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Addressing geometric non-linearities with cantilever MEMS: beyond the Duffing

model

E. Collin,∗ Yu. M. Bunkov, and H. Godfrin
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CNRS et Université Joseph Fourier,

BP 166, 38042 Grenoble Cedex 9, France

(Dated: December 16, 2013)

We report on low temperature measurements performed on micro-electro-mechanical systems
(MEMS) driven deeply into the non-linear regime. The materials are kept in their elastic domain,
while the observed non-linearity is purely of geometrical origin. Two techniques are used, harmonic
drive and free decay. For each case, we present an analytic theory fitting the data. The harmonic
drive is fit with a Lorentz-like lineshape obtained from an extended version of Landau and Lifshitz’s
non-linear theory. The evolution in the time domain is fit with an amplitude-dependent frequency

decaying function derived from the Lindstedt-Poincaré theory of non-linear differential equations.
The technique is perfectly generic and can be straightforwardly adapted to any mechanical device
made of ideally elastic constituents, and which can be reduced to a single degree of freedom, for an
experimental definition of its non-linear dynamics equation.

PACS numbers: 85.85.+j, 05.45.-a, 62.20.D-, 07.05.Dz

I. INTRODUCTION

Micro and nowadays nano-mechanical systems (MEMS
and NEMS) are of current interest due to their broad field
of scientific and technical applications. All devices (and
evidently not only mechanical ones) present a non-linear
behavior at large drives, and a large panel of scientists
from different communities is dealing today with non-
linear mechanics [1, 2].

From an engineer’s point of view, non-linearity is a
key design parameter. When used in the linear regime,
non-linearity limits the dynamic range of a device [3].
One can also exploit non-linearity with for instance fre-
quency mixing [4], synchronization [5], amplification us-
ing bifurcation points [6], suppression of amplifier noise
in oscillator circuits [7–9], and mass (homodyne) detec-
tion [10]. Moreover, the non-linear component proves to
be essential to complex, useful and efficient designs, with
for instance the diode in conventional electronics and the
Josephson junction in superconducting circuitry [11].

From a physicist’s point of view, a MEMS/NEMS with
a canonical non-linearity is a close realization of the
Duffing oscillator, a mechanical system with a spring
force containing a term Fnon−lin. ∝ x3 (x displace-
ment). It is of ubiquitous interest in physics since many
systems can be mapped on this problem [12, 13]. It
also provides a simple mathematical model which is in
many cases analytically solvable. Furthermore, the sim-
ple Duffing expression enables the theoretic and, with the
MEMS/NEMS close implementation, the model experi-
mental study of subtle dynamic properties like dynamical
switching [14–16] and memory effects [17].
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Due to the fundamental issue behind non-linear dy-
namics (the physics of chaos [1]) and the broad panel of
applications in micro/nano mechanics, which can even be
extended to the quantum-limited nano-mechanical device
[18], it is important to understand the nature of these
mechanical non-linearities [16]. The most commonly dis-
cussed cases are non-linear actuation with an electro-
static drive [19, 20], and non-linear constituents (with
i.e. an x2 term in the damping [1, 5, 9]). Clever designs
making use of these non-linearities enable parametric am-
plification [21, 22], and parametric drive [23]. In partic-
ular, non-linear dampings [24] permit the realization of
a mechanical Van der Pol oscillator [25].

Furthermore, even with perfectly elastic con-
stituents (Young modulus and damping independent of
strain/stress), mechanical devices do present a non-linear
behavior which is effectively captured by the Duffing
model. This non-linearity is of pure geometrical origin
[26, 27], and in its most general form it will contain other
terms in the dynamics equation in addition to the cubic
restoring force, with a straightforward second-order
force Fnon−lin. ∝ x2 [28, 29], and less intuitively inertia
non-linear terms [30–32]. To put it in crude words,
the Duffing equation is, even for these perfectly elastic
devices, only a convenient model describing correctly
the measurements. In practice a mechanical device is
certainly not a Duffing oscillator.

However in practice, most of the theoretical and exper-
imental work has been done around the Duffing problem
(e.g. [3, 4, 6–8, 10, 33]), with most of the experiments
done in the driven regime (e.g. [3, 29, 33–35]). The rea-
son behind this fact is certainly simplicity. Theoretically,
the full non-linear problem is extremely complex while a
simple Duffing modeling does capture the observed me-
chanical behavior. Experimentally, the driven regime is
easier to handle since it uses the natural amplification of
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FIG. 1: (Color online) SEM (Scanning Electron Microscope)
picture of the ’double-structure’ sample studied in the present
article. The larger goal-post oscillator is approximately 8.5
times wider than the smaller (width ≈ 15 µm), both having
dimensions l ≈ h ≈ 1.5 mm. The average silicon thickness of
the structures is about 6.5 µm, with 200 nm metal on top.

the system through its Q factor.

The most sophisticated analytical modelings derive
from basic continuummechanics a system of coupled non-
linear equations describing the generic dynamics of the
mechanical device [27]. This system is usually reduced to
a one dimensional problem by a Galérkin-type procedure
or a normal mode expansion of the linearized problem
[27, 31]. For beams, most of the recent work is based on
the formulation of Crespo da Silva and Glynn [30]. In the
case of thin and long beams and planar motion, extended
non-linear Euler-Bernouilli equations are available [26].

The classical procedure is to compute the response of
a system from Crespo da Silva-like equations, and since
even the reduced analytic writing is very complex the fi-
nal step is performed numerically [19, 20, 31, 36, 37]. In
these works, the aim is to predict the dynamic behavior
of a particular device from its mechanical characteris-
tics, the final product being a numerical curve plotted
on experimental points proving good agreement. Here,
we adopt a radically different approach inspired from low
temperature physics. Our aim is to predict the analyt-
ical shape of the most generic dynamics equation for an
ideally elastic non-linear mechanical device that has been
reduced to a single degree of freedom. This equation shall
contain a number of non-linear coefficients, each of which
having a well defined meaning. But we shall not com-
pute these coefficients, and leave them as characteristics
of the devices that have to be obtained by other means.
We present the exact analytical solutions of the full dy-
namics equation in two relevant experimental cases: har-
monic drive and free decay. We demonstrate on simple
cantilever MEMS devices that these expressions can be
used to fit experimental data and extract non-linear pa-
rameters. The strength of our new approach lies in its
completely generic nature, and purely analytic formula-
tion.

II. EXPERIMENTAL RESULTS

We present measurements on perfectly elastic
cantilever-based MEMS devices extending deeply in the
non-linear regime of their first resonant mode. Two
techniques are used: a frequency-sweep technique where
the device is continuously driven with a harmonic force
F (t) = F0 cos(ωt), and a time-decay method where the
oscillator is suddenly released with an initial displace-
ment/velocity (signal recorded under F (t) = 0). Note
that beyond the linear regime, the two measurements
are not the Fourier transform of each other anymore.

The sample studied in the present article is the ’double-
structure’ of Ref. [34], shown in Fig. 1. It consists of two
micro-mechanical goal-post silicon structures [35] (here-
after called ’big’ and ’small’) embedded one in the other.
Each structure is made of two cantilevers (’feet’ of length
h) linked by a ’paddle’ of length l. The measurements
are performed using the magnetomotive scheme. The
low temperature condition (4.2 K) is a practical means
to use moderately high magnetic fields, cryogenic vacuum
(< 10−6 mbar), and obtain low electrical noise. A static
magnetic field B is imposed along the sample while a cur-
rent I(t) is fed through the thin (non-superconducting)
metallic layer that covers it. A time-dependent Laplace
force of amplitude F (t) = I(t)lB acts on each struc-
ture driving it out of the plane. Their motion induces
in turn a voltage V (t) = lBv(t) proportional to the ve-
locity v(t) = ẋ(t) of the ’paddles’ (Lenz’s law). Note that
for our devices, the driving force F is ideally linear, as op-
posed to electrostatic actuation [19, 20, 31]. The detected
signal however is weakly non-linear at large bendings, but
this effect can be proven to be negligible [35].

The double-structure design enables the simultaneous
study of two very different oscillators, with very differ-
ent resonance frequencies. No relevant mechanical cou-
pling between the two could be detected, even deeply in
the non-linear regime, meaning that the resonance peaks
are perfectly well separated. However, the structures
are electrically coupled because of their parallel wiring.
The drive current splits in two according to the electric
resistance Rb,Rs of each structure, while the detected
voltage is reduced by the same proportion (Kirchhoff’s
rules). The ratio of these resistances measured experi-
mentally follows accurately the geometrical dimensions
of the structures. Moreover, the induced voltage that
we detect (proportional to B2) generates in turn a loop
current through the total resistance Rb +Rs. This effect
(which opposes the driving force) has to be taken into ac-
count for large magnetic fields. Careful calibration of the
setup enables the definition of absolute displacements x
of the ’paddle’ in µm, and applied forces F in pN, quoted
here in peak values. Experimental details can be found
in [34, 35].
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A. Generic description

In the simplest analytical approach, one can demon-
strate that each oscillator is almost equivalent to a mass-
loaded cantilever (Fig. 2) [35]. We keep the displace-

FIG. 2: (Color online) Equivalent loaded cantilever (one ’foot’
of the goal-post structure), with half the ’paddle’ mass as end
load (normal mode mass m/2, normal spring constant k/2
and dissipation constant Λ/2). The parametrization uses the
end displacement x(t) with v(t) = ẋ(t).

ments x in the linear regime of the constitutive materials
of the cantilevers (silicon and coating). For the present
work dealing with mm long structures, it corresponds to
about x ≤ 100 µm (peak values). This is easily verified
experimentally by measuring the maximal displacement
in the frequency domain as a function of the force, and
verifying that the damping remains independent of the
strain [34], Fig. 3. At the same time, no anomalous fre-
quency shifts (over the the geometrical term described
below, Fig. 4) could be detected.

However, as any other mechanical structure (let it be
e.g. a torsional rod, a doubly-clamped beam, or an
STM tip), the dynamics of each oscillator around its first
mechanical mode follows a non-linear equation, which
most generic expression for geometrical non-linearities,
expanded at 3rd order, is given in Section III, Eq. (6),
from absolutely basic considerations. In the simplified
version relevant to our experiments (see Appendix), it
writes:

m
(

1 +m1 x+m2 x
2
)

ẍ+m

(

1

2
m1 +m2 x

)

ẋ2 + 2Λ ẋ+ k
(

1 + k1 x+ k2 x
2
)

x = F (t), (1)

x being the displacement of the top part of the struc-
tures (the ’paddle’). 2Λ ẋ is the damping term arising
from the friction mechanisms present in the devices, with
m and k the normal mass and spring constant of the
mode under study. Since the materials are in their linear
regime, m, k and Λ are drive/displacement independent;
the only non-linear terms in the equation are the mi (in-
ertial) and ki (elastic) constants.

The coefficients mi and ki are specific to the exact
nature of the device under study (see Section III and
Appendix). These terms appear naturally for large can-
tilever distortions, as characteristics of the geometrical
non-linearity [26, 27, 32]. We confirmed this origin for our
experiments: the non-linear signatures are temperature-
independent [35], and for samples having the same aspect
ratios (while having different damping, resonance fre-
quency, and metallic coating) the non-linear coefficients
follow the same geometrical scalings (see discussion in
Section IID).

Our theoretical modeling considers the full 1D non-
linear expression of the dynamics (1), with an inertia
non-linearity and a non-linear restoring force, all up to
order 3 in the displacement. We give in the following
theoretical tools enabling the fit of the data and the de-
termination of non-linear parameters for two experimen-
tal cases: harmonic drive and free decay (Section III).
Free decay and harmonic drive measurements have been
used by Gottlieb et al. [37] in order to carefully charac-
terize the drag force of air on a cantilever STM. A full
non-linear model based on Crespo da Silva [30] was used
and solved numerically, including in addition non-linear
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FIG. 3: (Color online) Maximal displacements versus force
measured with the harmonic drive method, at 4.2 K in vac-
uum. Circles (blue) ’big’ structure, and squares (red) ’small’
structure, for various currents and fields. The data correspond
to the height of the resonance peak obtained for upwards fre-
quency sweeps (see text). The straight lines prove that the
relation x0 = F0/k Q holds (Section III), with a constant
quality factor Q (i.e. damping) [34, 35].

damping.
To our knowledge, our work is the first one presenting
an analytic full solution to the generic Eq. (7), providing
tools to extract experimentally intrinsic information on
geometrical non-linearities.
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FIG. 4: (Color online) Resonance frequencies versus displace-
ment measured for the two oscillators using the harmonic
drive technique, in vacuum at 4.2 K. Circles (blue) stand for
the ’big’ structure, and the squares (red) for the ’small’ one.
The data are taken while sweeping the frequency upwards.
The black lines are quadratic fits (Section III) yielding the
non-linear pulling parameters β [35]. Note the different axes.

B. Case 1 - Harmonic drive F (t) = F0 cos(ωt)

We extend Landau & Lifshitz’s [28] non-linear ap-
proach, revisiting the results of [35]. We postulate for the
solution a superposition of oscillating terms cos(nωt +
φn), and seek only the first one n = 1. Replacing the
above expression in Eq. (1), we obtain for the voltage
response a modified Lorentzian lineshape:

X = lBω
F0

k

∆ω ω/(ω0)
2

[(ωr/ω0)2 − (ω/ω0)2]
2
+ [∆ω ω/(ω0)2]

2
,

Y = lBω
F0

k

(ωr/ω0)
2 − (ω/ω0)

2

[(ωr/ω0)2 − (ω/ω0)2]
2 + [∆ω ω/(ω0)2]

2
.

X and Y correspond to the amplitude of the signal
in-phase, and out-of-phase with the driving force re-
spectively. The (angular) mode resonance frequency is

ω0 =
√

k/m, and ∆ω = 2Λ/m the full width at half
height of the linear resonance line X (obtained for small
displacements).
The resonance position ωr introduced in the above ex-

pressions is now a function of the amplitude of the dis-
placement x0. We write ωr = ω0(1 + β x2

0) with β the
frequency pulling term :

β = +
3

8
k2 −

1

4
m2 +

(

1

12
k1 −

1

8
m1

)(

k1 −
3

2
m1

)

−

(

1

2
k1 −

1

4
m1

)(

k1 −
1

2
m1

)

(2)

written here for x0 given in peak values. This expression
is obtained in the underdamped regime (Q = ω0/∆ω
>> 1) from the β1 formula of Section III, Eq. (9). In this
high-Q limit, when the amplitude of the displacement
x0 is small, the above X and Y peaked functions
reduce to the simple Lorentz line. But when x0 in-
creases beyond a critical value xc, the functions become
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FIG. 5: (Color online) Signals recorded at 4.2 K in vacuum
on the first mechanical mode of the ’big’ structure. The mag-
netic field used is 101 mT. X denotes a signal in-phase, and
Y a signal out-of-phase with the driving force. Left: har-
monic drive method. Right: free decay method. The har-
monic driving force is given in the graph with the deflec-
tion amplitude at maximum (in peak values). The star rep-
resents the point on the resonance where the oscillator was
released for the corresponding free decay measurement. Full
(green) lines are fits explained in the text, giving m = 4.9 µg,
f0 = 1907.35 Hz, ∆f = 40 mHz, τ = 8.0 s, β = +2.1 105 m−2

and λ = +2.3 105 m−2. Error bars are typically ±5 %, apart
for the resonance frequency which is known within ±10 mHz.

bi-valued [28]: two different branches are measured
sweeping the frequency up, or down. The Lorentz line
is distorted, pulled up or down depending on the sign
of β (Fig. 4) [28]; besides, the height of the resonance
peak X measured while sweeping the frequency in
the pulling direction (i.e. upwards sweep for β > 0)
remains proportional to F and inversely proportional
to the damping term ∆ω [34, 35] (Fig. 3 and Section III).

In practice, the measurement technique is the well-
known to low temperature physicists magnetomotive ”vi-
brating wire” scheme [38]. A current I0 cos(ωt) is fed
through the structure. We monitor with a lock-in ampli-
fier the voltage X = lBv0 cosφ in-phase with the excita-
tion F , and the out-of-phase component Y = lBv0 sinφ
(with v0 the velocity amplitude of the ’paddle’, and φ
the phase). The displacement amplitude x0 is obtained
through x0 = v0/ω0 to a very good accuracy. The mea-
surement is performed by sweeping the frequency ω up-
wards as slowly as possible, while recording X,Y . Two
typical resonance lines for the ’big’ and ’small’ oscilla-
tors are shown in Fig. 5 and 6 respectively. The modified
Lorentzian lineshape, solved and fit on the data (Section
III), yields the mass m, spring constant k, linewidth ∆ω
and the non-linear coefficient β. This parameter fit on
the line is the same as the one extracted from Fig. 4.
Results are summarized in the captions of Figs. 5,6. De-
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tails on the theoretical tools are given in Section III, and
[35]. Note the quality of the fits (backbone curves): the
root-mean-square average error between data and fit (χ2)
is typically smaller than a couple of % of the maximal
height.

C. Case 2 - Free decay F (t) = 0

We apply the Lindstedt-Poincaré method of solving
non-linear differential equations [43]. The novelty here is
that we give the solution to the full equation Eq. (1), in
the presence of a damping term. We write for the solu-
tion x(t) = s0(t) + δsλi

(t), with δsλi
(t) a perturbative

function depending (at first order linearly) on non-linear
coefficients λi which are combinations of the mi, ki. The
method is based on the idea that the function s0(t) should
involve an oscillation frequency ωR which is also a series
of the λi, written in such a way that the expansion of
the function should cancel all secular terms which would
remain in a standard perturbative theory [43]. We thus
introduce ωR = ω0 + δωλi

(t), with δωλi
(t) the unknown

to be defined. By construction, the solution s0 is:

s0(t) = X0 exp

(

−
ωR

ω0

t

τ

)

cos





√

1−

(

1

ω0τ

)2

ωR t+ ϕ





with τ = 2/∆ω the ring-down time (X0 and ϕ are initial
conditions). Canceling the secular terms brings finally
ωR = ω0 [1 + λX2

0 E(t)] with only one pulling term λ
(see Section III and Eq. (10), the λ1 definition):

λ = +
3

8

(

k2 +m2
1 − k1m1 −m2

)

+
1

8

(

m2 −
1

2
m2

1

)

−
5

12
(k1 −m1)

2 −
1

24
m2

1 −
5

24
m1(k1 −m1), (3)

with the amplitude X0 given in peak values, and E(t) =
[1− exp (−t/(τ/2))] / [t/(τ/2)]. The expression reduces
to the linear result when λ = 0 as it should. The func-
tion δsλi

(t) brings oscillations at 2ωR, 3ωR plus a ’con-
stant’, all decaying with exponential prefactors. To our
knowledge, the mathematical treatment used to fit the
data is original. Since the derivation of the formulas
is non-trivial, we give the calculation details in Section
III. The results are robust in the underdamped regime
Q = ω0τ/2 >> 1, and can be applied to any weakly non-
linear oscillator described by Eq. (1).
In practice, we use a measurement scheme adapted

from Pulsed-NMR [39]. The oscillators are put into
motion by stopping a frequency-sweep close to the
maximum of the resonance peak (stars in Figs. 5 and 6).
The drive frequency is then suddenly switched to a lower
(’parking’) value ω0 − δω where the mode is not excited.
The ring-down signal is then recorded with a lock-in
amplifier through the in-phase beating X of the devices’
oscillation with the drive (ϕ = 0). The high filtering
of the lock-in restitutes the s0(t) component alone, and
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FIG. 6: (Color online) Same as Fig. 5 but for the ’small’ struc-
ture. The magnetic field is 351 mT. Fits (full/green lines) give
m = 0.36 µg, f0 = 3248.43 Hz, ∆f = 100 mHz, τ = 3.2 s,
β = +0.37 105 m−2 and λ = +0.34 105 m−2.

provides an extremely large signal-to-noise ratio that
cannot be attained in a direct ring-down acquisition
[37]. With V (t) = lBṡ0(t), the expressions above are
used to fit the data, adjusting the parameters ω0, τ and
λ. Results are summarized in Figs. 5,6 captions. The
fits are very good (backbone curves), with an average
root-mean-square error smaller than typically 4 % of the
maximal amplitude.

D. Discussion

In the preceeding, we demonstrated that the theoret-
ical tools of Section III can be used to fit experimen-
tal data. The dynamical parameters can be obtained by
both a frequency sweep or a free decay technique (cap-
tions of Figs. 5 and 6), leading to the mode’s mass m
and spring constant k (through the height of the signal
and the resonance frequency ω0), dissipation constant Λ
(through the linewidth ∆ω or decay time τ), and the
non-linear pulling term (through λ or β).
We have studied many structures having almost the

same aspect ratios, but with different metallic coatings
and resonance frequencies: all ’small-like’ samples dis-
play similar geometrical non-linear coefficients scaling as
β h2 ≈ +0.065 ± 10 % (for peak values) [34, 35]. For the
’big’ structure, the non-linear coefficients β, λ are about
5.5 times larger.

III. THEORETICAL TOOLS

We consider a mechanical structure that can be de-
scribed by standard continuum dynamics. We assume



6

that the device is made of ideally linear materials (i.e.
constant damping and elastic moduli with respect to
the induced stress/strain). For large distortions, the
structure is nonetheless non-linear for geometrical reasons
[26, 27, 29–32, 35, 36]. In order to keep the discussion
as simple as possible, we restrict ourselves to the case
of rectangular thin and long beams, neglecting the Pois-
son ratio. The problem reduces then to a single degree
of freedom, and can be described by the tools of beam
dynamics [40]. On the other hand, we discuss both the
cantilever (inextensional) and the doubly clamped bridge
(extensional), while the work of [30] is restricted to inex-
tensional beams only. Note that the approach developed
here can be straightforwardly adapted to other types of
(simple) structures.
The idea behind our modeling is to consider the de-

vice’s dynamically distorted shape, for mode i, as a given.
A weaker form of the argument, based on the Rayleigh
method, was presented in [35]. We write it fi, and since
we will be interested only in the fundamental mode i = 0,
we drop immediately the index i. Since the materials are
perfectly elastic, we can write:

f (z, x(t)) , (4)

the overall amplitude of the distortion being
parametrized by x(t) (and z is the coordinate along the
beam), a displacement which is typically the maximal
deflection of the structure (i.e. the end tip of a cantilever,
or the middle part of a doubly clamped beam in their
first resonant mode).
We shall not be concerned with the computation of

f . Suffice it to say that it is the solution of a contin-
uum dynamics modeling based primarily on the extended
Hamilton principle [41], which can be of the type of [30],
or of an extension of Euler-Bernoulli’s beam equations
[26, 27]. We present below the energetic writing result-
ing from this non-linear formulation.
The geometrical non-linearity arises straightforwardly

from the full expression of the distortion’s radius of cur-
vature r−1 = ∂2f/∂z2/[1 + (∂f/∂z)2]3/2, and from the
elongation dl/dz of the centroid:

dl(z, x(t))

dz
=

√

1 +

(

∂ f (z, x(t))

∂z

)2

. (5)

The function f is regular, and for a given parametrization
x(t) it is unique. If the overall displacement x(t) is not
too large, we can take a Taylor series expansion in x(t)
of Eq. (4) , here at third order:

f (z, x(t)) = f(z, 0) +
∂f(z, x = 0)

∂x
x(t)

+
1

2

∂2f(z, x = 0)

∂x2
x(t)2 +

1

6

∂3f(z, x = 0)

∂x3
x(t)3.

f(z, 0) is the static distortion (we limit the discussion
to f(z, 0) = 0, the straight beam) and ∂f(z, x = 0)/∂x
is the mode shape in the linear regime. The expressions

below and Eq. (5) will be developed in series on the same
footing.
The length hl of the dynamically distorted beam is

defined by:

hl =

∫ hz

0

dl(z, x(t))

dz
dz.

For a cantilever structure, the integration length hz has
to be defined by the additional condition that the total
length hl of the beam remains constant:

hz = h (1− h2 x(t)
2 − h3 x(t)

3),

hl = h,

while for a doubly clamped beam, the integration length
is fixed and the centroid elongates:

hz = h,

hl = h (1 + h2 x(t)
2 + h3 x(t)

3),

the development involving the same coefficients hi in the
two cases (with obviously h2 > 0).
The integrated kinetic energy Ec(t) and potential en-

ergy Ep(t) are:

Ec(t) =
1

2

∫ hz

0

(

∂ f (z, x(t))

∂t

)2

(ρwe)
dl(z, x(t))

dz
dz,

Ep(t) =
1

2

∫ hz

0

(

∂2 f (z, x(t))

∂z2

)2

(EzIz)
dl(z, x(t))

dz
dz,

with Ez and ρ the Young modulus and density of the
beam respectively. w and e are its width and thickness
respectively. Iz = 1/12we3 is the corresponding second
moment of area.
For our device, the beam corresponds to one foot of

the structure. We have to take into account the kinetic
energy due to the mass load ml (the ’paddle’), located at
the end of the beam:

Ec, load(t) =
1

2
mlẋ(t)

2.

The model can be easily adapted to other mass load con-
figurations.
A constant damping term per unit length dΛ/dz (ma-

terials linear regime) enables to write the power losses
due to non-conservative forces:

Pn = −2

∫ hz

0

dΛ

dz

(

∂ f (z, x(t))

∂t

)2
dl(z, x(t))

dz
dz.

In the most general formulation, a reactive term should
also be considered. Reactive and dissipative components
are linked through Kramers-Kronig relations (valid in the
materials’ linear regime), since they are related to the
real and imaginary parts of the acoustic susceptibility of
the vibrating structure [42]. With the same notations as
above, we write:

P ′

n = −2

∫ hz

0

dΛ′

dz

∂ f (z, x(t))

∂t

∂2 f (z, x(t))

∂t2
dl(z, x(t))

dz
dz.
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Since the end mass load is perfectly rigid, no dissipation
is associated to it. The model can be adapted easily to
take into account a friction occurring at the paddle.
Finally, the power of the driving force F (t), applied at

the point of maximal deflection x(t), is:

PF = ẋ(t)F (t).

The modeling can be adapted, of course, if the force
is applied to another point of the structure, or is
distributed. Note that for our devices, the driving force
itself is linear, as opposed to electrostatic actuation
[19, 20, 31].

The energy balance, or theorem of mechanical power,
states (the structure is symmetric, we thus take twice one
foot’s terms):

d [2Ec(t) + 2Ep(t) + Ec, load(t)]

dt
= 2Pn + 2P ′

n + PF ,

which enables to write the dynamics equation for the
mechanical mode under study, up to order 3 (after sim-
plification by ẋ(t)):

[

mf

(

1 +m1 x+m2 x
2
)

+ml

]

ẍ +

2Λ′ ẍ
(

1 + l′1 x+ l′2 x
2
)

+ (Γ0 + Γ1 x) ẋ
2 +

2Λ ẋ
(

1 + l1 x+ l2 x
2
)

+

k
(

1 + k1 x+ k2 x
2
)

x

= F (t), (6)

with mf the normal mass associated to the two feet. This
polynomial writing, within our assumptions, is the most
generic form for the dynamics equation. The develop-
ment is unique, and the definition of all the coefficients as
a function of the mode shape f is given in the Appendix.
mf and ml can be grouped together in m = mf + ml.
Since the Λ′ and m terms play the same role in the above
equation, they can also be grouped together. Eq. (6) can
thus be rewritten, without loss of generality:

m̃
(

1 + m̃1 x+ m̃2 x
2
)

ẍ +

+m̃

(

Γ0

m̃
+

Γ1

m̃
x

)

ẋ2 +

2Λ ẋ
(

1 + l1 x+ l2 x
2
)

+

k
(

1 + k1 x+ k2 x
2
)

x

= F (t), (7)

with m̃ = m+2Λ′, m̃1 = (mfm1 +2Λ′ l′1)/m̃, and m̃2 =
(mfm2 + 2Λ′ l′2)/m̃. In the following, we will drop the
tilde in order to keep the writing lighter. Remember that
in the Appendix the calculated mi refer to one bare foot
(a cantilever or a doubly-clamped beam), without load.

Eq. (7) reveals a non-linear spring force, a non-linear
inertia, and a peculiar non-linear damping/inertia term
with a ẋ(t)2 dependence. Note that a geometrical non-
linearity has intrinsically a similar impact on both the

inertia and the restoring force of a device. The damping
appears also to be intrinsically non-linear. m, k and Λ are
the normal mass, normal spring constant and dissipation
constant relative to the mode’s linear regime.
mi (inertial), ki (elastic), li and Γi (damping) are the

non-linear constants arising from the exact shape of the
(dynamical) distortion f of the structure under study.
There are constraints on these coefficients, and some can
be proven to be irrelevant to our experiments, leading to
the simplified Eq. (1), Section II (see Appendix). How-
ever for the sake of completeness, we give below the full
mathematical solutions to Eq. (7) in the two experimen-
tal conditions of interest to us: harmonic-drive (with an
extension of Landau & Lifshitz’s method) and free-decay
(with an application of Lindstedt & Poincaré’s method).
Note that any additional non-linear effect preserving the
analytic shape of Eq. (7), like an air drag force ∝ ẋ2, can
be taken into account by our fitting solutions.

A. Landau-Lifshitz method

This theoretical technique gives the exact solution of
Eq. (7) in the case F (t) = F0 cos(ωt). The origi-
nal method of Landau & Lifshitz [28] considers only
k1, k2 6= 0, with a steady state attained for F0 = 0 and
no damping (Λ = 0). See also [27] for a good discussion
of the method. We extend here the theory from [35] us-
ing notations of the present article. Following Landau &
Lifshitz, we postulate for the solution:

x(t) =
+∞
∑

n=0

acn(ω) cos(nωt) +
+∞
∑

n=1

asn(ω) sin(nωt)

and seek only the static term n = 0, plus the first
harmonic n = 1. In [35], higher orders where simply
taken to be zero; here, we also retain ac2, a

s
2. We define

x0 =
√

(ac1)
2 + (as1)

2 the amplitude of the first harmonic
displacement.
The solution is a simple modified Lorentzian:

ac0 = β0 x
2
0,

ac1(ω) =
F0

k

(ωr/ω0)
2 − (ω/ω0)

2

[(ωr/ω0)2 − (ω/ω0)2]
2
+ [∆ω ω/(ω0)2]

2
,

as1(ω) =
F0

k

∆ω ω/(ω0)
2

[(ωr/ω0)2 − (ω/ω0)2]
2
+ [∆ω ω/(ω0)2]

2
.

In these expressions, the resonance position ωr and the
resonance linewidth term ∆ω are now functions of x0:

ωr =
√

ω2
0 + 2β1ω0 x2

0 ≈ ω0 + β1 x
2
0,

∆ω = ∆ω0 + β2 x
2
0,

with the usual definitions ω0 =
√

k/m, and ∆ω0 = 2Λ/m
(expressed in Rad/s). The maximal displacement ampli-
tude is obtained for:

ω2
res = ω2

0

[

1− 1/(2Q2)
]

+ 2ω0 [β1 − β2/(2Q)]x2
0 (8)
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with Q = ω0/∆ω. The calculation brings:

β0 = −
1

2

[

k1 +

(

ω

ω0

)2(

Γ0

m
−m1

)

]

,

β1 = +
ω0

2

[

3

4
k2 −

(

ω

ω0

)2(

3

4
m2 −

1

4

Γ1

m

)

+

(

1

2
m1

(

ω

ω0

)2

− k1

)(

k1 +

(

ω

ω0

)2(

Γ0

m
−m1

)

)

+
(4ω2 − ω2

0)ω
2
0

(4ωΛ/m)2 + (4ω2 − ω2
0)

2
×

(

1

2

(

k1 −
1

2

(

ω

ω0

)2(

5m1 − 4
Γ0

m

)

)(

k1 −

(

ω

ω0

)2(

Γ0

m
+m1

)

)

−

(

ωΛ/m

ω2
0

)2

l21

)

+
(4ωΛ/m)2

(4ωΛ/m)2 + (4ω2 − ω2
0)

2

3 l1
8

×

(

−k1 +

(

ω

ω0

)2(

2m1 −
Γ0

m

)

)]

, (9)

β2 = +
Λ

m

[

1

2
l2 − l1

(

k1 +

(

ω

ω0

)2(

Γ0

m
−m1

)

)

+
(4ω2 − ω2

0)ω
2
0

(4ωΛ/m)2 + (4ω2 − ω2
0)

2
l1×

(

1

2

(

k1 −

(

ω

ω0

)2(

Γ0

m
+m1

)

)

+ k1 −
1

2

(

ω

ω0

)2(

5m1 − 4
Γ0

m

)

)

+
4ω4

0

(4ωΛ/m)2 + (4ω2 − ω2
0)

2
×

(

1

2

(

k1 −
1

2

(

ω

ω0

)2(

5m1 − 4
Γ0

m

)

)(

k1 −

(

ω

ω0

)2(

Γ0

m
+m1

)

)

−

(

ωΛ/m

ω2
0

)2

l21

)]

.

The above is valid for any Q. Finding ac1, a
s
1 from the

above expressions reduces to find the roots of a simple
polynom, with y = x2

0:

−

(

F0

k

)2

ω4
0 +

(

∆ω2
0ω

2 + (ω2 − ω2
0)

2
)

y

+
(

2β2 ∆ω0ω
2 − 4β1 ω0(ω

2 − ω2
0)
)

y2

+
(

β2
2 ω

2 + 4β2
1 ω

2
0

)

y3 = 0.

There are three roots for y, which can be found analyti-
cally (see Supplemental Material). One then replaces x2

0

in the expressions of ac1, a
s
1. Below a critical oscillation

amplitude xc, only one root is physical (real positive).
Above xc, three branches coexist: two physical solutions
(plus a metastable branch), corresponding to upwards
and downwards frequency sweeps [28].
In Section II, we work in the high Q limit (mean-

ing in particular ω ≈ ω0) with also β2 = 0, and de-
fine β = β1/ω0. The expressions above are given for

x0 defined as a peak amplitude. The frequency is pulled
quadratically with the amplitude x0, Fig. 4, Eq. (8),
with ωres ≈ ωr. With β2 = 0, when sweeping the res-
onance in the direction of the non-linear coefficient β1

(i.e. upwards for positive), the height of the detected
peak is still proportional to the applied force, and in-
versely proportional to the damping term, through the
simple relation x0 = F0/kQ, Fig. 3 [34, 35]. We have

xc =
2

3
31/4

√

ω0/(Q |β1|) [28].

B. Lindstedt-Poincaré method

Take Equation (7) with F (t) = 0 and divide it by the
non-linear ’mass’ m

(

1 +m1 x+m2 x
2
)

. The new equa-
tion developed to order 3 in x contains the non-linear
parameters:

λa = (k1 −m1) ,

λb =
(

k2 − k1m1 +m2
1 −m2

)

,

λc = (l1 −m1) ,

λd =
(

l2 − l1m1 +m2
1 −m2

)

,

λe =
Γ0

m
,

λf =

(

Γ1

m
−

Γ0

m
m1

)

.

Note that λa, λc, λe are homogeneous to m−1, while
λb, λd, λf to m−2. We apply the Lindstedt-Poincaré
method of solving non-linear differential equations [27,
43]. Let us write the sought solution in the form of a
series:

x(t) = s0(t) +

λasa,1(t) + λbsb,1(t) + λcsc,1(t) +

λdsd,1(t) + λese,1(t) + λfsf,1(t) +

λ2
asa,2(t) + λ2

csc,2(t) + λ2
ese,2(t) +

λaλcsa,c(t) + λaλesa,e(t) + λcλesc,e(t) + ...,

expanded here at second order. The Lindstedt-Poincaré
method is based on the idea that the function s0(t) should
involve an oscillation frequency ωR which is also a series
of the λi, written in such a way that the expansion of
the function should cancel all secular terms which would
remain in a standard perturbative theory [43] (see below).
We thus introduce:

ωR = ω0 +

λa ωa + λb ωb + λc ωc + λd ωd + λe ωe + λf ωf +

λ2
a ωa,2 + λ2

c ωc,2 + λ2
e ωe,2 +

λaλc ωa,c + λaλe ωa,e + λcλe ωc,e + ...

written here at the lowest compatible order, with ωa to
ωc,e the unknowns to be defined. By construction, the



9

solution s0 is:

s0(t) = X0 exp

(

−
ωR

ω0

t

τ

)

cos





√

1−

(

1

ω0τ

)2

ωR t+ ϕ





with τ = 2/∆ω0 the ring-down time (ω0 =
√

k/m,
∆ω0 = 2Λ/m, X0 and ϕ are initial conditions). In the
canonical Lindstedt-Poincaré problem, the damping is
zero (Λ = 0) and only k2 (thus here λb) is taken into
account. In this case, the perturbative theory brings:

s̈b(t) + ω2
0 sb(t) = −

3

4
X3

0ω
2
0 cos (ω0t+ ϕ) ,

which particular solution is sb(t) = −3/8X3
0 (ω0t)×

sin (ω0t+ ϕ), a function with divergent amplitude at
large t called the secular term, which can be canceled
by the appropriate choice ωb = +3/8X2

0 ω0.

With a non-zero damping (and all λi taken into ac-
count), the ’pathologic’ equations appearing in the reso-
lution rewrite, with the change of argument t → ωRt:

d2 si(ωRt)

d(ωRt)2
+

∆ω0

ω0

d si(ωRt)

d(ωRt)
+ si(ωRt) =

Ai exp

(

−3
ωRt

ω0τ

)

cos

(
√

1− (ω0τ)
−2ωRt+ φi

)

,

with Ai and φi defined through X0 and ϕ (and i =
b; d; f ; a, 2; c, 2; e, 2; a, c; a, e; c, e). The particular solution
is again analytic:

si(ωRt) =

+
Ai

4
exp

(

−3
ωRt

ω0τ

) [

cos

(
√

1− (ω0τ)
−2

ωRt+ φi

)

− (ω0τ)

√

1− (ω0τ)
−2

sin

(
√

1− (ω0τ)
−2

ωRt+ φi

)]

+
Ai

4
exp

(

−
ωRt

ω0τ

)

(ω0τ) sin

(
√

1− (ω0τ)
−2

ωRt+ φi

)

but this time, it is not pathologic. However in the high Q
limit (Q = ω0τ/2, thus (ω0τ)

−1 → 0), the above expres-
sion produces the secular solution. Note that the problem
is perfectly regular in the vicinity of Λ → 0, so the idea
behind our calculation is that Lindstedt & Poincaré’s ap-
proach is still valid: these functions should be canceled
by the proper choice of ωi in the final solution.

The first order terms are not pathologic and simply
bring ωa = ωc = ωe = 0. As opposed to the standard
method, the higher order ωi will turn out to be time-
dependent functions. The equations they are involved in

write:

ωb(t) + t ω̇b(t)

ω0

+









tan

(

√

1− (ω0τ)
−2

ωR t+ ϕ

)

2









2ω̇b(t) + t ω̈b(t)

ω2
0

=

+
3

8
(X0)

2
exp

(

−2
t

τ

)









1 +

tan

(

√

1− (ω0τ)
−2ωR t+ ϕ

)

ω0τ









,

ωd(t) + t ω̇d(t)

ω0

+









tan

(

√

1− (ω0τ)
−2

ωR t+ ϕ

)

2









2ω̇d(t) + t ω̈d(t)

ω2
0

=

−
1

4
(X0)

2 exp

(

−2
t

τ

)









tan

(

√

1− (ω0τ)
−2

ωR t+ ϕ

)

ω0τ









,

ωf (t) + t ω̇f (t)

ω0

+









tan

(

√

1− (ω0τ)
−2ωR t+ ϕ

)

2









2ω̇f(t) + t ω̈f (t)

ω2
0

=

+
1

8
(X0)

2
exp

(

−2
t

τ

)









1 +

3 tan

(

√

1− (ω0τ)
−2

ωR t+ ϕ

)

ω0τ









,

and:

ωa,2(t) + t ˙ωa,2(t)

ω0

+









tan

(

√

1− (ω0τ)
−2

ωR t+ ϕ

)

2









2 ˙ωa,2(t) + t ¨ωa,2(t)

ω2
0

=

−
5

12
(X0)

2 exp

(

−2
t

τ

)









1 +

11 tan

(

√

1− (ω0τ)
−2

ωR t+ ϕ

)

15ω0τ









,

ωc,2(t) + t ˙ωc,2(t)

ω0

+









tan

(

√

1− (ω0τ)
−2ωR t+ ϕ

)

2









2 ˙ωc,2(t) + t ¨ωc,2(t)

ω2
0

=
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−
1

6

(X0)
2

(ω0τ)
2
exp

(

−2
t

τ

)









1 +

13 tan

(

√

1− (ω0τ)
−2ωR t+ ϕ

)

3ω0τ









,

ωe,2(t) + t ˙ωe,2(t)

ω0

+









tan

(

√

1− (ω0τ)
−2

ωR t+ ϕ

)

2









2 ˙ωe,2(t) + t ¨ωe,2(t)

ω2
0

=

−
1

6
(X0)

2 exp

(

−2
t

τ

)









1 +

19 tan

(

√

1− (ω0τ)
−2

ωR t+ ϕ

)

3ω0τ









,

and finally:

ωa,c(t) + t ˙ωa,c(t)

ω0

+









tan

(

√

1− (ω0τ)
−2

ωR t+ ϕ

)

2









2 ˙ωa,c(t) + t ¨ωa,c(t)

ω2
0

=

+
1

4
(X0)

2
exp

(

−2
t

τ

)









tan

(

√

1− (ω0τ)
−2ωR t+ ϕ

)

ω0τ









,

ωa,e(t) + t ˙ωa,e(t)

ω0

+









tan

(

√

1− (ω0τ)
−2

ωR t+ ϕ

)

2









2 ˙ωa,e(t) + t ¨ωa,e(t)

ω2
0

=

−
5

12
(X0)

2 exp

(

−2
t

τ

)









1 +

41 tan

(

√

1− (ω0τ)
−2

ωR t+ ϕ

)

15ω0τ









,

ωc,e(t) + t ˙ωc,e(t)

ω0

+









tan

(

√

1− (ω0τ)
−2ωR t+ ϕ

)

2









2 ˙ωc,e(t) + t ¨ωc,e(t)

ω2
0

=

+
1

4
(X0)

2
exp

(

−2
t

τ

)









tan

(

√

1− (ω0τ)
−2

ωR t+ ϕ

)

ω0τ









.

The terms in brackets involving the tangent function have
been developed at first order in 1/(ω0τ). The second
term (2ω̇i(t) + t ω̈i(t))/(ω

2
0) in the left hand side of these

equations is 1/(ω0τ) smaller than the first one. Solving
at first order in 1/(ω0τ) (the high Q limit) is straightfor-

ward:

ωb(t) = +
3

8
ω0 (X0)

2 E(t),

ωd(t) = 0,

ωf(t) = +
1

8
ω0 (X0)

2 E(t),

ωa,2(t) = −
5

12
ω0 (X0)

2 E(t),

ωc,2(t) = 0,

ωe,2(t) = −
1

6
ω0 (X0)

2 E(t),

ωa,c(t) = 0,

ωa,e(t) = −
5

12
ω0 (X0)

2 E(t),

ωc,e(t) = 0,

with E(t) = [1− exp (−t/(τ/2))] / [t/(τ/2)]. Regrouping
all terms, we obtain:

ωR = ω0 + λ1 X
2
0 E(t).

The total perturbative solution brings oscillating terms
at 2ωR and 3ωR, plus a ’constant’, all decaying with ex-
ponential prefactors. Writing only the latter, we have:

x(t) = s0(t) + λ0 X
2
0 exp

(

−2
t

τ

)

.

The global non-linear coefficients are:

λ0 = −
1

2

[

(k1 −m1) +
Γ0

m

]

,

λ1 = ω0

[

3

8

(

k2 − k1m1 +m2
1 −m2

)

+
1

8

(

Γ1

m
−

Γ0

m
m1

)

−
5

12
(k1 −m1)

2
−

1

6

(

Γ0

m

)2

−
5

12
(k1 −m1)

Γ0

m

]

. (10)

In Section II, we define λ = λ1/ω0. The expressions
above are given for X0 defined as a peak amplitude.
Note that the whole calculation has been done assum-

ing the high Q limit. Comparing the two resolutions
pushed at equivalent order (harmonic drive and free de-
cay), we realize that β0 = λ0, and β1 = λ1 in this limit.
While the measured damping is also non-linear with β2

in the harmonic solution, the free-decay function (in the
high Q limit) presents a constant relaxation time τ .

IV. CONCLUSIONS

In conclusion, we presented two types of measure-
ments of the geometrical non-linear behavior of cantilever
MEMS, a frequency-sweep and a free-decay technique.
Two theoretical expressions are presented, based on the
Landau-Lifshitz and Lindstedt-Poincaré methods. Fits
enable to extract the oscillators’ characteristics, in the
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whole dynamic range from a linear to a very non-linear
regime. We show that using these expressions non-linear
coefficients can be obtained experimentally. The novelty
of the approach lies in its generic and purely analytic
nature. The experimental and theoretical methods pre-
sented enable a characterization of MEMS, NEMS, or any
other weakly geometrically non-linear mechanical oscilla-
tor described by a single degree of freedom beyond the
simple Duffing model. The detailed understanding of the
geometrical non-linear behavior is also a basis for fur-
ther studies with anelastic materials, and more refined
properties of non-linear dynamics.
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Appendix A: Defining the non-linear coefficients
from the mode shape

In Section III we give the generic non-linear dynamics
equation of a geometrically non-linear 1D oscillator, Eq.
(6). The expansion is based on the mode shape f , which
is a well-defined and regular given function. In the
present Appendix, we give all the non-linear coefficients
that have been introduced for a cantilever structure or
a doubly-clamped beam. If the function f is obtained
from a specific theory, one can then explicitly calculate
the non-linear coefficients.

The linear parameters introduced in Section III are
defined as:

m = mf +ml,

mf = ρwe (2m0),

k = EzIz (2k0),

Λ =
dΛ

dz
(2m0),

Λ′ =
dΛ′

dz
(2m0).

The non-linear parameters introduced for the beam

length are:

h2 = +
1

2

∫ h

0

(

∂2f(z, x = 0)

∂z∂x

)2

dz/h,

h3 = +
1

2

∫ h

0

∂2f(z, x = 0)

∂z∂x

∂3f(z, x = 0)

∂z∂x2
dz/h.

The quadratic-velocity terms are linked to the others
through:

Γ0 =

(

mf + 2
dΛ′

dz
(2m0)

)

1

2
m1,

Γ1 = mf m2 + 2
dΛ′

dz
(2γ).

In the above definitions, the factor 2 in front of m0,
k0 and γ is due to the fact that our structure has two
identical cantilever feet. For a single cantilever with an
end load, or a doubly-clamped beam with a mass load
positioned in the middle, just remove this 2.

The calculation brings that the damping terms li and
l′i are simply equal to the mi. We are thus left with the
definition of the mi, ki and γ.

After performing the integrations and the series expan-
sions, we obtain:

m0 =

∫ h

0

(

∂f(z, x = 0)

∂x

)2

dz,

m1 =

[

∫ h

0

2
∂f(z, x = 0)

∂x

∂2f(z, x = 0)

∂x2
dz

]

/m0,

and:

k0 =

∫ h

0

(

∂3f(z, x = 0)

∂z2∂x

)2

dz,

k1 =
3

2

[

∫ h

0

∂3f(z, x = 0)

∂z2∂x

∂4f(z, x = 0)

∂z2∂x2
dz

]

/ k0,

and finally:

γ =

∫ h

0

[

(

∂2f(z, x = 0)

∂x2

)2

+
∂f(z, x = 0)

∂x

∂3f(z, x = 0)

∂x3

]

dz.

Only the two coefficients m2 and k2 differ for cantilever
and doubly clamped beams.
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1. Cantilever

The two second order coefficients are:

m2 =

∫ h

0

[

(

∂2f(z, x = 0)

∂x2

)2

+
∂f(z, x = 0)

∂x

∂3f(z, x = 0)

∂x3

+
1

2

(

∂f(z, x = 0)

∂x

)2(

∂2f(z, x = 0)

∂z∂x

)2
]

dz/m0

−
1

2

∫ h

0

(

∂2f(z, x = 0)

∂z∂x

)2

dz

(

∂f(z = h, x = 0)

∂x

)2

/m0,

k2 = 2

∫ h

0

[

1

2

(

∂2f(z, x = 0)

∂z∂x

)2(

∂3f(z, x = 0)

∂z2∂x

)2

+
1

4

(

∂4f(z, x = 0)

∂z2∂x2

)2

+
1

3

∂3f(z, x = 0)

∂z2∂x

∂5f(z, x = 0)

∂z2∂x3

]

dz/ k0

−

∫ h

0

(

∂2f(z, x = 0)

∂z∂x

)2

dz

(

∂3f(z = h, x = 0)

∂z2∂x

)2

/ k0.

2. Doubly-clamped beam

Similarly to the previous section, we obtain:

m2 =

∫ h

0

[

(

∂2f(z, x = 0)

∂x2

)2

+
∂f(z, x = 0)

∂x

∂3f(z, x = 0)

∂x3

+
1

2

(

∂f(z, x = 0)

∂x

)2(

∂2f(z, x = 0)

∂z∂x

)2
]

dz/m0,

k2 = 2

∫ h

0

[

1

2

(

∂2f(z, x = 0)

∂z∂x

)2(

∂3f(z, x = 0)

∂z2∂x

)2

+
1

4

(

∂4f(z, x = 0)

∂z2∂x2

)2

+
1

3

∂3f(z, x = 0)

∂z2∂x

∂5f(z, x = 0)

∂z2∂x3

]

dz/ k0.

3. Reduction of equations

As previously stated, li and l′i are simply equal to the
mi. Moreover, no reactive contribution Λ′ could be de-
tected experimentally for our MEMS [34]. We can thus
drop the reactive contribution in the Γi, and in the def-
inition of the tilded coefficients m̃ and m̃i (Section III).
Thus:

m̃ = m,

Γ0 = m
1

2
m̃1,

Γ1 = mm̃2,

m̃i =
mf

mf +ml
mi. (A1)

Furthermore, the damping terms li have a negligible
impact on the resonance of our MEMS devices [35], since
in Fig. 3 no anomalous non-linear damping is visible.
This can be easily understood from Section III, compar-
ing the coefficients β1/ω0 and β2/∆ω0: these two terms
should be roughly of the same order. In practice, the fre-
quency shifts measured are always smaller than 1 % (Fig.
4), thus the linewidth non-linearity is expected to be also
in the % range. Since our linewidth fittings never resolve
better than typ. 5 %, the li can be safely neglected in
practice. We are thus left with:

m̃
(

1 + m̃1 x+ m̃2 x
2
)

ẍ +

+m̃

(

1

2
m̃1 + m̃2 x

)

ẋ2 +

2Λ ẋ +

k
(

1 + k1 x+ k2 x
2
)

x

= F (t). (A2)

In order to keep the writing lighter, the tilde is omitted in
the core of the paper, leading finally to Eq. (1), Section
II. Note however from Eq. (A1) that a heavy load ml

reduces the non-linear inertia terms m̃i, while leaving the
spring terms ki unchanged: a heavily loaded cantilever
is thus very close to a Duffing oscillator. However, if the
mass load is zero, the resonator is not a Duffing oscillator.
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