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Introduction:
Given σ a set of parameters (boundaries conditions, physicals parameters,...) computing the solution uN (σ) using
classical discretization techniques such as finite element methods are time consuming. The reduced basis (R.B.) methods
exploit the parametric structure of the governing PDEs to construct rapidly, convergent and computationally efficient
approximations. These methods rely on the fact that the set of solutions uN (σ) , depending on parameters σ, is a
manifold MN with a simple structure. We can select a set of parameters (σ1, · · · , σN ) in such way that MN can be
approximated by WN

N = span(uN (σ1), · · · , u
N (σN).

“snapshots”

MN = { u
N (σ), σ ∈ D}

b
How to actually compute the reduced solution uN (σ) for a given σ ? The reduced basis method is a Galerkin approach within WN

N . This technique

is promising if N is small !! N << N ( N begin the dimension of the classical discretization space XN and N the kolmogorov width of MN ).
→ One of the keys of the reduced basis method is the decomposition of the computational work into an OFFLINE and ONLINE stage.

Motivation:
In an industrial framework, for optimization processes for instance the reduced basis methods have a great potential. One of the keys of this technique
is the decomposition of the computational work into an off-line and on-line stage. However in some situation, it’s not possible to perform all the
off-line computations required with an efficient performance of the reduced method. For example when the simulation code is used as a black box,
one won’t be able to perform a very fast and cheap online stage. For this reason, we proposed an alternative method. The aim of this work is to
provide tests to validate and generalize our method to fluid dynamics problems governed by the incompressible steady state Navier-Stokes equations.
Let us consider a physical domain Ω with its boundary ∂Ω = Γin ∪ Γwall ∪ Γout. On Γin, a velocity −→vin is prescribed, which has a parabolic profile
: −→vin = Vin f(−→x )−→n |Γin

. On Γwall we impose homogeneous Dirichlet boundary condition and on Γout we impose homogeneous Neumann boundary
condition. Here, we are interested in studying the two-grid Finite Element / Reduced Basis method applied to a fluid dynamics problem for T-Junction
of pipes parametrized by the velocity magnitude Vin of the inlet flow.

Examples of T-junctions of pipelines
blanc

How :
For a stable implementation of the reduced basis method, it is required
to build a better basis than the one composed with the uN (σi), usu-
ally by a Gramm-Schmidt method. Let denotes by {φN

i }i=1,··· ,N these
orthonormalized basis of WN

N .
The standard reduced basis method aims at evaluating the coefficients
αh
i (σ) intervening in the decomposition of uN (σi) in the basis of the

φN
i , those can appears as a substitute to the optimal coefficients

γh
i (σ) = (uN (σ), φN

i )L2

intervening in the decomposition of the L2-projection of uN (σ) on WN
N .

Our alternative method consists in proposing an other surrogate to the

γh
i (σ) defined by γH

i (σ) = (uNH (σ), φN
i )L2 .

Since the computation of uNH (σ), for NH >> N is less expensive than
the one of uN (σ), using the industrial code with the mesh sizeH (chosen
adequately) to construct the γH

i (σ) is still cheap enough. Besides, to
improve even further the accuracy of this technique we propose to do
a simple rectification of the results.
This treatment will insure that for each value of the parameters σi,
i = 1, · · · , N , used in the construction of the reduced basis, the method
return exactly the L2-projection of uN (σi) on the WN

N . We denote by
TN the matrix associated to this rectification such that:
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For each new value of σ,we will replace the γH
i (σ) coefficients by

γ̃
H
i (σ) =

N
X

k=1

T
N
ik γ

H
k (σ) .

Offline stage
1. Construction of a reduced approximation’s space.
- Computation of a sample of solutions (black box software)
- Selection of N solutions to build the reduced basis (F.E. Library).
2. Orthonormalisation of the reduced basis functions (F.E. Library).
3. Preparation for the post-processing.
- Computation of the N coarse solutions uNH (σi) (black box software)
- Construction of matrix TN (F.E. Library).

bc

Online stage
1. Computation of the coarse solution uNH (σ).(black box software)
2. Compute the coefficient γN,H

i (σ). (F.E. Library)
3. Apply the post-processing on the γ

N,H
i (µ). (F.E. Library)

4. Build the output s(uH,h

N (σ)). (F.E. Library)

Numerical experimentation :
In this application we are interested in the evaluation of the
flux velocity vector −→u (σ) = (ux, uy) for any set of parameter
σ = Vin ∈ [0.01; 0.5]cm.s−1.
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Relative error between FEM solution and RB/POD projection in norm L2  

 ||uref -  uh  ||L2 / ||uref ||L2 (FEM)

 ||uref - PN uh ||L2 / ||uref ||L2  (POD)

 ||uref - PN uh  ||L2 / ||uref ||L2  (Greedy Algorithm)

Coarse Mesh Fine Mesh Reference Mesh :

Ndof P2 = 8717 Ndof P2 = 34313 Ndof P2 = 136145
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Relative Error between FEM solution  and Reduced solutions
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