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Abstract

This paper deals with the estimation of the distance between the solution
of a static linear mechanic problem and its approximation by the finite ele-
ment method solved with a non-overlapping domain decomposition method
(FETI or BDD). We propose a new strict upper bound of the error which
separates the contribution of the iterative solver and the contribution of the
discretization. Numerical assessments show that the bound is sharp and
enables us to define an objective stopping criterion for the iterative solver.

Keywords: Verification; domain decomposition methods; FETI; BDD;
convergence criterion.

1 Introduction

Developing robust numerical methods to solve systems of partial differential equa-
tions has become a major challenge in engineering. Indeed industrialists wish to
adopt virtual testing in order to replace expensive experimental studies up to the
certification of their structures. The massive use of virtual prototyping relies on
the capacity to warrant the quality of the numerical solutions. In the context of
the Finite Element Method (FEM), a posteriori error estimators permit to esti-
mate the distance between the unknown exact solution and the numerical solution.

*valentine.rey@lmt.ens-cachan.fr
fchristian.rey@lmt.ens-cachan. fr



Initial methods [2, 12, 28] evaluated globally the effect of the spatial discretization
for linear problems, they have been extended to non-linear and time-dependent
problems, and to the estimation of the error on quantities of interest. Another
prerequisite for virtual testing is the ability to conduct large scale computations,
because reliable models involve lots of degrees of freedom. Non-overlapping Do-
main Decomposition Methods (DDM) offer a favorable framework for fast iterative
solvers adapted to modern clusters [9].

Most upper bounds for the error which do not involve constants rely on the
computation of admissible stress and displacement fields. In a recent paper [23],
the classical methods to construct statically admissible fields were extended to the
framework of substructured problems. The estimator which ensues is fully parallel
and totally integrated to classical DD solvers BDD [16] and FETTI [5]. It provides
a guaranteed upper bound whether the iterative solver of the interface problem
has converged or not; unfortunately, it is not able to separate the different sources
of error, namely the error due to the discretization and the error due to the lack
of convergence at the interface. In [23|, a Gamma-shape structure clamped on its
basis and sollicitated in traction and shear on its upper-right side was considered.
The structure was split into 8 subdomains (Figure 1(a)) and the problem was
solved with classical DD solver. The error estimation provided by the estimator
proposed in [23] is computed at each iteration of the DD solver (Figure 1(b)).
We clearly observe L-shaped curves highlighting the fast convergence rate of the
estimator e2E2M with respect to the domain decomposition residual. After a few
iterations, the error due to the non-verification of the continuity and balance on the
interface is insignificant compared to the contribution of the discretization error
(which can be visualized by the estimator of the sequential problem). On that
example, we observe that, whatever the substructuring, after 4 iterations there
is no improvement of the approximation, while classical stopping criteria based
on the decrease of a norm of the interface residual would imply 5 times more
iterations.

Then in order to avoid oversolving, we wish to distinguish the contributions of
the discretization and of the iterative solver to the estimation of the error. The
non-convergence of the solver will be referred to as the algebraic error and no other
sources of errors (rounding, representation of the loadings) will be considered.

Various articles have dealt with the separation of the contributions to the
error and with the definition of new stopping criteria. In [1| the author insists
on the use of the energy norm for the measurement of the residual instead of a
classical Euclidean norm, in order to link the iterative methods to the properties
of the approximated problem. In the framework of multigrid methods, an adaptive
procedure to define both the refinement and the stopping criterion is developed
in [3]. However, this technique demands the computation of constants since it is



0.55

' 2 subdomains

N
05 . 4 subdomains x
’ 8 subdomains
: 16 subdomains =
0.45 e 39 subdomains
: sequential -
0.35 “u
0.3
Xx +
0.25 s :
———————————— Lo O e B ® e M M R
0.15
0_1 1 1 1 I
0.1 0.01 0.001 0.0001 1e-05 1e-06
FETI normalized displacement jump
S
(a) Domain decomposi- (b) Convergence of error estimator vs DD residual

tion and loading

Figure 1: Error estimator from [23]

based on a priori estimates. The error in constitutive relation does not require
the calculation of such constants and provides guaranteed upper bounds, it was
applied to various problems that introduce other sources of error. In [6, 7|, the
authors define a time error indicator to separate the part of the error due to the
time discretization from the part due to the space discretization, and they use it
to optimize the time steps. This work is extended in [13] in which an indicator of
the effect of non-linear iterations complete the total error estimation. Finally, in
the case of contact problems, the separation of the discretization error and of the
algebraic error is performed for problems solved with the fixed-point method [17]
and with a Neumann-Dirichlet algorithm [8]. Nevertheless, the computation of all
those indicators requires the resolution of auxiliary problems which considerably
increase the cost of the estimation (indeed, one has to compute statically admissible
fields for each problem, which can be a costly step). For the finite volume method,
the separation of the different sources of error and the definition of a new stopping
criterion is exposed in [10] for second-order elliptic problems. This question of
balancing the sources of error has also been addressed for error estimation on
quantity of interest: in [18], a goal-oriented procedure to solve a problem with
the multigrid method with a level of precision specified by the user is proposed; a
similar approach is presented in [4] for the bound method [20, 19].

In this paper, we present a new guaranteed upper bound that separates the
algebraic error (represented by a well chosen norm of the residual) from the dis-



cretization error of the subdomains in the case of a linear problem solved with a
classical DD solver (BDD or FETI). This separation enables us to define a new
stopping criterion for the iterative solver. The method relies on the parallel pro-
cedures to build admissible fields proposed in [23] but compared to the estimator
of that paper, the procedures are called much less often.

The paper is organized as follow. In Section 2 we define the reference problem,
we recall the principle of the error in constitutive relation and we detail the error
estimation in the substructured context by highlighting the fields created in the
FETI and BDD solvers. In Section 3 we prove the new guaranteed upper bound
separating the algebraic error and the discretization error on each subdomain and
we explain how it leads us to define a new stopping criterion for the iterative solver.
In Section 4, we apply our new upper bound to two 2D mechanical problems. We
compare the behavior of the new upper bound with the one introduced in [23| and
study the evolution of each term of the inequality during the iterations. Section 5
concludes the paper.

2 A posteriori error estimation in substructured
context

2.1 Reference problem

Let R? represent the physical space (d is the dimension of the physical space).
Let us consider the static equilibrium of a (polyhedral) structure which occupies
the open domain © = R? and which is subjected to given body force f within
(2, to given traction force g on 0,2 and to given displacement field u, on the
complementary part of the boundary 0,0 (meas(d,2) # 0). We assume that the
structure undergoes small perturbations and that the material is linear elastic,
characterized by Hooke’s elasticity tensor H. Let u be the unknown displacement
field, € (u) the symmetric part of the gradient of u, o the Cauchy stress tensor.
Let w be an open subset of . B
We introduce two affine subspaces and one positive form:

e Affine subspace of kinematic admissible fields (KA-fields)

d

KA(w) = {g e (H'(w))", u=ugon é’wﬂé’uﬂ} (1)

and we note KA the following linear subspace:

KA%(w) = {g € (Hl(w))d, u=0on (%J\(?QQ} (2)



e Affine subspace of statically admissible fields (SA-fields)

e Error in constitutive equation

ecr, (1, g) = |lg —H: £ (4) a1 (4)

where ||z/|g-1., = \/J (z:H':z)dQ
The mechanical problem set on 2 can be formulated as:

—€r? =

Find (u aex) € KA(Q2) x SA(Q) such that ecrg(Uex, 0, ) =0 (5)

The solution to this problem, named “exact” solution, exists and is unique.

2.1.1 Finite element approximation

Let us consider a tessellation of €2 to which we associate the finite-dimensional sub-
space KAy () of KA(2). The classical finite element displacement approximation
consists in searching:

o, =H:¢(uy)

(6)
LgH:g(yH)dQzLi-deQJrLQg-QHdS, Yo, € KAY%(Q)

Of course the approximation is due to the fact that in most cases o ¢ SA(Q).
After introducing the matrix Py of shape functions which form a basis of

KAy (€2) (extended to Dirichlet degrees of freedom) and the vector of nodal un-

knowns u so that uy = ¢, u, the classical finite element method leads to the linear

system:
Krr Krd u, fr O
- + 7
() () = (8)+ (1) "

where K is the (symmetric positive definite) stiffness matrix and f is the vector
of generalized forces; Subscript d stands for Dirichlet degrees of freedom (where
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displacements are prescribed) and Subscript r represents the remaining degrees of
freedom so that unknowns are u, and A; where Vector A, represents the nodal
reactions:

)\T:Jg :§<Lp >dQ—Jf-go dQ—J g . dS (8)
d Q_H =\¥XH4 0= T Hd (?gQ_ T Hd

where ¢ i is the matrix of shape functions restricted to the Dirichlet nodes and
n the outer normal vector.

2.1.2 Error estimation

The estimator we choose is based on the error in constitutive equation. The
fundamental relation is the following (Prager-Synge theorm, see for instance [14]):

V(i1, 6) € KA(Q) x SA(Q),

)~ @+ o, o | = et 0) ¥
= \—€T =/ IIH,Q —ex = H_I,Q — YCRo\= =
We note ||v[|q = Hg(y)HHQ the energy norm of the displacement, and we retain
the following bound: 7

[t — @l < ecrq (0, 0) (10)

For this problem one can choose @& = uy € KA(€). The construction of & € SA((2)
is a more complex problem solved by various approaches [15, 22, 24].

2.2 A posteriori error estimation in substructured context
2.2.1 Substructured formulation

Let us consider a decomposition of domain  in N,; open subsets Q) such that
QLN Q) = & for s # s and Q = U, Q). The interface between subdomains
) = Q6 M Q) is supposed to be regular enough for traces of locally admissible
fields to be well defined.
The mechanical problem on the substructured configuration writes :
u® e KA(Q(S))
Vs 4 o e SA(QW) and V(s, s) {

ecRr, ) (E(s)’g(S)) =0

tr(u®) = tr(u®") on ()
¢® 1 4 g .5 = 0 on TG

(11)
Indeed, the kinematic and static admissibility of each (u(*), o®)) inside Q(*) is not
sufficient to be globally admissible. The displacements need to be continuous and
the tractions need to be balanced on interfaces. The set of fields u defined on 2
such that wo.) € KA(Q®) without interface continuity is a broken space which

we note KA (| Q®).



2.2.2 Finite element approximation for the substructured problem

We assume that the tessellation of {2 and the substructuring are conforming. This
hypothesis implies that each element only belongs to one subdomain and nodes
are matching on the interfaces. Each degree of freedom is either located inside a
subdomain (Subscript i) or on its boundary (Subscript b).

Let t®) be the discrete trace operator, so that ul()s) — t®u®). Let us intro-
duce the unknown nodal reaction on the interface A, the equilibrium of each

subdomain writes:
KOu® = £ 4 ¢&T 6 (12)

Let (A®) and (B®)) be the primal and dual assembly operator so that the discrete
counterpart of the interface admissibility equations is:

2 BOtEu®) =0

ZA(S))\(S) -0

S

(13)

Equations (12,13) form the discrete substructured system, which is equivalent to
the global problem (7).

Note that in the case when Subdomain s has not enough Dirichlet boundary
conditions then the reaction has to balance the subdomain with respect to rigid
body motions. Let R(®) be a basis of ker(K®)), we have:

)T

ROT(FE 4 ¢ A@) = 0 (14)

2.2.3 Domain decomposition solvers

Classical BDD and FETI solvers are well described in many papers (for instance,
see [9] and the associated bibliography). Very briefly, BDD and FETI are Krylov
iterative solvers for the reformulation of the problem in term interface quantities:
in BDD, the continuous interface displacement which nullifies the interface lack
of balance is sought, whereas in FETI the balanced nodal reaction field which
nullifies the displacement gap is searched for. We emphasize on the fields which
are created along the algorithms and which are useful for error estimation.

We name two important parallel procedures which are used in these meth-
ods and which correspond to solving local problems with Dirichlet conditions on
the interface (subscript D) and local problems with Neumann conditions on the
interface (subscript N):



(u

(u

A, ul)) = SOlVeD(ul(;S)a £)): (u})) = Solvey (A}, £¢))

KOul) = £ 4 607 AE KOu) = £ 4 ¢@T AP
tu (S) u® where (AY)), satisfy Eq. (14)
When developing these methods, we get:

-1
(), = K <f.(s) — Kgg)ugs)> and  (ul¥), = ul”

1
)\(5) _ S(S)ué f(S) + K(S)K(S) f(s)
ul) = K©F <f(3) + ) >\§V)>

(23

is a pseudo-inverse of K. Depending on the method (BDD or FETI), the way to
ensure the well-posedness of Neumann problems varies. In general the implemen-
tation relies on initialization and projection, leading to a preconditioned projected
conjugate gradient, we then introduce the generic method Initialize and the
projectors Py and Py in our algorithms (see [9] for details).

Other important ingredients are the scaled assembling operators (A(S)) and
(B(S)). These matrices are any solutions to the following equations:

1
where S(®) = (KIEZ) Kl(;)K(s) KEZ)) is the Schur complement matrix, and K®™"

MAWAWT =1 and Y BOBO =1 (15)

See [26, 11] for classical definitions of these operators.
In algorithms 1 and 2, we emphasize the fields which are specifically rebuilt for
error estimation using right-aligned C-style comments.

2.2.4 A posteriori error estimator

In order to apply formula (10), [23] proposed a parallel procedure to build ad-
missible fields. Indeed the BDD and FETI solvers provide at every iteration the
following vectors :

(DS))S: displacement vectors which are continuous at the interface so that the field

(Q(DS))S = (fg)u(g))s e KA(Q), (}\(5)) are the nodal reaction associated to
that Dirichlet condition, they are not balanced before convergence.

5\8,))5 displacement vectors associated to nodal Reactions ()\5\8,))5 which are bal-

anced at the interface. Displacement field (u 8)) = (fg)ugf,))s e KA(J QW)
(hence there is no continuity across interfaces) and the associated stress field



Algorithm 1: BDD: main unknown U on the interface

U = Initialize(f() ;
(/\(DS), U(DS)) = SolveD(A(s)TU’ f(S));
Compute residual r = ) A(S)A(DS);

Define local traction A®) = A®)"r // Aﬁi) = )\g) — @
al®) = SolveN(:\(s), 0) ; // ug\s,) = u(Ds) —a®

Preconditioned residual z = ) _ AGGE
Search direction w = P;z;

while vr7z > € do

(AL 0y = solven (A w, 0);

p =2, A0

a=(r'z)/(p" w);

U—U-+aw,; //

u(DS) — u(g) + ail(DS)

XY AL + Ay
r<—r—ap;

A = AOy /1A = AP — X
a®) = SolveN(:\(S), 0) ; // ug\s,) = u(g) —a®

zZ=, A(S)ﬁl()s);
w «— Pz — (p"Piz)/(pTw)w
end

s) . (8)44(8)
o) —H: g (eful))

stress fields gg\‘? which are statically admissible (gﬁ))s € SA().

can be employed (with additional input /\g\s,)) to build

The following estimator is then fully parallel:

e = uplley = D3 — w1 < Y e, (), 6%) (16)

S S

3 New error bound

Our objective is to separate the contributions to the global error of the discretiza-
tion error and of the algebraic error, so that a new stopping criterion for the
iterative solver can be defined, avoiding useless iterations that cannot reduce the
global error (see Figure 1(b)).

First, we exhibit a new bound which, compared to (16), involves u, instead
of up, this upper bound of ||u,, — uy|/q distinguishes the algebraic error due to

9



Algorithm 2: FETI: main unknown A
A = Initialize(f®) ;
Local reactions /\g\s,) — BOA;
(ug\s,)) = SolveN(/\g\S,), £));
Compute residual r = P73, B(S)t(s)ug\s,));

Define local displacement ﬁés) = B(S)Tr; ;

u(DS) = ug\s,) —a®

X(s) (s ~(s) )

(A®),4)) = Solvep(i;”,0) ; // )‘(5):/\53)_5\(5)
Preconditioned residual z = Py(3], BOX®)) ;

Search direction w = z;

while v17z > ¢ do

(') = solven(B® w,0);

p = P§ (3, BUtWuy);

a=(r'z)/(p" w);

(s) (s) (s)

Uy < Uy + au
A—A+aw; // ](Z) NT "
Ay =B A

r < r—ap;
ﬁl()s) =B®"y;

u(DS) = ug\s,) —a®

3 (s) (s _ ~(s) .
(A®),4®)) = solvep(ii,”,0) ; // ,\g)z,\gj)—i@
z = Py(3, BOAW);
w—z—(p'z)/(p"w)w
end

the use of the DD iterative solver from the discretization error due to the finite
element approximation.
The fundamental result is the following theorem:

Theorem 1. Using the notation of algorithms 1 or 2, we have

e — wyllo < VT2 + \/Z et (d.69) (17)

In other words, at each iteration of the solver, the distance between the dis-
placement field u, and the exact solution is bounded by the preconditioner norm of
the residual of the conjugate gradient solver plus a sum over subdomains of errors

10



in constitutive relation which depend on the iteration and on the discretization
and which are computed in parallel.

The preconditioner-norm of the residual is a purely algebraic quantity com-
puted during the conjugate gradient iterations, it can be used in order to tell
the convergence of the algorithm. In the assessments, we will verify that the

2 (s)
term \/ZS eCR, ) (u

uy s S)) is mostly driven by the discretization, so that it varies
slightly during the iterations.

The proof of the theorem is based on two lemmas.

Lemma 1. Let u,, € KA(Q) solve the reference problem (5), (QS))S e KA(Q) and
(gg\s}))s e KA(UQ®) be as defined in Section 2.2.4, then:

e = un e < |uN—uD|Q+\/ZeCR 8l (18)

Proof. The proof of this lemma is based on the following result, proved in [27]: for
(u,v) € KA(Q) x KA(Q) and % € KA(|JQ®),

u v
lu-llo < le-la+ Y [ cw-2):H:g (—— - )d@ (19)
2.e Tu—olla

We apply this result with v = u_, and u = (gg\s,))s, we note ¢ =

Uep —U
e, =2l

KA%(Q), the second term of the expression is simplified by the introduction of
@5))3 e SA(Q):

Zf e (uf) —ul)) 2 (¢) a2 - Zf g8 —a) 12 () a0
s Y
—ZJ o)) £ (") d0

< D18 = gl 00 19 lae
S

< \/Zug( Q2 g
< Sl

—_—————
=1

€T

(20)

Where we have used Cauchy-Schwarz inequality (two times). By definition H&(S)

HH 10 = €CR_, (U1(\1)7 5)). One just has to choose v = up in the first term of

Equatlon (19). O

11



Lemma 2. Using the notation of algorithms 1 or 2, we have:

luy —uplig =1"2 (21)

in other words, the distance between uy and uy, in the energy norm is the precon-
ditioner norm of the residual.

Proof. Let us transform the expression of the first term using Stokes’ theorem and
definition (8):

Il — wplla = ZJ e (up) i) Mg (uf) —uf) dO
— Jaw

=3 (A5 - AY) 0 () ) (22)

- Z S\(S)Tﬁl(f)
We now need to make particular cases depending on the algorithm. In the BDD
case, we have:
SR = A T = o7 )
In the FETI case, we use the fact that r = PZr:
Z S\(S)Tﬁl()s) = Z AETBE p — Z S\(S)TB(S)TPQTI' =rlg (24)

O

This leads to the resolution strategy of Algorithm 3. The idea is to iterate until
the algebraic error is negligible with respect to the estimation of the discretization
error. The objective being to have the norm of the residual o times smaller than
the estimation of the discretization error (o = 10 is a typical value), the coeffi-
cient /5 (typically 2) takes into account the small variation of the estimate e of the
discretization error along iterations.

Remark: As engineers often expect the displacement field to be continuous, we

can derive a bound for the error associated with the continuous field uj, using the
triangular inequality and (17)-(21):

e — uplle < 2VeTz + \/2 W, (03,59 (25)
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Algorithm 3: DD solver with adapted stopping criterion

Set « > 1 and 8 > 1;

Initialize, get (ug{?), )\5{;), r,z);

Estimate discretization error e? = e%RQ(S) (gl(\?),gs)) ;

while vr’z > e/a do

while vr”z > ¢/(af) do
‘ Make Alg. 1 or Alg. 2 iterations, get (ug\s,), /\g\s,))
end

Update error estimator e? = D e%RQ(S) (El(\?)’ gl(\?)) :

end

4 Numerical assessment

In this section, we present the new upper bound obtained by applying Theorem 1
for two mechanical problems.The FE computation and the construction of stati-
cally admissible stress fields are performed using an Octave code. The material
is chosen to be isotropic, homogeneous, linear and elastic with Young’s modulus
E = 1Pa and Poisson’s ratio v = 0.3.

For each case, we computed the error estimation for the sequential problem
and for the substructured problem (as it is proposed in [23]) and the two sources
of error provided by the application of Theorem 1.

4.1 Rectangular domain with known solution

First, let us consider a rectangular structure Q = [0;8] x [0;1]. Homogeneous
Dirichlet boundary conditions are considered on all the boundary and the domain
is subjected to a polynomial body force such that the exact solution is known :

U, = x(z —8l)y(y —1)’e, + 2y*(x — 8)(y — 1,

Therefore, we are able to compute the true errors ||u,, —uy||q and ||w., —up||o-

The domain is meshed with triangles and divided in 8 identical squares. We
use the FETT algorithm to solve the substructured problem with a Dirichlet pre-
conditionner and the construction of statically admissible fields is performed using
the Element Equilibration Technique (EET) [15, 25]. For the record, the EET is
two-step procedure: first, balanced traction fields are postprocessed on the edges
of the elements, then, independent Neumann problems are solved on the elements
with high precision (here each triangle is subdivided into 16 elements).

13
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Figure 2: Error estimates

Figure 2 illustrates the fast convergence of the estimators and the true errors
against iterations. The quantities ||u,, — uy||o and ||u,, — up|lq are respectively
bounded by vVrTz + ecg,, (ux; ) and ecr, (up,d, ). Obviously, when the solver
has converged, the true errors ||u,, — uy|lq and ||u., — upl|o are equal and the
estimates are the same.

We observe that the algebraic error vrTz regularly decreases to 1079 along the

iterations while the discretization error ecrg (uy, QN) is almost constant.

4.2 Cracked structure

Let us consider the structure of Figure 3 used in [21]. We impose homogeneous
Dirichlet boundary conditions in the bigger hole and on the base. The smaller
hole is subjected to a constant unit pressure py. A unit traction force g is applied
normally to the surface on the left upper part. The other remaining boundaries
are traction-free. A crack is also initiated from the smaller hole. We mesh the
structure with regular triangular linear elements and create 16 subdomains as
shown in Figure 4. We use the FETT algorithm to solve the substructured problem
with a Dirichlet preconditioner. The construction of statically admissible fields is
performed using the Element Equilibration Technique.

As in [23], we observe on Figure 5 L-shaped curves showing that the quality of
the solution does not improve after the 8 iteration where the estimators in the
substructured case give results very comparable to a classical error estimation in
sequential framework.

Again, the discretization error ecr,, (uy, 0, ) does not change after the first iter-

ation and the residual v/rTz becomes negligible with respect to the discretization
error estimate much faster than the classical stopping criterion tells.

14



. Figure 4: Decomposition in 16 subdomains
Figure 3: Cracked structure model problem
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Figure 5: Error estimates

Figure 6 enables us to verify that the map of element contribution to the error
estimator is converged when the algebraic error is negligible with respect to the
discretization error (10 times smaller): the maps represent the difference between
the final element contributions (iteration 20) and the current element contributions
at iterations 1 (initialization) and 7 (when algebraic error is negligible).

5 Conclusion

This paper introduces a new guaranteed upper bound of the error in the framework
of non overlapping decomposition method. This upper bound is the sum of two
terms: one term is exactly the algebraic error (error due to the use of an iterative
solver) and the second term is mostly due to the discretization error.

From a practical point of view, the evaluation of the algebraic error is trivial.
We just compute the norm associated to the preconditioner of FETT or BDD. The
evaluation of the second term of the inequality relies on the capacity to build a
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Figure 6: Convergence of the element contribution to the estimator

statically admissible stress field from the displacement fields resulting from Neu-
mann problems per subdomains. The examples show that this quantity does not
evolve much after the first iteration and then represents the discretization error.

This separation offers the possibility to define a new stopping criterion for
the iterative solver based on the non-improvement of the global quality of the
approximation. If a better quality of the solution is required, the error estimator
provides an error card that can guide the remeshing operation.

References

[1] M. Arioli. A stopping criterion for the conjugate gradient algorithm in a finite
element method framework. Numerische Mathematik, 97(1):1-24, 2004.

[2] I. Babuska and W. C. Rheinboldt. Error estimates for adaptative finite el-
ement computation. SIAM, Journal of Numerical Analysis, 15(4):736-754,
1978.

[3] R. Becker, C. Johnson, and R. Rannacher. Adaptive error control for multigrid
finite element. Computing, 55(4):271-288, 1995.

[4] H. W. Choi and M. Paraschivoiu. Adaptive computations of a posteriori
finite element output bounds: a comparison of the "hybrid-flux" approach
and the "flux-free" approach. Computer Methods in Applied Mechanics and
Engineering, 193(36-38):4001-4033, 2004.

16



[5]

(6]

7]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

C. Farhat and F. X. Roux. Implicit parallel processing in structural mechanics.
Computational Mechanics Advances, 2(1):1-124, 1994. North-Holland.

L. Gallimard, P. Ladevéze, and J. P. Pelle. Error estimation and adaptativ-
ityin elastoplasticity. International Journal for Numerical Methods in Engi-
neering, 39(2):189-217, 1996.

L. Gallimard, P. Ladevéze, and J. P. Pelle. Error estimation and time-space
parameters optimization for fem non-linear computation. Computers & Struc-
tures, 64(1-4):145-156, 1997.

L. Gallimard and T. Sassi. A posteriori error analysis of a domain decom-
position algorithm for unilateral contact problem. Computers & Structures,
88(13-14):879-888, 2010.

Pierre Gosselet and Christian Rey. Non-overlapping domain decomposition
methods in structural mechanics. Archives of Computational Methods in En-
gineering, 13(4):515-572, 2006.

P. Jiranek, Z. Strakos, and M. Vohralik. A posteriori error estimates including
algebraic error and stopping criteria for iterative solvers. SIAM Journal on
Scientific Computing, 32(3):1567-1590, 2010.

Axel Klawonn and Olof Widlund. FETI and Neumann-Neumann iterative
substructuring methods: Connections and new results. Communications on
Pure and Applied Mathematics, 54(1):57-90, 2001.

P. Ladevéze and D. Leguillon. Error estimate procedure in the finite element
method and application. SIAM Journal of Numerical Analysis, 20(3):485-509,
1983.

P. Ladevéze and N. Moés. A new a posteriori error estimation for nonlin-
ear time-dependent finite element analysis. Computer Methods in Applied
Mechanics and Engineering, 157(1-2):45-68, 1998.

P. Ladeveze and J. P. Pelle. Mastering Calculations in Linear and Nonlinear
Mechanics. Springer, New York, 2004.

P. Ladeveze, J. P. Pelle, and P. Rougeot. FError estimation and mesh op-
timization for classical finite elements. Engineering Computations, 8(1):69,
1991.

Patrick Le Tallec. Domain decomposition methods in computational mechan-
ics. Comput. Mech. Adv., 1(2):121-220, 1994.

17



[17]

18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

F. Louf, J. P. Combe, and J. P. Pelle. Constitutive error estimator for the
control of contact problems involving friction. Computers and Structures,
81(18-19):1759-1772, 2003.

D. Meidner, R. Rannacher, and J. Vihharev. Goal-oriented error control
of the iterative solution of finite element equations. Journal of numerical
mathematics, 17(2):143-172, 20009.

M. Paraschivoiu and A. T. Patera. A hierarchical duality approach to bounds
for the outputs of partial differential equations. Computer Methods in Applied
Mechanics and Engineering, 158(3-4):389-407, 1998.

M. Paraschivoiu, J. Peraire, and A. T. Patera. A posteriori finite element
bounds for linear-functional outputs of elliptic partial differential equations.
Computer Methods in Applied Mechanics and Engineering, 150(1-4):289-312,
1997.

N. Parés, P. Diez, and A. Huerta. Subdomain-based flux-free a posteriori
error estimators. Computer Methods in Applied Mechanics and Engineering,
195(4-6):297-323, 2006.

N. Parés, H. Santos, and P. Diez. Guaranteed energy error bounds for the
poisson equation using a flux-free approach: Solving the local problems in
subdomains. International Journal for Numerical Methods in Engineering,
79(10):1203-1244, 2009.

A. Parret-Fréaud, C. Rey, P. Gosselet, and F. Feyel. Fast estimation of dis-
cretization error for fe problems solved by domain decomposition. Computer
Methods in Applied Mechanics and Engineering, 199(49-52):3315-3323, 2010.

F. Pled, L. Chamoin, and P. Ladevéze. On the techniques for construct-
ing admissible stress fields in model verification: Performances on engineer-
ing examples. International Journal for Numerical Methods in Engineering,
88(5):409-441, 2011.

Valentine Rey, Pierre Gosselet, and Christian Rey. Study of the strong pro-
longation equation for the construction of statically admissible stress fields:
implementation and optimization. Computer Methods in Applied Mechanics
and Engineering, 268:82-104, 2013.

Daniel J. Rixen and Charbel Farhat. A simple and efficient extension of a class
of substructure based preconditioners to heterogeneous structural mechan-
ics problems. International Journal for Numerical Methods in Engineering,

44(4):489-516, 1999.

18



[27] Martin Vohralik. A posteriori error estimates for lowest-order mixed finite ele-
ment discretizations of convection-diffusion-reaction equations. SIAM Journal
on Numerical Analysis, 45(4):1570-1599, January 2007.

[28] O. C. Zienkiewicz and J. Z. Zhu. A simple error estimator and adaptive pro-
cedure for practical engineerng analysis. International Journal for Numerical
Methods in Engineering, 24(2):337-357, 1987.

19



