
HAL Id: hal-00919068
https://hal.science/hal-00919068v1

Submitted on 16 Jan 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Policy Iteration-based Conditional Termination and
Ranking Functions

Damien Massé

To cite this version:
Damien Massé. Policy Iteration-based Conditional Termination and Ranking Functions. Verifica-
tion, Model Checking, and Abstract Interpretation, Jan 2014, San Diego, United States. pp.473,
�10.1007/978-3-642-54013-4_25�. �hal-00919068�

https://hal.science/hal-00919068v1
https://hal.archives-ouvertes.fr

Policy Iteration-based Conditional Termination
and Ranking Functions

Damien Massé

Univ. de Brest, UMR 6285, Lab-STICC, F-29200 Brest, France
damien.masse@univ-brest.fr

Abstract. Termination analyzers generally synthesize ranking functions
or relations, which represent checkable proofs of their results. In [23],
we proposed an approach for conditional termination analysis based on
abstract fixpoint computation by policy iteration. This method is not
based on ranking functions and does not directly provide a ranking rela-
tion, which makes the comparison with existing approaches difficult. In
this paper we study the relationships between our approach and ranking
functions and relations, focusing on extensions of linear ranking func-
tions. We show that it can work on programs admitting a specific kind
of segmented ranking functions, and that the results can be checked by
the construction of a disjunctive ranking relation. Experimental results
show the interest of this approach.

1 Introduction

Many approaches have been proposed to prove that a program terminates. Most
techniques rely on the construction of ranking functions [13, 24] or ranking rela-
tions as transition invariants [25]. Ranking functions and relations, like invariants
in safety analysis, offer a checkable result, not directly related to the technique
used to construct them. Similarly, a conditional termination analysis [7], i.e. an
analysis which determines the set of terminating states, is expected to return
not only the a set of terminating states, but an associated ranking function or
relation.

In [23], we proposed to use policy iteration techniques in order to analyze
conditional termination. Policy iteration (or strategy iteration) [10, 19] has been
developed as an alternative to the classical widening/narrowing techniques used
for safety analysis by abstract interpretation on numerical programs. Applied
on conditional termination, it can be used to compute, using linear optimization
algorithms, an overapproximation of the (potentially) non-terminating states,
hence proving the termination of the other states. However, it does not directly
provide any ranking function or relation.

In this paper, we examine the relationships between our approach and rank-
ing functions synthesis. We focus especially on disjunctive linear ranking rela-
tions and segmented linear ranking functions. We show the construction of a
disjunctive ranking relation from the analysis, as well as the existence of a seg-
mented linear ranking function. Reciprocally, we show that programs admitting

some restricted form of segmented ranking function can be analyzed by policy
iteration. We complete these results by a practical experiments on a prototype
analyzer.

2 Notations

Let x = (x1, . . . , xn) be a tuple of n variables. We denote any element of Rx

either by (x1 = v1; . . . ;xn = vn) or as a column vector v =

 v1
...
vn

 of Rn. When

used as a matrix block, x represents the column vector

 x1
...
xn

. Linear forms on

Rx are denoted either as a expression (c1x1 + . . . + cnxn) or as a row vector
(c1 . . . cn). Similarly, m× n-matrices M ∈ Rm×n may be denoted as a m-tuple
of linear forms on Rx. Given a matrix M , we denote by MT its transpose.

3 Affine programs and semantics

3.1 Programs

For the sake of simplicity, we consider in this paper programs with only one
program point. Hence, x being the set of (real) variables, a program is a pair
(I,T) where I ⊆ Rx is the set of initial states, and T ⊆ ℘ (Rx × Rx) describes
the transitions, each transition defining a relation between the values of the
variables before and after the transition.

Since we are interested in affine programs, I and T will be defined by linear
constraints, that is:

1. I is a set of linear constraints on x

2. Each transition of T is described as a set of linear constraints on x,x′ where
x′ represents the variables after the transition.

In our framework, I can be used to compute an overapproximation of the
reachable states. However, for simplicity we will assume that all states are reach-
able, and I will not be used.

Example 1. We consider the program A of Fig 1. T = {t1, t2} is represented
with:

t1 :

−1 0 0 0
0 −1 0 0
−1 −1 1 0
0 1 0 1

a
b
a′

b′

≤
≤
=
=

0
0
0
−1

Program A:

1: while a ≥ 0 do
2: a← a+ b
3: if b ≥ 0 then
4: b← −b− 1
5: else
6: b← −b
7: end if
8: end while

Program B:

1: while x ≤ 100 do
2: if (*) then
3: x← −2x+ 2
4: else
5: x← −3x− 2
6: end if
7: end while

Fig. 1. Two affine programs. a and b are integer variables, x is a real variable, and (*)
is a non-deterministic choice.

t2 :

−1 0 0 0
0 1 0 0
−1 −1 1 0
0 1 0 1

a
b
a′

b′

≤
≤
=
=

0
−1
0
0

Note that we replace b < 0 by b ≤ −1 in the representation, since b is an integer
variable. Our approach deals mainly with real variables, and using strict con-
straints (or floating-point computations) requires technical considerations which
are outside the scope of this paper.

In the following, we will represent a transition as a pair (Q, q) where Q is a
matrix and q is a vector such that the associated constraints are:

Q

(
x
x′

)
≤ q

When the program has only one transition, the program is called a Linear
Simple Loop (LSL). Termination of Linear Simple Loop is well known to be
a decidable problem (at least for linear assignments) [29]. However, deciding
conditional termination of LSL is more complex [4], and not always possible [16].

3.2 Concrete semantics

To each program P is associated a transition relation τ ⊆ Rx×Rx. This relation
can be used to construct a trace-based semantics to prove termination [12].
However, we propose to use here a state based backward semantics:

Proposition 1. The set S of states starting an infinite execution trace is equal
to:

S = gfpλY.pre(Y)

where pre ∈ ℘ (Rx)→ ℘ (Rx) is the predecessor predicate transformer:

pre(Y) = {v ∈ Rx | ∃v′ ∈ Y, (v,v′) ∈ τ}

=
⋃

(Q,q)∈T

{v ∈ Rx | ∃v′ ∈ Y,Q
(
v
v′

)
≤ q}

If Y is a polyhedron characterized with a set of linear constraints Ax ≤
c, pre(Y) is a union of polyhedra, which can be computed using libraries like
Apron [21]. However, even if pre(Y) is computable, S is not computable, since
the fixpoint computation may not terminate.

As seen in [12], it is well-known that a ranking function can be defined from
the iterates of the pre operator:

Proposition 2. Let (Si)i∈O be the iterates of gfpλY.pre(Y) (i.e. S0 = Rx,
Si+1 = pre(Si) and, for all limit ordinal l, Sl = ∩i<lSi). Then the function r
defined on Σ \ S by:

∀x ∈ Σ \ S, r(x) = min{i ∈ O|r /∈ Si}

is a ranking function over Σ \ S:

∀x ∈ Σ \ S, ∀y ∈ Σ, x→ y =⇒ (y /∈ S ∧ r(y) < r(x))

However, computing (or approximating) S may not give the successive iter-
ates.

3.3 Abstraction and abstract semantics

The template polyhedral abstraction[27] is a parametric sub-abstraction of the
classical polyhedral abstraction, where the linear constraints used must belong
to a template. In practice, the template is a matrix T ∈ Rm×n. Each row of
T represents a linear form of program variables. The matrix T defines an ab-
straction of ℘ (Rn), where an abstract element ρ is a element of TT = Rm where
R = R ∪ {−∞,+∞}.. The concretization function is defined as:

γT (ρ) = {v ∈ Rn | Tv ≤ ρ}

Note 1. In the following, we may consider T as a matrix or as a set of m linear
forms. For any ρ ∈ TT , we will denote by [ρ]f the component of ρ associated to
f ∈ T .

In the context of this abstraction, the best abstract transformer pre] = αT ◦

pre ◦ γT is computable:

Lemma 1. With ρ ∈ TT , the component of pre](ρ) associated to f satisfies

[pre](ρ)]f = max(Q,q)∈T[J(Q, q)K]]f (ρ) with:

– If

{x|∃x′,
(

Q
0 T

)(
x
x′

)
≤
(
q
ρ

)
} = ∅,

then [J(Q, q)K]]f = −∞.
– otherwise,

[J(Q, q)K]]f = min{λ(qT ρT)|λ ≥ 0 ∧
(
QT

0
T

)
λ =

(
fT

0

)
}

Hence pre](ρ) can be computed by solving m.|T| linear programs. However,
the classical Kleene iterations (with widening and narrowing operators) can only
be used to approximate the abstract semantics S] = gfp pre] with the following
restrictions:

1. Using a dual widening operator can only be used to find an underapproxi-
mation of the abstract semantics [11], which is not sound since our abstract
semantics is an overapproximation of the concrete semantics1.

2. Using n steps of a narrowing operator would only find states terminating
after at most n iterations.

Thus we need to use policy iteration to compute S].

4 Policy iteration

Policy or strategy iteration [10, 18, 19] is a method to compute the least (or
greatest) fixpoint of specific classes of monotonic operators. It can be seen as an
adaptation of the classical Newton’s method in the sense that the operator σ is
approximated (w.r.t. a policy selection) by a policy σ0 where the fixpoint of σ0
is computable. A new policy is selected to approximate σ around the fixpoint of
σ0, and the process iterates until a global fixpoint is reached.

The application of policy iteration to the computation of greatest fixpoints
has been presented in [23]. Although this section extends slightly the framework
by not restricting transitions to assignments, the results are similar.

4.1 Policy selection

Theorem 1. Given a transition t = (Q, q), [JtK]]f is the minimum of two func-
tion ψt and [φt]f where:

– ψt is monotonic and its image is in {−∞,+∞};
– [φt]f is the minimum of a finite number of affine expressions (with positive

coefficients) on ρ.

Example 2. For t1 in program A, and T = (−a,−a− b), we have:

ψt1(ρ) = +∞
[φt1]−a(ρ) = −1 + ρ−a−b

[φt1]−a−b(ρ) = min(−1 + ρ−a−b, ρ−a)

Theorem 2. Let t be a transition, and ρ ∈ Rm. The value of ψt(ρ) and, if
ψt(ρ) = +∞, the affine expression for which φt(ρ) is minimal can be computed
by solving the following linear program:

max{f.x|∃x,x′,

(
Q

0 T

)(
x
x′

)
≤
(
q
ρ

)
}

1 The overapproximation being necessary to prove termination.

σ ← (+∞) . Initial policy
ρ← (+∞) . Initial fixpoint: >
while Φ(ρ) 6= ρ do . Stop if fixpoint is reached

for all f ∈ T do
if [Φ(ρ)]f < [ρ]f then . Change [σ]f only if it is not optimal for ρ

[σ]f ← min-policy of [Φ]f such that [σ]f (ρ) = [Φ]f (ρ)
end if

end for
ρ← gfp≤ρσ . Compute the next fixpoint for the policy

end while

Fig. 2. Policy iteration algorithm for greatest fixpoint computation. This algorithm
computes gfpΦ using min-policies: each policy component [σ]f is given by a choice
between the min-terms of [Φ]f .

If this linear program is infeasible, then ψt = −∞, otherwise, ψt = +∞ and φtf
can be directly constructed from the optimal dual solution.

Given a current policy σ and its fixpoint ρ, the new policy σ′ is constructed
as follows : [σ′]f = maxt∈T[σt]f where [σt]f = −∞ if ψt(ρ0) = −∞, and [σt]f is
an affine expression of [φt]f (ρ0) which is minimal for ρ0 otherwise.

Proposition 3. The policy selection process constructs a new policy for which
each component is the maximum of affine expressions.

Example 3. For program A, if the current post-fixpoint is (ρ−a = 0, ρ−a−b = 0),
the policy selection process gives:

[σ1]−a(ρ) = max(ρ−a−b − 1, ρ−a − 1)

[σ1]−a−b(ρ) = max(ρ−a, ρ−a−b − 1)

In the program, this policy expresses the fact that, if after an iteration the
constraints −a ≤ u ≤ 0 and −a − b ≤ v ≤ 0 are satisfied, then before the
iteration, the constraints −a ≤ max(u − 1, v − 1) and −a − b ≤ max(u, v − 1)
are satisfied.

In general, we will write the policy as a system of equations over the compo-
nents of ρ, e.g.:

ρ−a = max(ρ−a−b − 1, ρ−a − 1)

ρ−a−b = max(ρ−a, ρ−a−b − 1)

4.2 Policy iteration result

Theorem 3 ([23]). Following the algorithm of policy iteration presented Fig. 2,
the new fixpoint ρl of each policy σl is computable by solving two linear programs.
Furthermore, the algorithm terminates and gives the abstract fixpoint S].

Note 2. Although the algorithm of Fig. 2 starts with σ0 = (+∞), we can adapt
it to start from any post-fixpoint.

Example 4. Figure 3 shows the results of the analyzes of programs A and B.
The initial policy ((+∞)) is omitted. For both programs, Step 1 gives just the
translation of the termination condition of the loop. Step 2 gives the equivalent
of one more iteration. However, in Step 3, the relations between variables in the
equation system enables to jump directly to the fixpoint. This jump is equivalent
to ω iterations in the greatest fixpoint computation. Note that the analysis proves
the termination of program A from every initial state. For program B, it proves
that the programs terminates from x > 1.6 ∨ x < −1.2, which is the best result
we can get with a polyhedral abstraction (x = 1.6 and x = −1.2 being both
non-terminating states). However, it does not give the exact set of terminating
states (e.g. one can check that this program terminates from any integer).

Step Policy Fixpoint

1
ρ−a = 0 −a ≤ 0
ρ−a−b = +∞

2
ρ−a = max(0, ρ−a − 1) −a ≤ 0
ρ−a−b = ρ−a −a− b ≤ 0

3

ρ−a = max(ρ−a−b − 1,

∅ρ−a − 1)
ρ−a−b = max(ρ−a,

ρ−a−b − 1)

Step Policy Fixpoint

1
ρx = 100

x ≤ 100
ρ−r = +∞

2
ρx = 100 x ≤ 100
ρ−x = max((ρx − 2)/2, −x ≤ 49

(ρx + 2)/3))

3

ρx = max((ρ−x + 2)/2, x ≤ 1.6
(ρ−x − 2)/3)

ρ−x = max((ρx − 2)/2, −x ≤ 1.2
(ρx + 2)/3))

(Prog. A) (Prog. B)

Fig. 3. Results of the policy iteration process on program A with the template T =
(−a,−a− b) and program B with the template T = (−x, x).

5 Relationships with ranking functions

The policy iteration process computes the exact abstract semantics of the pro-
gram. Proposition 2 states that this fixpoint entails the existence of a ranking
function based on the iterates of the fixpoint, but does not give the form of the
ranking function (or relation). In order to compare this approach with other ex-
isting methods, we need to make this ranking function explicit, or at least precise
the kind of ranking relations a program must satisfy to be successfully analyz-
able by policy iteration. Since we use linear templates, linear ranking functions
and their derivatives (piecewise linear ranking functions and disjunctive linear
ranking relations) are the most interesting candidates to compare with our ap-
proach.

5.1 Ranking functions and relations

Linear ranking function Linear ranking functions are commonly used to
prove termination of simple programs.

Definition 1 (Ranking function). If Σ is a set of states, S a subset of Σ,
and τ ⊆ Σ ×Σ a transition relation, a ranking function over S is defined by an
ordered set (O,≺) and a function r : S → O such that ≺ is a well-founded order
and:

∀σ ∈ S, σ τ→ σ′ ⇒ σ′ ∈ S and r(σ′) ≺ r(σ)

If τ represents the transition relation induced by a program P , the existence
of a ranking function over S shows that the program terminates from any state
in S.

The ranking relation T (r) ⊆ S × S generated by a ranking function r is
the well-founded relation defined as T (r) = {(σ1, σ2) | r(σ2) ≺ r(σ1)}. If r is a
ranking function for τ over S, then T (r) satisfies:

τ ⊆ T (r) ∪ (Σ \ S)×Σ

We may use ordinals (O, <) as well-founded sets. However, since our approach
deals with real values, we will denote by ≺ on a subset of R, any well-founded
suborder of < on this subset.

Definition 2 (Linear ranking function). A ranking function r on (O,≺) is
linear if O is a subset of R, ≺ is a sub-order of < on O, and r is linear.

Segmented linear ranking functions The domain of segmented ranking
functions is presented in [30] to infer termination properties on programs. Its
analysis produces piecewise-segmented ranking functions to infer sufficient con-
ditions on programs. The domain is parametrized by two numerical abstract
domains for the partitioning of the environment and for the values of the func-
tion. The prototypes used intervals for the partitioning and affine forms for the
functions, but it should be possible to use other linear constraints (maybe tem-
plates) for the partitioning (which should be costly). We propose to call this
instantiation of the domain segmented linear ranking functions.

Definition 3 (Segmented linear ranking function). Let S ⊆ Rm and τ a
transition relation on Rm, a ranking function r : S → O on S is segmented
linear if it can be defined by a n-uplet (S1, r1), . . . , (Sn, rn) where:

– {Si}1≤i≤n is a partition of S, and each Si is a polyhedron;

– for all i, ri is defined on Si and r = ri on Si.

– all the ri are linear.

Disjunctive linear ranking relations An alternative to ranking functions
are disjunctive ranking relations, defined as a finite union of ranking relations
T = T1 ∪ . . . ∪ Tn. Although T may not be itself a ranking relation, a transi-
tion relation τ is well-founded if and only if its non-reflective transitive closure
τ+ is included in a disjunctive ranking relation (which is then called a transi-
tion invariant [25]). This approach is widely used to prove termination, using
model-checking procedures to check the inclusion in transition invariants [22,
8]. Of course, disjunctive ranking functions can be used to prove conditional
termination:

Lemma 2. Let P a program with a transition relation τ ⊆ Σ × Σ. Then P
terminates from all states in S if and only if there exists a disjunctive ranking
relation T = T1 ∪ . . . ∪ Tn such that:

τ+ ⊆ T ∪ (Σ \ S)×Σ

In [5], Chen et al. proposed to infer disjunctive ranking relations for linear
simple loops (LSLs), where each ranking relation Ti is (by construction) based
on a linear ranking function. More precisely, Ti = T (ri) such that there exists a
polyhedral partition (P1, . . . , Pk) of Rn where:

– ri is linear over P1;
– ri is constant over P2, . . ., Pk and its values are always strictly lower than

the elements of ri(P1).

We will call these relations disjunctive linear ranking relations.
Before considering the ranking functions induced by the policy iteration algo-

rithm, we examine the relationships between disjunctive ranking relations and
segmented ranking functions. Disjunctive linear ranking relations are strictly
more powerful than segmented linear ranking functions: any segmented linear
ranking function induces a disjunctive linear ranking relation, but the converse
is not true.

Theorem 4. Let τ ⊆ Σ × Σ and r a segmented linear ranking function for τ
over S, defined by the n-uplet (S1, r1), . . ., (Sn, rn). For all 1 ≤ i ≤ n, we define
Ti : S × S as:

Ti = T (ri) ∪ (Si × (S \ Si))
Then τ+ ⊆ T1 ∪ . . . ∪ Tn ∪ (Σ \ S)×Σ.

Example 5. Program A admits a segmented linear ranking function r defined as:

r(a, b) =

0 if a < 0
1 if a ≥ 0 and a+ b < 0
2a+ 2 if a ≥ 0 and b ≥ 0
2(a+ b) + 3 if a+ b ≥ 0 and b < 0

The partition contains four sets. The disjunctive ranking relation allows any
transition between two different sets, but only decreasing transitions (w.r.t. the
local ranking function) inside one set. While not well-founded, it is the union of
well-founded relations and includes the transition closure of τ .

The disjunctive ranking relation does not give any information about the
relations between the elements of the partition, therefore it can prove the ter-
mination of programs which do not admit a segmented linear ranking function.

Example 6. The program

1: while x ≥ 0 do
2: x← x+ y
3: if y ≥ 0 then
4: y ← y − 1
5: end if
6: end while

terminates and admits a disjunctive ranking relation defined by the ranking
functions:

ρ0 =

{
x if y ≤ −1 and x ≥ 0
−1 if x < 0, or y > 0

ρ1 =

{
y if y > 0
0 if y ≤ 0

However, a segmented ranking function would need to be quadratic when y > 0.

5.2 Policy iteration and ranking relations

Our goal is to link the results of the policy iteration analysis with the existence
of disjunctive ranking relations or segmented ranking functions. Since the pol-
icy iteration analysis gives an overapproximation of the non-terminating states,
there exists a ranking function or relation on the complement, which should be
related to the template used.

Example 7. For program B, the policy iteration analysis (with T = (x,−x))
proves that the program terminates from x > 1.6 or x < −1.2. A ranking
function r should be defined on] −∞,−1.2[∪]1.6,+∞[. Since |x| increases at
each iteration, r should be increasing on]−∞,−1.2[(with limx→−1.2 r(x) = ω)
and decreasing on]1.6,+∞[(with limx→1.6 r(x) = ω). Hence, on]−∞,−1.2[, x
is a ranking function, whereas −x is a ranking function on]1.6,+∞[. Note that
the value −1.2 is given by ρ−x and 1.6 by ρx. Therefore, it appears that the
partial ranking functions are related to the negation of the template elements.

In general, we shall prove that if the policy iteration analysis shows that A
is a set of terminating states:

1. A disjunctive linear ranking relation can be defined on A, of which the rank-
ing relations are directly related to the template (Theorem 5).

2. We can also find on A a segmented linear ranking function r, with template-
related restrictions of the domains of the subfunctions. To represent these
restrictions, we shall describe r as a min-defined segmented ranking function,
i.e. as a minimum of functions with overlapping domains (Definition 4).
Furthermore, we prove the converse of this result, i.e. the existence of a
segmented linear ranking function satisfying these restrictions on A implies
that the policy iteration analysis can prove conditional termination on A
(Theorem 6).

By Theorem 3, we know that the policy iteration process returns the exact
abstract semantics of the program, defined as S] = gfp αT ◦ pre ◦ γT . The
iterates of this fixpoint are elements of the template abstract domain. Hence we
can expect a potential ranking relation to be closely related to the template linear
forms. Theorem 5 formalizes this idea and shows that the programs directly
admits a disjunctive linear ranking relation on the terminating part:

Theorem 5. Let T be a template with m linear forms f1, . . . , fm over Rx, and
A] an abstract element of TT . If gfpλX.(pre]T (X)) = A], then there exists m
ranking relations R1, R2, . . ., Rm on Rx \ γT (A]) satisfying the conditions (C1)
and (C2) defined as follows:

(C1) For all i, there exists a well-founded suborder ≺i of < on R such that:

∀(v1,v2) ∈ Rn \ γT (A]), (v1,v2) ∈ Ri ⇐⇒ −fiv2 ≺i −fiv1

(C2) R1 ∪ . . . ∪Rm is a disjunctive ranking relation for τ over Rn \ γT (A]):

τ+ ⊆ (R1 ∪ . . . ∪Rm) ∪ γT (A])× Rn

Furthermore, with (pre]T)k denoting the k-th iterate of the operator pre]T starting
from Rn, we can construct ≺i as:

u ≺i v ⇐⇒ ∃k ∈ O, u < −[(pre]T)k]fi ≤ v

This theorem proposes well-founded orders ≺i based on sets of iterates, which
are not easy to use. We shall examine the problem of finding simpler orders in
Sect. 5.3.

Example 8. We can prove the termination of program A with the template T =
(−a,−a−b). The associated relations R1 and R2 can be defined on R2 as follows:

((a, b), (a′, b′)) ∈ R1 iff a′ ≺ a
((a, b), (a′, b′)) ∈ R2 iff a′ + b′ ≺ a+ b

where
u ≺ u′ ⇐⇒ a < 0 ≤ b ∨ 0 ≤ a+ 1 ≤ b

We can see that R1 and R2 are generated by the functions a and a+ b.

Example 9 shows that the converse of Theorem 5 does not hold:

Example 9. The program seen in Example 6 admits a disjunctive ranking rela-
tion

T (ρ0) ∪ T (ρ1) with ρ0 = x and ρ1 = y

with the well-founded order ≺ defined as a ≺ b ⇔ a < 0 ≤ b ∨ a + 1 ≤ b.
However, analyzing the program with the template T = (−x,−y) gives just the
condition x ≥ 0 for potential non-termination, because the next iterate in the
concrete domain gives the constraint x + y ≥ 0 which is not translated in the
abstract domain.

Theorem 5 presents a disjunctive linear ranking relation of which the com-
ponents are based on the policy iteration analysis. As we saw on Example 6,
this does not prove the existence of a segmented linear ranking function. Two
difficulties arise when we try to construct a segmented ranking function from
the policy iteration analysis.

First, the domains of the subfunctions must partition the terminating states,
whereas each well-founded order of Theorem 5 is defined on the whole domain.
We circumvent the problem by including the possibility of overlapping domains.
In this case, the value of the r is defined as the minimum of the values of the
underlying functions.

Definition 4 (Min-defined segmented ranking functions). Let Σ be a set
of states, S a subset of Σ and τ a transition relation on Σ, a ranking function
r : S → O on S (where O ⊆ R) is min-defined segmented if it can be defined by
a n-uplet (S1, r1), . . . , (Sn, rn) where:

1.
⋃

1≤i≤n Si = S,

2. and ∀σ ∈ S, r(σ) = minσ∈Si ri(σ) (where min is the minimum with respect
to the total order <).

Furthermore, r is min-defined segmented linear if all ri are linear.

Of course, any min-defined segmented ranking function can be transformed
to a segmented ranking function by restricting the domain of the subfunctions.
However, using them makes the following theorem much easier to present, as the
domain of each subfunction becomes independent of the others subfunctions.

The second difficulty is the relationships between the values of different sub-
functions. The easiest approach is to consider intermediate functions ϕ:

Theorem 6. Let A] ∈ TT . Then gfpλX.(pre]T (X)) v] A] if and only if there
exists a min-defined segmented ranking function r = mini∈{1,...,m} ri : Rn \
γT (A])→ O such that for all i:

(C3) Dom(ri) = {v ∈ Rn | [A]]fi < fiv}
(C4) ∀i, ri(v) = ϕi(−fiv) where ϕi is a monotonic function from]−∞,−[A]]fi [
to O.

Proof (sketch). Let’s consider the iterates (A]k) of pre]T starting from (+∞). We

define ri(v) as the maximal ordinal k such that fiv ≤ [A]k]fi . One can easily check
that this ordinal exists (if v ∈ Dom(ri)), that ri is monotonic w.r.t. −fiv, and
that r is a ranking function. Reciprocally, if a ranking function r satisfy (C3) and

(C4), then we prove by transfinite induction that for all v ∈ γT (A]k), r(v) ≥ k.
The limit case is a consequence of the co-continuity of γT . For the successor case,
let us suppose that there exists v ∈ γT (A]k+1) = γT ◦ αT (pre(γT (A]k))) such that

r(v) < k + 1 (for example, ri(v) ≤ k). Then there exists v′ ∈ pre(γT (A]k)) such
that fiv

′ ≥ fiv, hence ri(v
′) is defined by (C3) and r(v′) ≤ ri(v

′) ≤ ri(v) ≤ k

by (C4). Since v′ ∈ pre(γT (A]k)), there must be a successor v′′ of v′ in γT (A]k)),
which by induction hypothesis must satisfy r(v′′) ≥ k, which contradicts the
fact that r is a ranking function.

Example 10. Example 5 gives a segmented ranking r function for program A,
which can also be min-defined:

r(a, b) = min(r−a(a, b), r−a−b(a, b))

with r−a (resp. r−a−b) depending only on a (resp. a+ b):

r−a(a, b) =

{
0 if a < 0
2a+ 2 if a ≥ 0

r−a−b(a, b) =

{
1 if a+ b < 0
2(a+ b) + 3 if a+ b ≥ 0

Theorem 6 shows the form of a potential ranking function for the set of
terminating states found by the policy iteration algorithm. Also, it gives a com-
pleteness result by describing the programs analyzable with a specific template
as any program admitting a min-defined segmented ranking function satisfy-
ing these conditions. Since linear ranking functions satisfy them, we can deduce
that programs admitting linear ranking functions can be proved to terminate by
policy iteration (with an appropriate template):

Corollary 1. If a program admits a linear ranking function r, then a policy
iteration analysis with a template T including −r can prove its termination.

Conditional termination with a linear ranking function, however, is more
complicated since condition (C3) make strong assumptions on the domain of the
ranking function.

Example 11. The program

1: while x ≥ 0 do
2: x← x+ y
3: end while

admits x as a linear ranking function when y < −1. However, an analysis with the
template (−x,−y) cannot give any result of the form A] = (x >= 0, y >= −1)
because the domain of the ranking function associated to x should be all the
states satisfying x < 0. More generally, while the set of non-terminating states
is (x >= 0, y >= 0), we can prove that no template can give this result.

On the other hand, with an initial constraint of the form y ≤ −ε < 0, the
analysis proves the termination of the program.

5.3 On the well-founded relations

Theorem 5 proposes well-founded relations ≺i defined from (infinite) sets of iter-
ates of the abstract computation. However, relations found in the literature are
generally defined directly. For example, a common order used in linear ranking
functions is ≺ε (with ε > 0) defined as:

a ≺ε b ⇐⇒ a+ ε ≤ b

Such an order is useful because checking a ≺ε b is easier, and because it shows
the evolution of the states towards termination.

In this section we study the possibility of constructing theses kinds of orders
(not based on infinite sets) from the analysis. Our first step is consider the
sequence of policies. This sequence constructs a finite and decreasing chain of
p + 1 fixpoints ρ0 = (+∞), . . . , ρp. Projecting this chain to the i-th component
gives a decreasing sequence ρi0 = +∞, . . . , ρip. As a result, any couple (a, b) where

a < −ρik ≤ b can be included in ≺i. Hence we can construct ≺i as:

≺i = ≺i,1 ∪ ≺i,2 ∪ . . . ∪ ≺i,p
∪]−∞,−ρi1[× [−ρi1,+∞[∪ . . . ∪]−∞,−ρip[×[−ρip,+∞[

(1)

where each ≺i,k is associated to the k-th policy and only defined on [−ρik−1,−ρik[.

Example 12. With program B, we need two well-founded orders ≺x and ≺−x
on R. Since the successive fixpoints (for the linear form x) gives x ≤ 100 and
x ≤ 1.6 (cf. Fig. 3), we may construct ≺x as:

a ≺x b⇔ a < −1.6 ≤ b
or a < −100 ≤ b
or (a, b) ∈ [−100,−1.6[∧ a ≺x,3 b
or (a, b) ∈]−∞,−100[∧ a ≺x,1 b

where ≺x,1 (resp. ≺x,3) is a well-founded suborder of < on] −∞,−100[(resp.
[−100,−1.6[).

Finding an order for each policy is difficult. Let’s restrict ourselves to the
case of a LSL. The policy is described as a system of affine equations, and the
next fixpoint as the limit of a sequence (νk) of the form:

ν0 = ρj

νk+1 = Aνk +B

where A is a nonnegative matrix. Then we have νk−1 − νk = Ak(ν0 − ν1)
(where ν0 − ν1 is also nonnegative). Using [20, Sect. 9.3], we get the following
proposition:

Proposition 4. Let P be a LSL, and ρ0, . . . , ρp the sequence constructed by
policy iteration on P , ρik−1 and ρik the i-th component of ρk−1 and ρk. Then

there exists a well-founded order ≺i,k for equation (1) and a integer d > 0 such
that:

– if ρk = −∞,

∃ε > 0, (≺i,k)d ⊆≺ε where a ≺ε b⇔ a+ ε ≤ b

– otherwise:

∃h > 1, (≺i,k)d ⊆≺h,−ρik where a ≺h,−ρik b⇔ (−ρik − a) ≥ h(−ρik − b)

In this proposition, (≺i,k)d =≺i,k◦ . . . ◦≺i,k is the d-th power of ≺i,k. Note that
≺ε or ≺h,−ρik are well-founded orders on [−ρik−1,−ρik[, which implies that ≺i,k
is a well-founded order.

This proposition does not directly give ≺i,k, but it shows that decreasing
sequences decreases (at least) on average linearly when ρk = −∞ and geomet-
rically (from the upper bound) when ρk is finite. Although this results is not
proven on the general case, we expect the progressions to be similar in most
cases.

Example 13. Continuing the previous example, we consider ≺x,1 on]−∞,−100[
and ≺x,3 on [−100,−1.6[. The first policy (associated to ≺x,1) returns the next
fixpoint after one iteration. Hence we can just define ≺x,1= ∅.

The third policy (associated to ≺x,3) converges with a geometric rate. The
order ≺x,3 can be defined as:

u ≺x,3 u′ ⇐⇒ (−1.6− u) ≥ 4(−1.6− u′)

Concretely, this results shows that from an initial value x > 1.6, the value of
x (when x > 0) diverges from 1.6 at a geometric rate.

6 Experiments

6.1 Template selection

A prototype analyzer implementing the policy iteration algorithm was developed,
using VPL2 to handle exact polyhedral and linear programming operations. Since
our analysis use the template polyhedral domain, selecting a correct template was
an issue. However, overapproximating the greatest fixpoint enables a progressive
refinement of the template: any fixpoint computed with a template can be used as
a starting post-fixpoint with another template. Based on this idea, the following
heuristics was implemented:

1. first, a few backwards steps in the general polyhedral domain is computed;
2. then the actual linear constraints are used as a basis for the template and

the abstract fixpoint is computed for this template;
3. the process can be iterated from the new post-fixpoint, alternating between

backward direct iterations and policy iterations. Since every intermediate
result is a safe approximation, we can stop anytime, or if the fixpoint is
reached.

This heuristics can be compared to existing techniques for invariant analyses
which uses partial traces to specialize the abstract domain [3, 28]. In the worst
case, the analysis gives the same result as a classical narrowing, returning an
approximation of the states which do not terminate after n loop iterations. In
the best case, it gives the abstract greatest fixpoint in the (general) polyhedral
domain, which may not be the exact set of non-terminating states.

2 http://verasco.imag.fr/wiki/VPL

Example 14. In the terminating program (from [9]):

1: while x 6= 0 do
2: if x > 0 then
3: x← x− 1
4: else
5: x← x+ 1
6: end if
7: end while

the decreasing iterations in the polyhedral domain stabilizes immediately at
] − ∞,+∞[. The problem can be solved by using several program points (or,
similarly, state partitioning) to separate the cases x > 0 and x < 0.

6.2 Results

Table 1. Experiment results

LSL test suite[5]

Programs Results

38 LSLs

Terminating : 26
Linear r.f.: 7 Termination proved: 7

Non-linear r.f.: 19 Termination proved: 13

Non-terminating : 12
Exact semantics with PI: 2

Exact semantics with narrowing: 3
No improvement: 7

LSL test suite First, we used the LSL test suite proposed by Chen et al.[5].
This suite has 38 LSL loops, of which 12 are non-terminating, 7 are terminating
with linear ranking functions, and 19 are terminating with non-linear ranking
functions. Our prototype analyzed the whole test suite in 0.5 second. The results
are summarized on Table 1. Terminating LSLs with a linear ranking function
are all proved to terminate (although our heuristics does not guarantee this).
Terminating LSLs without a linear ranking function are proved to terminate
most of the time, yet our analyzer failed in 6 cases whereas Chen et al.’s algo-
rithm, which is specifically designed to prove termination on LSLs, failed only
twice. Interpreting the results of non-terminating LSLs is harder since this test
suite was not designed for conditional termination analysis. For 2 LSLs, our ap-
proach managed to find the exact set of terminating states, something which
was not possible with only narrowings. For 3 LSLs, the greatest fixpoint is di-
rectly reached by a few iterations in the polyhedral domain. Finally, for the other
programs, the PI techniques does not refine the decreasing iteration sequence.

These results show that our approach is quite fast and can find complex
termination properties, but not as efficient as a technique specifically designed
for linear simple loops.

Other programs To our knowledge, no test suite exists for termination anal-
ysis (or conditional termination) on general programs. Hence we tested some
examples given on previous works. The analyzes were fast and sometimes suc-
cessful. However, several cases failed to give interesting results. We identified
two main causes.

1. The iterates in the polyhedral domain stabilize after a few iterations, as
in Example 14. This problem is directly related to the use of polyhedral
abstractions.

2. Termination (or interesting conditional termination) requires the use of lex-
icographic ordering [9]. Our approach seems to be more suited to prove
termination when the ranking relations are interlinked than when they form
a lexicographic order. This is especially interesting as other approaches (lim-
ited to termination analysis) are specifically designed for lexicographic or-
dering [9, 2]. Hence our approach can be used in complement to those.

For both problems, partitioning the set of states should improve the results.

7 Conclusion

This paper has described how policy iteration can be used to find conditional ter-
mination properties. The analysis is fast and the result can be precise, although
it relies heavily on the abstract domain used. To improve the analysis, we plan
to investigate the application of dynamic trace partitioning [26] for conditional
termination. Another possibility would be to extend the policy iteration frame-
work to other abstract domains such as the generalized template domain [6] or
quadratic templates [1].

Acknowledgements. The author thanks D. Monniaux, L. Gonnord and
S. Putot as well as the anonymous referees for their comments and suggestions.

References

1. A. Adjé, S. Gaubert, and E. Goubault. Coupling policy iteration with semi-definite
relaxation to compute accurate numerical invariants in static analysis. In A. D.
Gordon, editor, ESOP, volume 6012 of Lecture Notes in Computer Science, pages
23–42. Springer, 2010.

2. Christophe Alias, Alain Darte, Paul Feautrier, and Laure Gonnord. Multi-
dimensional rankings, program termination, and complexity bounds of flowchart
programs. In Cousot and Martel [15], pages 117–133.

3. Gianluca Amato, Maurizio Parton, and Francesca Scozzari. Deriving numerical
abstract domains via principal component analysis. In Cousot and Martel [15],
pages 134–150.

4. M. Bozga, R. Iosif, and F. Konecný. Deciding conditional termination. In Tools
and Algorithms for the Construction and Analysis of Systems - 18th International
Conference, TACAS 2012, Held as Part of the European Joint Conferences on The-
ory and Practice of Software, ETAPS, volume 7214 of Lecture Notes in Computer
Science, pages 252–266. Springer, 2012.

5. Hong Yi Chen, Shaked Flur, and Supratik Mukhopadhyay. Termination proofs for
linear simple loops. In Antoine Miné and David Schmidt, editors, SAS, volume
7460 of Lecture Notes in Computer Science, pages 422–438. Springer, 2012.

6. Michael Colón and Sriram Sankaranarayanan. Generalizing the template polyhe-
dral domain. In Gilles Barthe, editor, ESOP, volume 6602 of Lecture Notes in
Computer Science, pages 176–195. Springer, 2011.

7. Byron Cook, Sumit Gulwani, Tal Lev-Ami, Andrey Rybalchenko, and Mooly Sagiv.
Proving conditional termination. In Aarti Gupta and Sharad Malik, editors, CAV,
volume 5123 of Lecture Notes in Computer Science, pages 328–340. Springer, 2008.

8. Byron Cook, Andreas Podelski, and Andrey Rybalchenko. Abstraction refinement
for termination. In Chris Hankin and Igor Siveroni, editors, SAS, volume 3672 of
Lecture Notes in Computer Science, pages 87–101. Springer, 2005.

9. Byron Cook, Abigail See, and Florian Zuleger. Ramsey vs. lexicographic termina-
tion proving. In Nir Piterman and Scott A. Smolka, editors, TACAS, volume 7795
of Lecture Notes in Computer Science, pages 47–61. Springer, 2013.

10. A. Costan, S. Gaubert, E. Goubault, M. Martel, and S. Putot. A policy iteration
algorithm for computing fixed points in static analysis of programs. In K. Etessami
and S. K. Rajamani, editors, CAV, volume 3576 of Lecture Notes in Computer
Science, pages 462–475. Springer, 2005.

11. P. Cousot. Méthodes itératives de construction et d’approximation de points fi-
xes d’opérateurs monotones sur un treillis, analyse sémantique de programmes (in
French). Thèse d’État ès sciences mathématiques, Université Joseph Fourier, Gre-
noble, France, 21 March 1978.

12. P. Cousot and R. Cousot. An abstract interpretation framework for termination.
In Conference Record of the 39th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 245–258, Philadelphia, PA, January
25-27 2012. ACM Press, New York.

13. Patrick Cousot. Proving program invariance and termination by parametric ab-
straction, lagrangian relaxation and semidefinite programming. In Cousot [14],
pages 1–24.

14. R. Cousot, editor. Verification, Model Checking, and Abstract Interpretation, 6th
International Conference, VMCAI 2005, Paris, France, January 17-19, 2005, Pro-
ceedings, volume 3385 of Lecture Notes in Computer Science. Springer, 2005.

15. R. Cousot and M. Martel, editors. Static Analysis - 17th International Symposium,
SAS 2010, Perpignan, France, September 14-16, 2010. Proceedings, volume 6337
of Lecture Notes in Computer Science. Springer, 2010.

16. Liyun Dai and Bican Xia. Non-termination sets of simple linear loops. In Abhik
Roychoudhury and Meenakshi D’Souza, editors, ICTAC, volume 7521 of Lecture
Notes in Computer Science, pages 61–73. Springer, 2012.

17. R. De Nicola, editor. Programming Languages and Systems, 16th European Sym-
posium on Programming, ESOP 2007, Held as Part of the Joint European Confer-
ences on Theory and Practice of Software, ETAPS 2007, Braga, Portugal, March
24 - April 1, 2007, Proceedings, volume 4421 of Lecture Notes in Computer Science.
Springer, 2007.

18. S. Gaubert, E. Goubault, A. Taly, and S. Zennou. Static analysis by policy iteration
on relational domains. In De Nicola [17], pages 237–252.

19. T. Gawlitza and H. Seidl. Precise fixpoint computation through strategy iteration.
In De Nicola [17], pages 300–315.

20. Leslie Hogben. Handbook of Linear Algebra. (Discrete Mathematics and Its Ap-
plications). Chapman & Hall/CRC, 1 edition, 2007.

21. B. Jeannet and A. Miné. Apron: A library of numerical abstract domains for static
analysis. In A. Bouajjani and O. Maler, editors, CAV, volume 5643 of Lecture Notes
in Computer Science, pages 661–667. Springer, 2009.

22. Daniel Kroening, Natasha Sharygina, Aliaksei Tsitovich, and Christoph M. Winter-
steiger. Termination analysis with compositional transition invariants. In Tayssir
Touili, Byron Cook, and Paul Jackson, editors, CAV, volume 6174 of Lecture Notes
in Computer Science, pages 89–103. Springer, 2010.

23. Damien Massé. Proving termination by policy iteration. Electr. Notes Theor.
Comput. Sci., 287:77–88, 2012.

24. Andreas Podelski and Andrey Rybalchenko. A complete method for the synthesis
of linear ranking functions. In Bernhard Steffen and Giorgio Levi, editors, VMCAI,
volume 2937 of Lecture Notes in Computer Science, pages 239–251. Springer, 2004.

25. Andreas Podelski and Andrey Rybalchenko. Transition invariants. In LICS, pages
32–41. IEEE Computer Society, 2004.

26. Xavier Rival and Laurent Mauborgne. The trace partitioning abstract domain.
ACM Trans. Program. Lang. Syst., 29(5), 2007.

27. S. Sankaranarayanan, H. B. Sipma, and Z. Manna. Scalable analysis of linear
systems using mathematical programming. In Cousot [14], pages 25–41.

28. Yassamine Seladji and Olivier Bouissou. Fixpoint computation in the polyhedra
abstract domain using convex and numerical analysis tools. In Roberto Giacobazzi,
Josh Berdine, and Isabella Mastroeni, editors, VMCAI, volume 7737 of Lecture
Notes in Computer Science, pages 149–168. Springer, 2013.

29. Ashish Tiwari. Termination of linear programs. In Rajeev Alur and Doron Peled,
editors, CAV, volume 3114 of Lecture Notes in Computer Science, pages 70–82.
Springer, 2004.

30. Caterina Urban. The abstract domain of segmented ranking functions. In Francesco
Logozzo and Manuel Fähndrich, editors, SAS, volume 7935 of Lecture Notes in
Computer Science, pages 43–62. Springer, 2013.

