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Abstract: Bacteria belonging to the Pectobacterium genus are the causative agents of the 

blackleg and soft-rot diseases that affect potato plants and tubers worldwide. In 

Pectobacterium, the expression of the virulence genes is controlled by quorum-sensing 

(QS) and N-acylhomoserine lactones (AHLs). In this work, we screened a chemical library 

of QS-inhibitors (QSIs) and AHL-analogs to find novel QSIs targeting the virulence of 

Pectobacterium. Four N,N’-bisalkylated imidazolium salts were identified as QSIs; they 

were active at the µM range. In potato tuber assays, two of them were able to decrease the 
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severity of the symptoms provoked by P. atrosepticum. This work extends the range of the 

QSIs acting on the Pectobacterium-induced soft-rot disease. 

Keywords: N-acylhomoserine lactone; quorum-sensing; quorum-sensing inhibitor; 

Pectobacterium; soft-rot; potato tuber 

 

Abbreviations: 3-OC8-HSL, 3-oxo-octanoyl-L-homoserine lactone; 4-NPO, 4-nitropyridine-N-oxide; 

AC50, half maximal activity concentration; AHL, N-acyl homoserine lactone; DMSO, 

dimethylsulfoxide; GIAC50, growth index at the AC50 concentration; MBC, minimal bactericidal 

concentration; MIC, minimal inhibitory concentration; OD600, optical density at a wavelength of  

600 nm; Pa6276, P. atrosepticum CFBP6276; QS, quorum-sensing; QSI, quorum sensing-inhibitor. 

1. Introduction 

Causative agents of the blackleg and soft-rot diseases of potato belong to the Pectobacterium and 

Dickeya genera [1]. These soft-rot enterobacteria produce N-acyl homoserine lactones (AHLs), mainly 

3-oxo-octanoyl-L-homoserine lactone (3-OC8-HSL) [2,3]. In P. carotovorum subsp. carotovorum  

and P. atrosepticum populations, AHLs are involved in the expression of virulence factors, including 

plant cell-wall degrading enzymes, such as cellulases and pectinases [4,5]. This cell-to-cell 

communication that involves the production, exchange and perception of AHL signals is termed 

quorum sensing (QS) [6]. 

Several quorum-quenching strategies have been proposed to interfere with the QS-regulated 

expression of the virulence factors in Pectobacterium. They encompass the construction of transgenic 

plants that express bacterial AHL-degrading enzymes, such as lactonases [7], the identification and 

biostimulation of soil AHL-degrading bacteria that could act as biocontrol agents, such as  

Bacillus thuringiensis and Rhodococcus erythropolis [8–10], and the identification and synthesis of 

natural and synthetic compounds acting as quorum-sensing inhibitors (QSIs) [11–13]. In contrast with 

the abundant literature on QSIs targeting the human pathogen Pseudomonas aeruginosa [14–16], only 

a few QSIs that efficiently reduce the Pectobacterium-induced symptoms have been described. 

Noticeably, some archetypical QSIs active on Pseudomonas or other pathogens do not diminish the 

severity of the Pectobacterium-induced symptoms [17], a feature that stresses the importance of the 

identification of dedicated QSIs targeting this plant pathogen.  

In this work, we constructed and used a Pectobacterium AHL-biosensor to screen a collection of 

synthetic AHL and QSI derivatives and identifying QSIs of which the protective activity against the 

Pectobacterium-induced symptoms was evaluated in potato-tuber maceration assays. 

2. Results and Discussion 

2.1. Construction of the Pectobacterium AHL-Biosensor 

We constructed a Pectobacterium AHL-biosensor that exhibited the two typical characteristics of 

the current QS signals biosensor, i.e., (i) it was defective for the synthesis of its own AHL signal;  
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(ii) it was able to produce a measurable reporting activity that correlated with the concentrations of the 

added AHLs in the culture medium. In P. atrosepticum CFBP6276, the genome sequence of which has 

been published [18], the expI gene encodes the synthase responsible for the biosynthesis of the  

AHL-signals that are required for the expression of the virulence factors and induction of the plant 

symptoms on potato tubers [5]. In the expI mutant CFBP6276-EI [19], we introduced the plasmid 

pME6031-rsmA::uidA that was generated by cloning the rsmA::uidA reporting fusion in the broad 

range vector pME6031. In P. atrosepticum, the rsmA-promoter is down-regulated in the presence of 

AHLs [20]. Hence, in the resulting Pectobacterium AHL-biosensor, the uidA-encoded glucuronidase 

activity was expressed at a high level in the absence of AHLs, and decreased after addition of AHLs in 

the culture medium. QSI molecules should therefore increase the expression of glucuronidase in the 

presence of AHLs. 

Figure 1. Structure of the used quorum sensing (QS)-molecule and identified quorum 

sensing-inhibitors (QSIs). (a) The 3-OC8-HSL is the N-acyl homoserine lactone (AHL) 

used as the QS-signal. (b) Structure of the identified QSIs. (c) 4-NPO, used as a QSI reference. 

 

2.2. QSIs Identification 

A chemical library of 240 molecules was generated based on AHLs and known QSI structures; it 

consisted in carboxamides, sulfonamides, sulfonylurea, reverse amides, triazoles, tetrazoles, 

bromoenamines, bromofuranones and imidazolium derivatives (see experimental section). This library 

was screened with the above described QS signal-biosensor P. atrosepticum CFBP6276-EI  

(pME6031-rsmA::uidA) in the presence of 3-OC8-HSL at 1.5 µM. Using the compounds of the library 

at 100 µM, 67 putative QSIs were found to restore glucuronidase activity in the Pectobacterium  

QS-biosensor in the presence of AHLs. In the course of this screening, 4-nitropyridine-N-oxide  
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(4-NPO) was used as a control QSI (Figure 1) [17]. The identified compounds were thereafter tested at 

lower concentrations (50, 10, 2.5, and 0.1 µM). At 10, 2.5, and 0.1 µM, none variations of the 

reporting activity were observed. At 50 µM, the higher glucuronidase activities were measured in the 

presence of the compounds 29-L-A06, 29-L-A11, 29-L-B02 and 29-L-C03. All of these compounds 

were imidazolium-derivatives which exhibit bis-N-substitution with a polyaromatic group and an 

aliphatic chain (Figure 1). These compounds were designed by analogy to calmidazolium previously 

identified as QSI by virtual screening [21]. Their synthesis involved two successive N-alkylation of 

imidazole, with variations in the aromatic moiety (halogenations, fluorenyl) on one nitrogen atom, and 

variations in the alkyl chain length on the other nitrogen atom. Both substitutions were found to 

influence the QSI activity when tested in a modified E. coli strain which expresses the Vibrio fisheri 

QS-system. Indeed, a stronger QSI-activity was found for shorter chains when the aromatic residue 

was larger (highly halogenated), or for longer chains when the aromatic residue was smaller 

(unsubstituted or sterically constrained) [22]. 

2.3. Biological Effects of the Identified QSIs on Pectobacterium Cells 

For the calculation of the half maximal activity concentration (AC50), the activity of the reporter 

gene uidA was measured in the presence of different concentrations of QSIs (0.1 to 100 μM). In 

addition, cell density (OD600) of the cultures was measured in the absence and presence of the QSIs at 

the AC50 concentrations. These values were used to calculate a growth index (GIAC50) and evaluate 

growth inhibition of the QSIs; a ratio value of 1 indicates that the growth of the bacteria is not affected 

by the presence of the QSI added at the AC50 concentration. The AC50 values of the four  

imidazolium-compounds ranged between 14 and 20 µM (Table1). The GIAC50 values (from 0.93 to 

0.99) were not statistically different (Kruskal Wallis test α = 5%) from those of the control cultures 

without QSIs (GIcontrol = 1.00), suggesting that the cell growth was not affected near the AC50 

concentrations. As a reminder, the AHL concentration in this assay was strictly controlled by the 

addition of pure 3-OC8-HSL at 1.5 μM in the culture medium, hence the reporting activity of the 

Pectobacterium AHL-biosensor could not be altered by a variation of the AHL level. Moreover, an 

antibacterial activity should decrease glucuronidase activity by killing the cells; by contrast, 

imidazolium derivatives increase this reporting activity which is the opposite effect of potential 

antibacterial activity. All these observations allow us to suggest that the identified molecules could act 

as QSIs under our experimental conditions. We also observed that the already known QSI 4-NPO that 

was active in P. aeruginosa [23] was less efficient than were the identified imidazolium-derivatives 

against the QS-regulated gene rsmA::uidA of Pectobacterium. 

The minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) were 

measured for all QSIs in P. atrocepticum. The QSI 29-L-B02 exhibited MIC and MBC values lower 

than the AC50 value, while the other QSIs exhibited MIC and MBC values higher than AC50 values, or 

comparable in the case of the MIC of 29-L-A11 (Table 1). It should be noticed that the MIC and MBC 

values were measured after 40-h of culture in the presence of QSIs, hence at the end of the growth 

cycle of the bacteria when nutrients became limiting. In contrast, GIAC50 and AC50 values were 

measured during exponential growth of the bacteria. The apparent higher sensitivity of the Pectobacterium 
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cells when grown under MIC and MBC conditions as compared to GIAC50 and AC50 conditions could 

be explained by the physiological status of the cells.  

Table 1. Biological characteristics of the four identified QSIs. 

 Pectobacterium cells 

Name AC50 
a GIAC50 

b MIC a MBC a 

4-NPO >100 (12%) c 1.00 50 >100 
29-L-A06 18 0.94 25 25 
29-L-A11 14 0.93 10 25 
29-L-B02 16 0.99 <2.5 2.5 
29-L-C03 20 0.93 25 25 

a Values are expressed in µM; b Growth index (GIAC50) is the ratio of cell densities of bacterial cultures 

performed in the presence of QSIs at the AC50 concentrations to those obtained without QSI; c In brackets, 

inhibition (%) at 100 µM, which is the maximal concentration tested in this study.  

2.4. QSIs Could Moderate the P. atrosepticum-Induced Symptoms in Potato Tubers 

The four QSIs were tested for their capacity to limit the QS-associated symptoms induced by the 

plant pathogen P. atrosepticum CFBP6276 on potato tubers (Figure 2). The QSI 29-L-B02 that 

exhibited MIC and MBC values lower than AC50, did not protect the tubers against the plant pathogen, 

as the severity of the symptoms was similar to that observed in the absence of QSI (Figure 2). This 

observation suggested that under the tested conditions the introduced bacterial cells (107 cells at the 

infection site) were still able to multiply and express the QS-regulated virulence factors in the tuber 

assay, even in the presence of a potential bacteriostatic and bactericidal delivery of the inhibitory 

molecule at 20 µM. By contrast, two other QSIs, 29-L-A11 and 29-L-C03 that exhibited a lower 

bacteriostatic and bactericidal activity than 29-L-B02, reduced (but did not abolish) the severity of the 

symptoms (Figure 2). The limitation of QS-dependent symptoms was therefore not correlated with the 

potential bacteriostatic and bactericidal activity of the identified compounds, and could reflect their 

QSI-activity.  

These imidazolium-derivatives were also efficient at the µM range to disrupt QS-signaling in the 

marine bacterium Vibrio fisheri that uses 3-oxo-hexanoyl-L-homoserine lactone as a QS-signal [19]. 

This feature suggests that they may be used as a structural backbone for the generation of broad range 

QSIs. Polyaromatic compounds have been frequently described as QSIs. As natural compounds, they 

have been identified in many organisms, especially plants [14]. As synthetic compounds, they have 

been revealed by chemical library and virtual (in silico) screenings [14,21].  

This work extends the spectrum of QSIs targeting the QS-controlled virulence of the plant pathogen 

Pectobacterium [11–13]. Aside the P. atrosepticum and P. carotovorum species in which QS plays a 

key-role in virulence, QS has been also involved in a partial regulation of virulence in D. dianthicola 

and the emerging pathogen Dickeya solani, which are other causative agents of the soft-rot and 

blackleg diseases in potato cultures [3]. The QSI-treatment may be proposed as a complement of other 

QS-targeting approaches such as the use of biocontrol agents and transgenic plants which are able to 

degrade the QS-signals [7–10]. All the proposed anti-QS strategies remain to be evaluated under green 

house and field conditions.  
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Figure 2. QSIs and soft-rot tuber assay. Each tuber of S.tuberosum was inoculated with  

107 cells of P. atrosepticum CFBP6276 (Pa6276) in the absence and presence of the QSIs 

at 20 µM. The uninfected tubers were used a negative control. The virulence symptoms are 

categorized according a four-category scale. The different letters indicate the symptoms of 

QSI-treated conditions which were statistically different to those obtained in the presence 

of Pa6276 alone (Kruskal and Wallis test, α = 5% or 10%).  

 

3. Experimental Section  

3.1. Bacterial Strains and Growth Conditions 

P. atrosepticum CFBP6276 and its derivative CFBP6276-EI in which the expI gene was  

disrupted [19] were cultivated in TY medium (tryptone 5 g/L, yeast extract 3 g/L). The Pectobacterium  

QS-biosensor was obtained by electroporating the constructed plasmid pME6031-rsmA::uidA in the 

expI mutant CFBP6276-EI. Antibiotics were used at the following concentrations: kanamycin,  

50 µg/mL; tetracycline, 10 µg/mL. 

3.2. Chemical Library 

The chemical library of the ICBMS (Université de Lyon, INSA, Villeurbanne, France) contained 

240 synthetic derivatives of AHLs or known QSIs. These chemicals were kept in DMSO stock 

solutions (10 mM) at −20 °C. The library includes various types of QS agonists or antagonists, either 

structurally related to AHL (carboxamides, sulfonamides, urea, sulfonylurea, reverse amides, triazoles 
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or tetrazoles), or bromoenamines and bromofuranones designed by analogy to natural compounds 

known as QSI [24–31]. This latter category includes the imidazolium derivatives found to be active in 

this study and designed as analogues of calmidazolium which were identified as QSIs by virtual  

(in silico) screening [21,22]. 

3.3. Screening for QSIs 

Compounds of the chemical library were individually assayed for QSI-activity at two 

concentrations (100 µM and 0.1 µM) in 96-microwell plates in the presence of the AHL 3-OC8-HSL 

at 1.5 µM and the Pectobacterium QS-biosensor. After 4 h of incubation at 30 °C, β-glucuronidase 

activities were measured using the appropriate substrate 4-nitrophenyl-β-D-glucuronide, as previously 

described [32]. The 4-nitropyridine-N-oxide (4-NPO) was used as a QSI reference [23]. The added 

DMSO did not exceed 5% of the total volume of culture medium and did not alter the bacterial growth. 

3.4. Measurement of AC50, GIAC50, MIC and MBC Values of the QSIs 

In the case of the Pectobacterium QS-biosensor, half maximal activity concentrations (AC50) were 

calculated using QSI concentrations ranging from 0.1 to 100 μM. At the AC50 concentrations, the 

growth index (GIAC50) was calculated as the ratio of the OD600nm mean-values measured for bacterial 

cultures performed with and without QSI. Toxicity of these compounds was also evaluated by 

measuring the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC). 

MICs, which are the lowest concentrations of QSI inhibiting any visible growth after 40 h of 

incubation at 30 °C, were estimated by culturing 105 CFU/mL of the Pectobacterium cells in the 

presence of different concentrations of QSI. MBCs, which are the lowest concentrations of QSI (µM) 

that result in a 99.9% reduction of the initial bacterial population (105 CFU/mL) after 40 h of 

incubation at 30 °C in the presence of different concentrations of QSI, were estimated by plating  

100 μL of the Pectobacterium cultures onto agar TY plates. After an incubation of 24 or 48 h at 30 °C, 

CFU were enumerated and the MBC values calculated. 

3.5. Virulence Assays on Potato Tubers 

Potato tubers of S. tuberosum var. Bintje (length 35 to 45 mm, CNPPT/SIPRE, Achicourt, France) 

were surface sterilized by washing in a diluted commercial bleach solution for 10 min. Next, the 

potatoes were rinsed once with sterile water and allowed to dry at room temperature overnight. An 

overnight culture (25 °C; 200 rpm) of the P. atrosepticum wild-type strain CFBP6276 in TY medium 

was collected by centrifugation (room temperature, 4000 rpm, 15 min) and washed twice using 0.8% 

NaCl. The bacterial pellet was resuspended in 0.8% NaCl (room temperature, 4000 rpm, 15 min). Each 

tuber (n = 10 per conditions) was inoculated with 107 CFU of P.atrosepticum in presence of the QSIs 

at 20 µM. The infected tubers were incubated at 25 °C in a water saturated atmosphere. Five days  

post-infection, the tubers were cut in the middle, photographed and the soft-rot symptoms were 

categorized using a virulence scale that contained four categories, depending on the diameter (D) of 

the maceration zone around the infection site: 1, no maceration; 2, low maceration (D < 2 mm);  
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3, moderate maceration (D < 5 mm) and 4, strong maceration (D ≥ 5 mm). The Kruskal and Wallis 

statistical test with α = 5 or 10% allowed the statistical analysis of symptoms on potato tubers.  

4. Conclusions 

Our work highlighted a novel family of QSI that limit Pectobacterium-induced symptoms in  

the potato tubers. The identified QSIs are N,N’-bisalkylated imidazolium salts which exhibited  

QSI-activity when used under sub-lethal concentrations. Future works should evaluate the QSI strategy 

under greenhouse and field conditions, especially in combination with biocontrol-strategies [33–36] to 

limit the symptoms caused by the pathogens Pectobacterium and Dickeya. 
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