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In this paper, we analyse the well-posedness, stability and invariance results for a
class of non-monotone set-valued Lur’e dynamical system which has been widely
studied in control and applied mathematics. Many recent researches deal with the
case when the set-valued part is the sub-differential of some proper, convex,
lower semicontinuous function in order to use the nice properties of maximally
monotone operators. But in practice, particularly in electronics, there are some
devices such as diac, silicon controller rectifier (SCR) . . . that their voltage-
current characteristics are not monotone but only locally hypo-monotone. This
fact motivates us to write the paper which is organized as follows: firstly, the
existence and uniqueness of solutions are proved by using Filippov’s method and
local hypo-monotonicity; then, the stability analysis and generalized LaSalle’s
invariance principle are presented. The theoretical results are supported by nu-
merical simulations for some examples in electronics. Our methology is based
on non-smooth and variational analysis.

Keywords: well-posedness; stability analysis; LaSalle’s invariance principle;
hypo-monotone; Filippov’s solutions; electronic devices

1. Introduction

The general Lur’e systems are the systems which have a negative feedback interconnection
of an ordinary differential equation ẋ(t) = f (x(t), p(t)) where p is one of the two slack
variables, with the second one q = g(x, p) and satisfy the inclusion condition p ∈ �(t, q).
There is a remark that other mathematical models used to study non-smooth dynamical
systems (relay systems, evolution variational inequalities, projected dynamical systems,
complementarity systems etc.) can be also recast into Lur’e systems with a set-valued
feedback part.[1–3]

We are interested in the Lur’e systems which are (possibly nonlinear) time-invariant
dynamical systems with static set-valued feedback. Usually, the function g has the form:
g(x, p) = Cx + Dp. The case D = 0 appears in many applications in electronics
particularly, while the case D �= 0 is more general but creates some difficulties when
one wants to study the possibly set-valued operator (−D +�−1)−1(C ◦ ·). In [4], Brogliato
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Figure 1. Lur’e systems.

and Goeleven overcome these obstacles by assuming that� is the sub-differential of some
proper, convex, lower semi-continuous function to enjoy the nice properties of Fenchel
transform and maximally monotone operators. However, the case of D = 0 is still interesting
since it includes applications in practice such as the electrical circuits with some devices
where their voltage-current characteristics are not monotone. There are certainly many
results for the null matrix D, but very few ones for the case of non-monotone set-valued
parts. This is the aim of our work, which is hoped to fill some gaps in the study literature
of Lur’e systems.

In this paper, we reformulate a class of Lur’e systems into the first-order differential
inclusion form where the set-valued right-hand side is upper semi-continuous with
non-empty, convex, compact values to obtain the existence of a solution. Then, local
hypo-monotonicity is assumed to ensure the uniqueness result. Next, we give a stability
analysis and extend LaSalle’s invariance principle to such systems. Finally, some illustrative
examples in electronics are presented with numerical simulations. The methodology used
in this paper is based on non-smooth and variational analysis[5,13–16]

2. Notation and mathematical preliminaries

Denote by 〈·, ·〉, ‖ ·‖ the scalar product and the corresponding norm (the euclidean norm) in
R

n , Bε the closed ball of radius ε centred at 0 and Bε(a) the closed ball of radius ε centered
at a. The dimension of the ball can be implied by the context without any confusion. Let
F : R

n ⇒ R
n be a set-valued function.

Definition 1 One says that F is upper semi-continuous at x0 ∈ R
n if for any open

neighbourhood N containing F(x0), there exists an open neighbourhood M of x0 such
that F(M) ⊂ N . If F is upper semi-continuous at every x0 ∈ R

n , then it is called upper
semi-continuous on R

n .

Remark 1 If F is a single-valued function on R, this definition is equivalent to continuity
of F , which is different from the known definition of “upper semi-continuous” for single-
valued functions. Hence, the mapping F is also called “outer semi-continuous” by some
authors instead of “upper semi-continuous”. In this paper, we are interested in the case
of set-valued function, so we can keep the term “upper semi-continuous” conventionally
without vagueness.

Proposition 1 ([5]) Let F1 : R
n ⇒ R

m and F2 : R
m ⇒ R

q be two set-valued functions.
Define F2 ◦ F1 : R

n ⇒ R
q by:
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(F2 ◦ F1)(x) =
⋃

y∈F1(x)

F2(y).

If F1 and F2 are upper semi-continuous, then F2 ◦ F1 is upper semi-continuous.

Definition 2 F : R
n ⇒ R

n is called hypo-monotone provided that there exists a real
k > 0 such that for all x1, x2 ∈ R

n , we have:

〈y1 − y2, x1 − x2〉 ≥ −k‖x1 − x2‖2, ∀y1 ∈ F(x1), y2 ∈ F(x2),

or we can write:
〈F(x1)− F(x2), x1 − x2〉 ≥ −k‖x1 − x2‖2.

The map F(·) is called locally hypo-monotone if for each x0 ∈ X , F(·) is hypo-monotone
in a neighbourhood of x0.

Lemma 1 If F : R
n ⇒ R

n is hypo-monotone (resp. locally hypo-monotone), then CT ◦
F ◦ C : R

m ⇒ R
m is also hypo-monotone (resp. locally hypo-monotone) for any matrix

C ∈ R
n×m .

Proof It can be implied directly by the following estimation:

〈CT F(Cx)− CT F(Cy), x − y〉 = 〈F(Cx)− F(Cy),Cx − Cy〉 ≥ −k‖Cx − Cy‖2

≥ −k‖C‖2
i ‖x − y‖2,

for all x, y ∈ R
m where ‖ · ‖i is the induced matrix norm. �

Definition 3 F : R
n ⇒ R

n is said to satisfy the linear growth condition if there exists a
positive real number c such that for all x ∈ R

n :
‖w‖ ≤ c(1 + ‖x‖), ∀ w ∈ F(x). (1)

Let x0 be some given element of R
n and F : R

n ⇒ R
n be a set-valued function. We

consider the differential inclusion problem: find an absolutely continuous function x(.; x0)

such that: ⎧⎨
⎩

x ′(t) ∈ F(x(t)), a.e. t ∈ [0,+∞),

x(0) = x0.

(2)

The following theorem is a fundamental result in the Theory of Filippov (see [6]).

Theorem 1 Let F : R
n ⇒ R

n be an upper semi-continuous set-valued function with
non-empty, compact and convex values satisfying the linear growth condition (1). Then,
for all x0 ∈ R

n, there exists an absolutely continuous function x(.; x0) defined on [0,+∞)

which is a solution of (2).

3. Non-smooth Lur’e dynamical system

Let A : R
n → R

n be a (possibly) non-linear operator, B ∈ R
n×m, C ∈ R

m×n be given
matrices; Fi : R ⇒ R (i = 1, 2, . . . ,m) be given upper semi-continuous mappings with
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non-empty, convex, compact values; p = (p1, . . . , pm)
T , q = (q1, . . . , qm)

T : R
+ → R

m

be two unknown mappings. For x0 ∈ R
n , we consider the following problem: find an

absolutely continuous function x(·) defined on [0,+∞) such that:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ′(t) = A(x(t))+ Bp(t) a.e. t ∈ [0,+∞);

q(t) = Cx(t),

pi (t) ∈ Fi (qi (t)), i = 1, 2, . . . ,m,∀ t ≥ 0;

x(0) = x0.

(3)

Particularly in electrical circuits, the inclusion pi (t) ∈ Fi (qi (t))may represent the voltage-
current characteristics of some electronic devices. Note that, Fi here maybe a non-monotone
operator for some i ∈ {1, 2, . . . ,m}. In practice, we are interested in the state variable x(·).
However, in our system, q(·) can be computed uniquely in the term of x(·), so q(·) is also
absolutely continuous. The mapping p(·)may be found uniquely by x(·) almost everywhere.
Its properties depend on the regularity of the set-valued mapping Fi . For example, under
some mild conditions of Fi for i = 1, 2, . . . ,m then p(·) is Lipschitz continuous ([4]).

Let F : R
m ⇒ R

m, q = (q1, . . . , qm)
T → F(q) defined by:

F(q) = (F1(q1), ..,Fm(qm))
T . (4)

It is easy to see that (3) can be rewritten as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ′(t) = A(x(t))+ Bp(t) a.e. t ∈ [0,+∞);

q(t) = Cx(t),

p(t) ∈ F(q(t)), for all t ≥ 0;

x(0) = x0.

(5)

We will show in Lemma 2 that F is also an upper semi-continuous mapping with non-empty,
convex and compact values.

Lemma 2 If Fi : R ⇒ R is an upper semi-continuous mapping with non-empty, convex
and compact values for each i = 1, . . . ,m then F : R

m ⇒ R
m defined in (4) is also an

upper semi-continuous mapping with non-empty, convex and compact values.

Proof It is clear that F has non-empty, convex and compact values. It remains to prove that
F is upper semi-continuous. Given ε > 0 and x = (x1, . . . , xm)

T .Then, we can choose ε̄ =
ε/

√
m > 0 such that

(
Bε̄ (F1(x1)), . . . ,Bε̄ (Fm(xm))

)T ⊂ Bε

(
(F1(x1), . . . ,Fm(xm))

T
) =

Bε(F(x)). Since for each i = 1, . . . ,m, the mapping Fi is upper semi-continuous, there
exists δ̄ > 0 such that Fi (Bδ̄ (xi )) ⊂ Bε̄ (Fi (xi )). Finally, we take δ = δ̄ then Bδ(x) ⊂
(Bδ̄ (x1), ..,Bδ̄ (xn))

T and hence F(Bδ(x))⊂
(F1(Bδ̄ (x1)), . . . ,Fm(Bδ̄ (xm))

)T . So, we have
found a δ such that F(Bδ(x)) ⊂ Bε(F(x)). Hence, F is upper semi-continuous. �
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Remark 2 If Fi is hypo-monotone (resp. locally hypo-monotone) for each i = 1, . . . ,m,
then F defined in (4) is also hypo-monotone (resp. locally hypo-monotone). Indeed, for all
x = (x1, . . . , xn)

T , y = (y1, . . . , yn)
T ∈ R

n , we have:

〈F(x)−F(y), x−y〉 = (F1(x1)−F1(y1))(x1−y1)+ . . .+(Fn(xn)−Fn(yn))(xn −yn)

≥ −k1|x1 − y1|2 − . . .− kn|xn − yn|2 ≥ −k‖x − y‖2.

where k = max{k1, . . . , kn}.

4. Existence and uniqueness

In this section, we recast the Lur’e system into the Filippov case to obtain the existence of
a solution. Each solution can be extended globally by using the linear growth condition.
Then, local hypo-monotonicity of the right-hand side is supposed to have the uniqueness
of the solutions.

Indeed, the system (3) can be reduced to the first-order differential inclusion:

x ′(t) ∈ Q(x(t)) := A(x(t))+ B F(Cx(t)) a.e. t ∈ [0,+∞). (6)

Theorem 2 Suppose that A is k-lipschitz and there exists a positive constant cF such
that:

‖w‖ ≤ cF (1 + ‖y‖), ∀ w ∈ F(y), ∀y ∈ R
m . (7)

Then, for every x0 ∈ R
n, there exists a global solution of (6).

Proof It is easy to check that A satisfies the linear growth condition. Indeed, we have:
‖A(x)‖ ≤ ‖A(0)‖+ k‖x‖ for all x ∈ R

n .Note that A is continuous and from (7), we imply
that, Q is upper semi-continuous mapping with non-empty, convex, compact values and
satisfies the linear growth condition. Then, for all initial condition x0 ∈ R

n , there exists an
absolutely continuous function x(·; x0) satisfying:

x(0) = x0,

and
x ′(t) ∈ Q(x(t)) a.e. t ∈ [0,+∞).

Therefore, we obtain the existence of a solution of problem (6). �

Theorem 3 If −F is locally hypo-monotone and there exists an invertible matrix R ∈
R

n×n such that:
C = BT RT R,

then (6) has at most one solution.

Proof The system (6) is equivalent to:

Rẋ ∈ R A(R−1 Rx)+ RB F(BT RT Rx).

Setting z = Rx , we get:

ż ∈ R A(R−1z)+ RB F(BT RT z). (8)
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Note that (RB)T = BT RT , from Remark 2 and Lemma 1 we obtain −RB ◦ F ◦ BT RT is
locally hypo-monotone. The mapping R ◦ A ◦ R−1 is Lipschitz. Hence, if for all z ∈ R

n we
set:

φ(z) = R A(R−1z)+ RB F(BT RT z),

then −φ : R
n ⇒ R

n is locally hypo-monotone. Given arbitrary T > 0. Suppose that
x1(·), x2(·) are two solutions of (6) on [0, T ] with the same initial conditions x1(0) =
x2(0) = x0. Then zi (·) := Rxi (·), i = 1, 2 are two solutions of (8) satisfying z1(0) =
z2(0) = z0 := Rx0. Since −φ is locally hypo-monotone, there exist ε > 0 and k > 0 such
that −φ is hypo-monotone in Bε(z0)with constant k. Note that, z1(·) and z2(·) are absolutely
continuous functions. Hence, we can find a positive T0 ≤ T such that z1(t), z2(t) ∈ Bε(z0)

for all t ∈ [0, T0]. From the definition of hypo-monotonicity, we imply that:

〈−ż1(t)+ ż2(t), z1(t)− z2(t)〉 ≥ −k‖z1(t)− z2(t)‖2,

or, equivalently:

〈ż1(t)− ż2(t), z1(t)− z2(t)〉 ≤ k‖z1(t)− z2(t)‖2,

which means:
1

2

d

dt
‖z1(t)− z2(t)‖2 ≤ k‖z1(t)− z2(t)‖2.

By Gronwall’s inequality, we have ‖z1(t)−z2(t)‖2 ≤ 0 for all t ∈ [0, T0], i.e. z1(t) ≡ z2(t)
on t ∈ [0, T0]. We assume that there exists t0 ∈ [0, T ] such that z1(t0) �= z2(t0). Let:

E = {t ∈ [0, t0] : z1(t) �= z2(t)}.
Since t0 ∈ E and E is bounded from below, there exists c = inf E where c ∈ (0, t0] and
z1(t) = z2(t) for all t ∈ [0, c).Due to the continuity of z1(·), z2(·),we obtain z1(c) = z2(c)
which means that c < t0. Using the same argument as above, we can find a neighborhood
of c on which z1(·) ≡ z2(·), a contradiction with the definition of c. Therefore, we have
z1(·) ≡ z2(·) on [0, T ] which implies that x1(·) ≡ x2(·) on [0, T ]. Since T > 0 is arbitrary,
we have proved the result. �

5. Stability and invariance theorems

In the following section, we give some results about the stability of equilibria and a
generalized version of Lasalle’s invariance principle is presented. We begin by introducing
some basic definitions in the Lyapunov’s Theory. Let x0 ∈ R

n and x(t; x0) be a solution
of (6).

Definition 4 The equilibrium point x = 0 is said to be stable if

∀ε > 0, ∃δ(ε) > 0 such that for all x0 ∈ Bδ(ε) ⇒ ‖x(t; x0)‖ ≤ ε, ∀t ≥ 0.

Definition 5 The equilibrium point x = 0 is said to be attractive if

∀ε > 0, ∃δ(ε) > 0 such that for all x0 ∈ Bδ(ε) ⇒ lim
t→∞ ‖x(t; x0)‖ = 0.

If this is true for all x0 ∈ R
n , then x = 0 is said globally attractive.
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Definition 6 If the trivial equilibrium point is stable and attractive, it is called asymptotic
stable; if it is stable and globally attractive, it is called globally asymptotic stable.

Let S(x0) be the set of solutions and W be the set of stationary solutions of (6):

W = {x̄ ∈ R
n : 0 ∈ Q(x̄)}. (9)

Let us denote the set-valued orbital derivative of a continuously differentiable function
V : B̄σ ⊂ R

n → R (for some σ > 0) with respect to the differential inclusion (6):

V̇ (x) = {p ∈ R : ∃ω ∈ Q(x) such that p = 〈V ′(x), ω〉}. (10)

The upper and lower orbital derivatives of V are sequently defined by:

V̇ ∗(x) = max
ω∈Q(x)

〈V ′(x), ω〉, V̇∗(x) = min
ω∈Q(x)

〈V ′(x), ω〉.

Remark 3

(1) Since Q has non-empty, convex and compact values, we have V̇ (x) is a non-
empty, convex compact subset in R. Therefore, V̇ (x) is of the following form:
V̇ (x) = [V̇∗(x), V̇ ∗(x)]. Note that the orbital derivative of more general Lyapunov
functions V has been also studied ( for example, see [7]).

(2) If x(t) := x(t; x0) is a solution of (6) then:

d

dt
V (x(t)) ∈ V̇ (x(t)) a.e. t ≥ t0.

(3) Let x̄ ∈ W , i.e. 0 ∈ Q(x̄). From (10), it is easy to check that 0 ∈ V̇ (x̄). It means
that W ⊂ Z = {y ∈ R

n : 0 ∈ V̇ (y)}. This remark may be used in the next section,
when we analyze the asymptotic property of the system by using extended LaSalle’s
invariance principle.

Definition 7 Let V : B̄σ ⊂ R
n → R be a continuous function such that V (0) = 0. We

say that V is positive definite if V (x) > 0 for all x ∈ B̄σ \ {0}.

Definition 8 A Lyaponov function for (6) is a positive definite continuously differentiable
function V : B̄σ ⊂ R

n → R such that V̇ ∗(x) ≤ 0 for all x ∈ B̄σ .

Assumption 1 0 ∈ Q(0), which means that 0 ∈ W.

Remark 4 Let x∗ be an equilibrium of (6), i.e. 0 ∈ Q(x∗). If we set y(·) = x(·)− x∗, then
the differential inclusion (6) becomes:

ẏ(t) ∈ Qx∗(y(t)) := Q(y(t)+ x∗) a.e. t ∈ [0,+∞). (11)

Note that the function Qx∗(·) possesses the same desired properties as Q(·) has. Further-
more, 0 ∈ Qx∗(0), i.e. the trivial solution is an equilibrium of the new differential inclusion
(11). Therefore, it makes sense to propose Assumption 1 as well as to study the stability
properties of the origin.
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Theorem 4 Let the assumption of Theorem 2 and Assumption 1. If there exists a Lyapunov
function V for problem (6), then the trivial solution is stable.

Proof Since V : B̄σ → R is positive definite continuously differentiable function, there
exist a strictly increasing function α(·) ∈ C(R+; R) with α(0) = 0 and a positive real
number, still denoted by σ such that:

V (x) ≥ α(||x ||) for all x ∈ B̄σ .

Without loss of generality, let 0 < ε < σ and let c = α(ε). Since V is positive definite,
there exists a η > 0 such that Bη ⊂ �◦

c = {x ∈ R
n : V (x) < c}. Let δ = min{ε, η}. Take

x0 ∈ Bδ and x(t; x0) is a solution of (6) satisfying the initial condition x(0) = x0. Suppose
that there exists t1 ≥ 0 such that ‖x(t1; x0)‖ ≥ ε. Since x(·; x0) is continuous, we may find
some t∗ satisfying: ‖x(t∗; x0)‖ = ε. Then,

V (x(t∗; x0)) ≥ α(‖x(t∗; x0)‖) = α(ε).

On the other hand, V is decreasing along the trajectory on the time interval [0, t∗] due to
Remark 3.2 and the fact that V̇ ∗(x) ≤ 0 for all x ∈ B̄σ . Hence, we have:

V (x(t∗; x0)) ≤ V (x0) < c = α(ε).

Our proof is finished by the contradiction. �

Theorem 5 Let the assumption of Theorem 2 and Assumption 1. If there exists a Lyapunov
function V for problem (6) such that V̇ ∗(x) ≤ −λV (x) for all x ∈ B̄σ . Then the trivial
solution is asymptotic stable.

Proof By the Theorem 4, the trivial solution is stable. Therefore, there exists δ > 0 such
that for all x0 ∈ R

n and ‖x0‖ ≤ δ, we have x(t; x0) ∈ B̄σ for all t ≥ 0. On the other hand,
we have: d

dt V (x(t)) ∈ V̇ (x(t)) a.e. t ≥ 0 and V̇ ∗(x) ≤ −λV (x) for all x ∈ B̄σ . Hence,
we have:

d

dt
V (x(t)) ≤ −λV (x(t)), a.e. t ≥ 0.

Using simple integration, we obtain:

V (x(t)) ≤ V (x0)e
−λt , t ≥ 0.

Therefore:

0 ≤ α(‖x(t)‖) ≤ V (x0)e
−λt , t ≥ 0.

Since α(·) is strictly increasing, we must have:

lim sup
t→+∞

‖x(t)‖ = 0.

Therefore:

lim
t→+∞ ‖x(t)‖ = 0.

�
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Remark 5 If we have V̇ ∗(x) ≤ −λV (x) for all x ∈ R
n , then the trivial solution is globally

asymptotic stable. The proof is similar to the one in Theorem 4.

In the next part of this section, we will generalize the LaSalle’s invariance principle to
prove the asymptotic stability of the trivial solution. Firstly, we recall some definitions and
properties. Let x0 ∈ R

n and x(t; x0) be a solution of (6), denote the orbit of x by:

γ (x) = {x(t; x0) : t ≥ 0} ⊂ R
n,

and the limit set of x by:

�(x) = {p ∈ R
n : ∃{ti }, ti → +∞ as i → ∞ and x(ti ; x0) → p}.

A set S ⊂ R
n is said weakly invariant if and only if for x0 ∈ S, there exists a solution of

(6) starting at x0 contained in S. It is said invariant if and only if for x0 ∈ S, all solutions
of (6) starting at x0 are contained in S.

Remark 6

(i) If γ (x) is bounded, then �(x) �= ∅ and

lim
t→∞ d(x(t; x0),�(x)) = 0.

If the right-hand side of (6) is upper semi-continuous with non-empty, convex,
compact values, we have a result that the limit set�(x) is weakly invariant ([8,11,12]
or [6], p. 129).

(ii) The set of stationary solutions W is weakly invariant. Indeed, if x0 ∈ W , then
the solution x(t; x0) = x0, t ≥ t0, is contained in W . From Remark 3.3, W is a
weakly invariant subset of Z = {y ∈ R

n : 0 ∈ V̇ (y)}.
(iii) If for each x0 ∈ R

n , the set of solutions S(x0) has a unique element, then a weakly
invariant set is also invariant. Hence, in the following part, we focus on the case of
non-unique solutions which is more general.

Theorem 6 (Invariance Theorem) Let the assumption of Theorem 2. Suppose that there
exists a function V ∈ C1(Rn; R) such that V̇ ∗ ≤ 0. Let� be a compact invariant subset of
R

n, x0 ∈ � and x(·; x0) ∈ S(x0) be a solution of (6). Let Z = {y ∈ R
n : 0 ∈ V̇ (y)} and

M be the largest weakly invariant subset in the closure of Z then:

lim
t→+∞ dist(x(t; x0),M) = 0.

Proof Since x0 ∈ �, and � is invariant, we have γ (x) ⊂ �. Therefore, γ (x) is bounded
and:

lim
t→+∞ dist(x(t; x0),�(x)) = 0.

It is enough to prove that �(x) ⊂ Z̄ due to the weak invariance of �(x). Note that the
function V (·) is C1, it is bounded on the compact set �. From Remark 3.2, we imply that
V (x(·)) is decreasing on R

+ since V̇ ∗ ≤ 0. Therefore, there exists a real number k such
that limt→+∞ V (x(t; x0)) = k. For each p ∈ �(x), there exist {ti }, ti → ∞ as i → ∞
and x(ti ; x0) → p. Then, V (p) = k due to the continuity of V (·). Hence, V (p) = k for
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all p ∈ �(x). Let z ∈ �(x). Since �(x) is weakly invariant, there exists a solution φ(t; z) 
of (6) lying in �(x). Therefore:

V (φ(t; z)) = k,

for all t ≥ 0 which implies:

0 = d

dt
V (φ(t; z)) ∈ V̇ (φ(t; z)),

for almost all t ≥ 0. Hence, we have:

φ(t; z) ∈ Z,
for almost all t ≥ 0. Since φ(·; z) is continuous, we obtain:

z = φ(0; z) ∈ Z̄,
and the result follows. �

Remark 7

(1) The theorem is still true if we replace Z by Z� = {y ∈ � : 0 ∈ V̇ (y)}. It is enough
to check that �(x) ⊂ Z̄�. Indeed, since γ (x) ⊂ � and � is compact, we have
�(x) ⊂ �. Therefore, �(x) ⊂ Z̄ ∩� ⊂ Z̄�.

(2) We can “ignore” the role of the compact invariant set �, provided we know that
x(·; x0) is bounded. Indeed, from the proof above, if we have x(·; x0) is bounded
then limt→+∞ dist(x(t; x0),�(x)) = 0 and we still have �(x) ⊂ Z̄ . Therefore:

lim
t→+∞ dist(x(t; x0),M) = 0.

(3) By using the Invariance Theorem, we can obtain a stronger result than the one in
Theorem 5.

Corollary 1 Let the assumption of Theorem 2 and Assumption 1.

(i) Suppose that there exists a Lyapunov function V for problem (6) such that V̇ ∗(x) < 0
for all x ∈ B̄σ \ {0} and V̇ ∗(0) = 0. Then, the trivial solution is asymptotic stable.

(ii) If we have V̇ ∗(x) < 0 for all x ∈ R
n \{0}, V̇ ∗(0) = 0 and V is radially unbounded,

then 0 is globally asymptotic stable.

Proof

(i) It is easy to show that Z = {0}. We have known that the trivial solution is stable.
Hence, there exists δ > 0 such that for all x0 ∈ R

n and ‖x0‖ ≤ δ, we have
x(t; x0) ∈ B̄σ for all t ≥ 0, i.e. x(·; x0) is bounded. The asymptotical stability of
the trivial solution follows by using the Remark 7.2.

(ii) Given x0 ∈ R
n, set � := {x ∈ R

n : V (x) ≤ V (x0)}, then x0 ∈ � and � is a
compact subset of R

n since V is radially unbounded. It is sufficient to prove that
it is invariant with respect to (6). Indeed, let z ∈ � and x(·; z) be a solution of (6)
satisfying x(0; z) = z. Since the mapping V (x(t; z)) is decreasing with respect to
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t , we have V (x(t; z))≤V (x(0; z))=V (z)≤V (x0) for all t ≥0. Hence, x(t; z) ∈ �
for all t ≥ 0. The result follows by the Invariance Theorem with Z = {0}. �

Corollary 2 Let the assumption of Theorem 2. Suppose that there exists a radially
unbounded function V ∈ C1(Rn; R) such that V̇ ∗ ≤ 0. Let Z = {y ∈ R

n : 0 ∈ V̇ (y)} and
M be the largest weakly invariant subset in the closure of Z . Then, for any x0 ∈ R

n and
x(·; x0) ∈ S(x0) a solution of (6), we have:

lim
t→+∞ dist(x(t; x0),M) = 0.

Proof For each x0 ∈ R
n, set � := {x ∈ R

n : V (x) ≤ V (x0)}, then x0 ∈ � and � is an
invariant compact subset of R

n(see the proof of Proposition 1.i i). Hence, the conclusion
follows by the Invariance Theorem. �

Theorem 7 Consider the differential inclusion system (6) with A ∈ R
n×n. Suppose that

F is upper semi-continuous with non-empty convex, compact values satisfying the linear
growth condition and −F is locally hypo-monotone. Furthermore:

(i) there exist a symmetric positive definite matrix P ∈ R
n×n and a matrix K ∈ R

n×l

for some integer l > 0 such that: P A + AT P = −K K T and CT = P B;
(ii) supw∈F(x)〈x, w〉 ≤ 0 for all x ∈ R

n.

Then, for each x0 ∈ R
n, there exists a unique solution x(t; x0) of (6). Furthermore, let

V (y) := 1
2 yT Py, y ∈ R

n; Z = {y ∈ R
n : 0 ∈ V̇ (y)} and M be the largest invariant

subset of Z̄ . Then:
lim

t→+∞ dist(x(t; x0),M) = 0.

Proof It is obvious that all the assumptions of Theorem 2 and 3 are satisfied. Indeed, we
can choose the matrix R = √

P.Therefore, for each x0 ∈ R
n, there exists a unique solution

x(t; x0) of (6). Note that V is radially unbounded and its upper orbital derivative is:

V̇ ∗(x) = sup
w∈F(Cx)

〈Px, Ax + Bw〉 = 〈x, P Ax〉 + sup
w∈F(Cx)

〈BT Px, w〉
= 〈x, P Ax〉 + sup

w∈F(Cx)
〈Cx, w〉.

From (ii), we have supw∈F(Cx)〈Cx, w〉 is non-positive. On the other hand, the term
〈x, P Ax〉 = 1

2 〈x, (P A + AT P)x〉 = − 1
2 〈x, K K T x〉 = − 1

2 〈K T x, K T x〉 ≤ 0. It im-
plies that the upper orbital derivative of V is non-positive. The conclusion follows by
Corollary 2. �

Remark 8

(1) If l = m, we can use the Kalman–Yakubovich–Popov Lemma ([9,10]) to obtain the
existence of P and K satisfying the condition (i) in Theorem 7.

(2) The condition (ii) means x is contained in the polar cone of F(x) for all x ∈ R
n .

The geometrical meaning in scalar case is that the graph of −F belongs to the first

11



Figure 2. A typical voltage current characteristics of a diac.

and the third quadrants. It holds for a large class of function, for examples, when
−F is the characteristic function of a diode, Zener diode, diac, silicon controller
rectifier etc. ([9]).

(3) If K T is full column rank, then K K T is positive definite. Then, it is easy to check
that Z = {0}. Therefore:

lim
t→+∞ x(t; x0) = 0.

Corollary 3 Consider the differential inclusion system (3) with A ∈ R
n×n and Fi is

upper semi-continuous with non-empty convex, compact values satisfying the linear growth
condition and −Fi is locally hypo-monotone for i = 1, 2, . . . ,m. Suppose that:

(i) there exist a symmetric positive definite matrix P ∈ R
n×n and a matrix K ∈ R

n×l

for some integer l > 0 such that: P A + AT P = −K K T and CT = P B;
(ii) supw∈Fi (y)〈y, w〉 ≤ 0 for all y ∈ R, i = 1, 2, . . . ,m.

Then, for each x0 ∈ R
n, there exists a unique solution x(t; x0) of (3). Furthermore, let

V (y) := 1
2 yT Py, y ∈ R

n; Z = {y ∈ R
n : 0 ∈ V̇ (y)} and M be the largest invariant

subset of Z̄ . Then:
lim

t→+∞ dist(x(t; x0),M) = 0.

Proof Let F : R
m ⇒ R

m defined in (4) and using Theorem 7. �

6. Some examples in electronics

Ampere-volt characteristics of some electrical devices: Electrical devices can be
illustrated by their corresponding ampere-volt characteristics. Each device may possess
various mathematical models based on the experimental measures. Figures 2 and 3 present
the characteristics of a diac and a silicon controller rectifier which will be used in some circuit
examples later (for reference about the ampere-volt characteristics of electrical devices,
see [9]).

12



Figure 3. Silicon controller rectifier.

Figure 4. Circuit with silicon controller rectifier.

In both cases, the mappings ( fdiac and fscr) are set-valued where the values at 0 are
intervals in R and single-valued differentiable with locally bounded derivatives in R \ {0}.
Hence, it can be checked that fdiac and fscr are locally hypo-monotone. Furthermore, they
are upper semi-continuous (their graphs are closed and locally bounded) with non-empty
convex, compact values. They also have a property that for all x ∈ R, the mappings
x fdiac(−x) and x fscr(−x) are single-valued and non-positive.
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Example 1 Consider the circuit in Figure 4 with a resistor R > 0, an inductor L > 0,
a capacitor C > 0. Let x1 be the time integral of the current across the capacitance, x2
the current across the circuit, yL is the voltage of the silicon controller rectifier. Using
Kirchhoff’s circuit laws, we have:

⎛
⎝ ẋ1

ẋ2

⎞
⎠ =

A︷ ︸︸ ︷⎛
⎝ 0 1

− 1
LC − R

L

⎞
⎠

⎛
⎝ x1

x2

⎞
⎠ −

B︷ ︸︸ ︷⎛
⎝ 0

− 1
L

⎞
⎠ yL , (12)

where

y =
C︷ ︸︸ ︷

(0 − 1)

⎛
⎝ x1

x2

⎞
⎠ and yL ∈ fscr(y) = fscr(−x2). (13)

Let Q : R
2 ⇒ R

2,Q(x) = Ax − B fscr(Cx) and F := − fscr. The mapping Q is upper
semi-continuous with non-empty convex compact values and the mapping −F = fscr is
locally hypo-monotone. The matrix R defined by:

R =
⎛
⎝ 0 0

0
√

L

⎞
⎠

holds C = BT RT R. Therefore, the assumptions of Theorems 2, 3 and 4 are satisfied.
Let V (x) = α1

2 x2
1 + α2

2 x2
2 where α1, α2 > 0 can be chosen later, then V is C1, radially

unbounded and:

V ′(x) =
⎛
⎝ α1x1

α2x2

⎞
⎠ .

We have:

V̇ (x) = α1x1x2 + α2x2

(
− 1

LC
x1 − R

L
x2 + 1

L
fscr(−x2)

)

is single-valued since x2 fscr(−x2) is single-valued. We choose α1 = α2
LC , then we obtain

that:

V̇ ∗(x) = V̇∗(x) = − Rα2

L
x2

2 + α2

L
x2 fscr(−x2) ≤ 0.

It is easy to check that Z = {y ∈ R
2 : 0 ∈ V̇ (y)} = R × {0} and the set of stationary

solutions of the system W = {(x1, 0) : x1 ∈ R, x1 ∈ C fscr(0)} = C fscr(0)× {0}.We can
prove that W is the largest invariance subset of Z. Indeed, let D be an invariance subset
of Z and z = (z1 z2)

T ∈ D. The unique solution ψ(·; z) = (ψ1(·; z) ψ2(·; z))T of (12)
satisfies ψ(t; z) ∈ D for all t ≥ 0. Then, for all t ≥ 0, we have ψ̇1(t; z) = ψ2(t; z) = 0
which implies ψ1(t; z) ≡ z1, z2 = 0 and z1 ∈ C fscr(0). Therefore, we have: D ⊂ Z.
Using Corollary 2, we obtain:

lim
t→+∞ dist(x1(t),C fscr(0)) = 0 and lim

t→+∞ x2(t) = 0.
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Figure 5. Numerical simulation for example 1. To view this figure in color, please see the online
version.

Consider the circuit above which includes a voltage supply u. Then, the system becomes:

⎛
⎝ ẋ1

ẋ2

⎞
⎠ =

⎛
⎝ 0 1

− 1
LC − R

L

⎞
⎠

⎛
⎝ x1

x2

⎞
⎠ −

⎛
⎝ 0

− 1
L

⎞
⎠ yL +

⎛
⎝ 0

1
L

⎞
⎠ u, (14)

and

V̇ ∗(x) = d

dt
V (x) = − Rα2

L
x2

2 + α2

L
x2 yL + α2u

L
x2.

Let c := inf x �=0 | fscr(x)| > 0. If |u| ≤ c,we have α2
L x2 yL+ α2u

L x2 ≤ α2
L |x2|(|u|−|yL |) ≤ 0.

Therefore, V̇ ∗(x) ≤ 0 and we obtain the stability of the trivial solution and the attractivity
result as above. The set of stationary solutions then is W = {(x1, 0) : x1 ∈ R, x1/C ∈
fscr(0)+ u} = C( fscr(0)+ u)× {0} and we have:

lim
t→+∞ dist(x1(t),C( fscr(0)+ u)) = 0 and lim

t→+∞ x2(t) = 0.

Note that we can use directly Theorem 7 with:

P =
⎛
⎝ 1/C 0

0 L

⎞
⎠ and K =

⎛
⎝ 0 0

0
√

2R

⎞
⎠ ,

which satisfy P A + AT P = −K K T and CT = P B. The same analysis can be applied if
we replace the function fscr by fdiac (Figure 5).
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Figure 6. Circuit with silicon controller rectifier and diac.

Example 2 Next, we consider the circuit correspondent to the Figure 6. Applying
Kirchhoff’s circuit laws again, we obtain:

⎛
⎜⎜⎜⎜⎝

ẋ1

ẋ2

ẋ3

⎞
⎟⎟⎟⎟⎠ =

A︷ ︸︸ ︷⎛
⎜⎜⎜⎜⎝

0 1 0

− 1
L2C − R1+R3

L2

R1
L2

0 R1
L1

− R1+R2
L1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

x1

x2

x3

⎞
⎟⎟⎟⎟⎠ −

B︷ ︸︸ ︷⎛
⎜⎜⎜⎜⎝

0 0

1
L2

1
L2

− 1
L1

0

⎞
⎟⎟⎟⎟⎠

⎛
⎝ yL1

yL2

⎞
⎠ (15)

and

yL1 ∈ fdiac(−x3 + x2) and yL2 ∈ fscr(x2),

where R1, R2, R3 > 0 are resistors, L1, L2 > 0 are inductors, C > 0 is a capacitor, x1 is
the time integral of the current across the capacitor, x2 is the current across the capacitor, x3
is the current across the inductor L1, yL1 is the voltage of the diac and yL2 is the voltage of

the SCR. Let C :=
⎛
⎝ 0 1 −1

0 1 0

⎞
⎠ and F : R

2 ⇒ R
2, x = (x1 x2)

T → −
⎛
⎝ fdiac(x1)

fscr(x2)

⎞
⎠ .

Denote Q : R
3 ⇒ R

3 the right-hand side of (15), then for x = (x1 x2 x3)
T we have:

Q(x) = Ax + B F(Cx).

It is clear that Q is upper semi-continuous with non-empty convex compact values and the
mapping −F is locally hypo-monotone. The following matrix:

R =

⎛
⎜⎜⎜⎜⎝

0 0 0

0
√

L2 0

0 0
√

L1

⎞
⎟⎟⎟⎟⎠
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satisfies C = BT RT R. Hence, the assumptions of Theorems 2, 3 and 4 hold. We also
consider the Lyapunov function of the form:

V (x) = α1

2
x2

1 + α2

2
x2

2 + α3

2
x2

3 ,

where α1, α2, α3 > 0 can be chosen later. Let

β1 = 1

L2C
, β2 = R1 + R2

L2
, β3 = R1

L2
, β4 = 1

L2
, β5 = R1

L1
,

β6 = R1 + R2

L1
, β7 = 1

L1
.

Then,

V̇ (x) = α1x1x2 + α2x2(−β1x1 − β2x2 + β3x3 − β4 fdiac(−x3 + x2)− β4 fscr(x2))

+α3x3(β5x2 − β6x3 + β7 fdiac(−x3 + x2)). (16)

We choose α1, α2, α3 such that α1 = α2β1, α2β4 = α3β7 := γ then we obtain:

V̇ (x) = (α2β3 + α3β5)x2x3 − α2β2x2
2 − α3β6x2

3 + γ (x3 − x2) fdiac(−x3 + x2)− α2β4x2 fscr(x2)

(17)

is single valued since (x3 − x2) fdiac(−x3 + x2) and x2 fscr(x2) are single valued.
Replacing α3 = α2

β4
β7

, we have that:

α2β3 + α3β5 =
(
β3 + β4β5

β7

)
α2 = 2R1

L2
α2, β2 = R1 + R3

L2
>

R1

L2
,

α3β6 = β4β6

β7
α2 = R1 + R2

L2
α2 >

R1

L2
α2.

Therefore:

(α2β3 + α3β5)x2x3 − α2β2x2
2 − α3β6x2

3 ≤ R1

L2
α2(2x2x3 − x2

2 − x2
3 ) = − R1

L2
α2(x2 − x3)

2 ≤ 0.

Note that:
(x3 − x2) fdiac(−x3 + x2) ≤ 0 and − x2 fscr(x2) ≤ 0.

So, we have:
V̇ ∗(x) = V̇∗(x) ≤ 0.

We can check that Z = {y ∈ R
3 : 0 ∈ V̇ (y)} = R × {0} × {0}. The set of stationary

solutions W is a subset of Z and W = {(x1, 0, 0) : x1 ∈ R, x1 ∈ −C( fdiac(0)+ fscr(0)} =
−C( fdiac(0)+ fscr(0))× {0} × {0}. Similarly, we can prove that W is the largest invariant
subset of Z and by using Corollary 2, we have:

lim
t→+∞ dist(x1(t),−C{ fdiac(0)+ fscr(0)}) = 0, lim

t→+∞ x2(t) = 0 and lim
t→+∞ x3(t) = 0.

We may also apply Theorem 7 for this circuit, which is left as an exercise for readers
(Figure 7).

17



0 1 2 3 4
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

Time t

x 1

0 1 2 3 4
−6

−5

−4

−3

−2

−1

0

1

Time t

x 2
0 1 2 3 4

−4

−3

−2

−1

0

1

2

Time t

x 3

Figure 7. Numerical simulation for example 2. To view this figure in color, please see the online
version.

7. By way of conclusion

In this paper, we have analysed the well-posedness of a class of non-motonone set-valued
Lur’e dynamiacal systems. The existence and uniqueness of the trajectories are assured with
a weaker assumption than the case of maximal monotone right-hand side. Some criterions for
the Lyapunov function is also given to obtain the stability analysis and asymptotic properties
of such systems. We developed an extended version of LaSalle’s invariance principle which
can be applied to study the attractivity of a stationary solution or a set. The case of D �= 0
while the right-hand side is non-monotone is also interesting, but it is out of the scope of
the current paper. It will be the subject of another paper in the future.
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