
HAL Id: hal-00919070
https://hal.science/hal-00919070v1

Submitted on 16 Dec 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

MakeSense: Managing Reproducible WSNs Experiments
Rémy Leone, Jeremie Leguay, Paolo Medagliani, Claude Chaudet

To cite this version:
Rémy Leone, Jeremie Leguay, Paolo Medagliani, Claude Chaudet. MakeSense: Managing Repro-
ducible WSNs Experiments. Fifth Workshop on Real-World Wireless Sensor Networks, 2013, Sep
2013, Lac de Côme, Italie, France. �hal-00919070�

https://hal.science/hal-00919070v1
https://hal.archives-ouvertes.fr


MakeSense: Managing Reproducible WSNs

Experiments

Rémy Léone1,2, Jérémie Leguay1, Paolo Medagliani1, and Claude Chaudet2

1 Thales Communications & Security; Gennevilliers, France
name.surname@thalesgroup.com,

2 Institut Mines-Télécom, Télécom ParisTech, CNRS LTCI UMR 5141; Paris, France
Claude.Chaudet@telecom-paristech.fr

Abstract Wireless Sensor Networks (WSN) users often use simulation
campaigns before real deployment to evaluate performance and to fine-
tune application and network parameters. This process requires repeating
the same experiments under similar conditions and to collect, parse and
present data efficiently. This paper introduces MakeSense: a tool that
automates this workflow and that allows reproducing simulations easily
by defining the whole experiment and post-processing steps in a single
JSON configuration file, easy to share and to modify. MakeSense also
provides interfaces to interact with a running simulation, allowing to send
external stimuli and to collect data in real time. MakeSense currently
runs over the COOJA simulator, but has been built to be easily adapted
to other architectures, including real testbeds.

Keywords: experiment automation, Wireless Sensors networks, exper-
iments reproducibility, COOJA, CONTIKI

1 Introduction

Evaluating applications and protocols through simulation always follow the same
workflow from the simulation parameters definition to the creation of graphs
that represent performance under different conditions. Yet, no generic tool re-
ally provides a way to automate the whole process and people often rely on
ad-hoc scripts. Some tools such as NEPI [3] focus on the interaction between
testbeds, but do not address wireless sensor network platforms and hence, their
architecture may be too complex for constrained devices.

In this paper, we introduce MakeSense, a tool that automates large-scale
WSN experiments and facilitates adaptation and reproducibility. MakeSense re-
lies on a single JSON configuration file described in section 2 from scenario defi-
nition to graphs generation. Sharing this lightweight file with the specific source
code is sufficient to let others reproduce an experiment, improving the results
trustworthiness [1]. MakeSense runs today over the COOJA simulator, but is
designed to be generic and to be adapted to real testbeds too. We then describe
its workflow and functionalities, including online interaction with simulation and
describe a demonstration in section 3.



[...]
" interference_range" : 50 . 0 ,
"makefile_template" :

" s imple_makef i l e " ,
"mote_types" : {

" h e l l o " : {
"color" : " blue " ,
"description" : "Router" ,
"firmware_address" : [

"nodes " ,
" h e l l o " ,
" he l l o−world . sky"

] ,
"rpl_instance_id" : 30

}
} ,
"motes" : [

{
"mote_id" : 1 ,
"mote_type" : " h e l l o " ,
" settings " : {

"lambda" : 1
} ,
"socket_port" : 60001 ,
"x" : 10 ,
"y" : 0

} ,
[...]

Listing 1.1. Configuration file excerpt

Node 
source code

- Binary file 
for motes
- Input for 
simulator

Traces
- PCAP
- logs

CSV files

figures

HTML report

make

deploy

run_exp

analyze

report

Configuration 
file

plot

Figure1. MakeSense workflow

External 

IP

application

Telnet

output

reading

Script

engine

commands

COOJA

IP

GW

IPV6

telnet

radio

Figure2. Real-time interaction
with COOJA

2 MakeSense Core Functionalities

2.1 JSON Configuration file

All simulation parameters such as random seeds, transmission range are defined
in a single JavaScript Object Notation configuration file. An excerpt of such a
configuration file is presented on Listing 1.1. The file starts by the definition of
some general parameters, such as the wireless interference range and specifies
a template for the Makefile that will serve during the building process. It then
defines one or several mote types (e.g. routers, end nodes, ...), the firmware they
will use and gives them an RPL instance ID. In the motes section, it instanti-
ates the different nodes with respect to the templates and specifies individual
parameters such as their coordinates, their ID (address) and the UDP port on
which they will be reachable during the simulation.

As this configuration file specifies all relevant parameters for a simulation,
it is easy to use templates and scripting to run large experimental campaigns.



A script can generate a series of such files, referring to the same or to different
source codes, run experiments and store the JSON files as scenario descriptors,
as they are lightweight.

2.2 Workflow

MakeSense workflow, represented schematically on Figure 1, is composed of 6
steps that can be called independently, thanks to their loose coupling, or run in
sequence using the run_all shortcut.

make creates the whole environment necessary for the experiment execution. It
compiles the source code and creates the configuration files required by the
simulation tool from templates.

deploy uploads the simulation files from a local repository to a remote location
to run several simulations in parallel. This step can easily be adapted to
upload firmwares to a real testbed.

run_exp launches the simulation series. MakeSense can launch concurrently,
several functions that will fetch the simulation output through the nodes’
serial or network interfaces. Each node has its own independent log file.

analyze parses trace files, e.g. PCAP files or text logs file, by applying a set of
filters to produce CSV files that contain only the desired information. Filters
are easy to specify and MakeSense includes a set of basic filters.

plot produces graphs using the CSV files produced by the analyze step and the
info in the settings files to select relevant data.

report gathers all the results into a single HTML report file.

2.3 Multiple control channels

The simulation runs from its beginning to its end without user interaction, or can
be run in real-time mode, allowing real-time interaction with traffic generators
such as real applications, other simulators, or a user using an interactive com-
mand line and visualizing performance evolution through the COOJA scripting
engine, as illustrated on Fig. 2. This feature allows to let the WSN run as if it
were a real network and to measure its reaction to external, controlled, stimuli.

3 Demonstation

The COOJA implementation of MakeSense uses the Python programming lan-
guage and other libraries such as fabric, jinja2 and matplotlib. As a demonstra-
tion, we use COOJA [2] in real time mode to simulate a network of 10 nodes
connected using an RPL tree. The first node is a border router that connects
all the remaining nodes that are CoAP servers, to the hosting operating system.
We send traffic to the different sensor nodes from the shell and from the script
engine contained inside the simulator. This traffic is composed of CoAP and
PING requests.



Figure3.
Connectivity graph

Figure4. RPL tree

Figure5. RPL and Ping
Traffic Evolution

Figure6. Ping RTT be-
tween host machine and
simulated node

As specified in the configuration file, MakeSense generates without user inter-
action various graphs. For example, Fig. 3 represents the theoretical connectiv-
ity graph, extracted from the sole configuration file using circular transmission
range. Fig. 4 is a representation of the real RPL tree, generated by querying
nodes for RPL information on their serial interface, without perturbing the net-
work traffic. Fig. 5 is a classical per-protocol throughput graph, showing the use
of per-protocols filters and Fig. 6 represents delay of Ping requests issued from
the hosting operating system, that shows the interaction with the outside world.

4 Conclusion

This paper describes and shows an example use of MakeSense, a framework for
automating series of simulation in order to make them reproducible and reusable.
The current implementation is tailored for the Cooja simualtor, and we are work-
ing on its adaptation to real testbeds. The MakeSense Python implementation
for Cooja is available at: http://github.com/sieben/makesense.

References

1. D. A. Aruliah, C. T. Brown, N. P. C. Hong, M. Davis, R. T. Guy, S. H. D. Had-
dock, K. Huff, I. Mitchell, M. Plumbley, B. Waugh, E. P. White, G. Wilson, and
P. Wilson. Best practices for scientific computing. Computing Research Repository,
abs/1210.0530, Oct. 2012.

2. J. Eriksson, F. Österlind, N. Finne, N. Tsiftes, A. Dunkels, T. Voigt, R. Sauter,
and P. J. Marrón. COOJA/MSPSim: interoperability testing for wireless sensor
networks. In 2nd International Conference on Simulation Tools and Techniques
(SIMUTools 2009), page 27, Rome, Italy, Mar. 2009.

3. M. Lacage, M. Ferrari, M. Hansen, T. Turletti, and W. Dabbous. NEPI: using
independent simulators, emulators, and testbeds for easy experimentation. ACM
SIGOPS Operating Systems Review, 43(4), Jan. 2010.

http://github.com/sieben/makesense

	MakeSense: Managing Reproducible WSNs Experiments

