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MITTAG-LEFFLER FUNCTIONS AND COMPLETE MONOTONICITY

THOMAS SIMON

Abstract. We consider two operations on the Mittag-Leffler function which cancel the ex-
ponential term in the expansion at infinity, and generate a completely monotonic function.
The first one is the action of a certain differential-difference operator, and leads to a char-
acterization via some necktie domain. The second one is the subtraction of the exponential
term itself multiplied by an incomplete Gamma function. These results extend previous
works by various authors.

1. Introduction

The classical Mittag-Leffler function is the entire function

Eα(z) =
∑

n≥0

zn

Γ(1 + αn)
, z ∈ C, α > 0,

and can be viewed as an extension of the exponential function. The generalized Mittag-Leffler
function writes

Eα,β(z) =
∑

n≥0

zn

Γ(β + αn)
, z ∈ C, α, β > 0.

Introduced for analytical purposes by Mittag-Leffler and Wiman at the beginning of the
twentieth century, these functions have been the object of many studies. We refer to Chapter
XVIII in [3] and Chapter 3 in [2] for classical properties, and also to the survey [4] for a more
recent account. Nowadays these functions play an important rôle in fractional calculus, and
find some applications in physics [6].

It has been shown by Pollard [9] that the function

x 7→ Eα(−x), x ∈ R+,

is completely monotonic (CM) for any α ∈ (0, 1]. Recall that a smooth function on (0,+∞)
is CM if its successive derivatives have an alternating sign, starting positive. Bernstein’s
theorem - see e.g. [13] p.160 - states that a function f is CM if and only if it writes

f(x) =

∫ ∞

0

e−xt µ(dt)

for some positive σ−finite measure µ. Pollard’s result was improved by Schneider [10], who
showed that Eα,β(−x) is CM if and only if α ∈ (0, 1] and β ≥ α. A short proof of this latter
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MITTAG-LEFFLER FUNCTIONS AND COMPLETE MONOTONICITY 2

result, using an Abelian transformation, has been obtained in [7]. On the other hand, the
author observed in [11] that the function

x 7→ Eα(x
α) − αxα−1E ′

α(x
α)

is CM for all α ∈ [1, 2]. In the present paper we pursue these lines of research and display
further CM properties of the functions Eα and Eα,β . For every β > 0, consider the following
differential-difference operator

Lβf(x) = f ′(x) +
β − 1

x
(f(x)− f(0)).

For every x > 0, set Fα,β(x) = Eα,β(x
α),

Dα,β(x) = LβFα,β(x) − Fα,β(x),

and Dα,β(x) = −Dα,β(x). It is easy to see that D1,β = 0 for all β > 0. If α 6= 1, notice
that Dα,β is the difference of two functions with exponential growth at infinity: one has the
convergent series representation

Dα,β(x) =
∑

n≥1

xαn−1

Γ(β + αn− 1)
−
∑

n≥0

xαn

Γ(β + αn)
· (1.1)

Theorem A. Assume α 6= 1. The following equivalences hold.

(a) Dα,β is CM ⇔ α ∈ (0, 1), β ≥ α ∨ (1− α).

(b) Dα,β is CM ⇔ either α ∈ (1, 2], β ≥ 1 or α ∈ (0, 1), β ≤ α ∧ (1− α).

α

β
Dα,β is CM

Dα,β is CM

b

1

2

3

4

1 2 3 4

Observe that D1/2,1/2 = 0, as can also be seen from (1.1). In the above result, the rôle of the
operator Lβ is to cancel the leading exponential term in the expansion of Eα,β(x

α). More



MITTAG-LEFFLER FUNCTIONS AND COMPLETE MONOTONICITY 3

precisely, the asymptotic expansion 18.1(22) p. 210 in [3] shows that for α ∈ (0, 2],

Eα,β(x
α) ∼ x1−βex

α
, x → +∞,

and the right hand side is, up to some function with polynomial decay, annihilated by the
action of Lβ. Other differential-difference operators can be chosen in order to make this
cancellation, but Lβ is the most natural one because LβE1,β = E1,β.

In view of the complete expansion 18.1(22) in [3], one may ask if subtracting from Eα,β(x
α)

the leading exponential term itself would not lead to a CM function. The following result
shows that this is indeed the case for α ∈ (0, 2], β ≥ 1, up to a slight multiplicative correction
when β > 1. For every u, x > 0, set

γ(u, x) =

∫ x

0

tu−1e−t dt

for the incomplete Gamma function.

Theorem B. The following functions are CM.

(a) For every α ∈ (0, 1], the function

x 7→ ex

α
− Eα(x

α).

(b) For every α ∈ (0, 1] and β > 1, the functions

x1−βexγ(β − 1, x)

αΓ(β − 1)
− Fα,β(x) and LβFα,β(x) − x1−βexγ(β − 1, x)

αΓ(β − 1)
·

(c) For every α ∈ [1, 2], the function

x 7→ Eα(x
α) − ex

α
·

(d) For every α ∈ [1, 2] and β > 1, the functions

Fα,β(x) − x1−βexγ(β − 1, x)

αΓ(β − 1)
and

x1−βexγ(β − 1, x)

αΓ(β − 1)
− LβFα,β(x).

This result shows that when β ≥ 1, the CM functions of Theorem A are decomposed, in
a non-trivial way, into the sum of two CM functions. It seems however difficult to obtain
such a decomposition for β < 1, because the underlying Bernstein measures of Dα,β or Dα,β

have then a complicated expression.
It is interesting to interpret the result of Theorem B in light of the known asymptotic

expansions of Eα,β(x
α) and γ(β − 1, x) at infinity. Using

∫ ∞

x

ts−1e−t dt = xs−1e−x

(
n∑

k=0

Γ(s) x−k

Γ(s− k)
+ o(x−(n+1))

)
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we get the expansion

Fα,β(x) − x1−βexγ(β − 1, x)

αΓ(β − 1)
=

n∑

k=1

(
x−k

αΓ(β − k)
− x−αk

Γ(β − αk)

)
+ o(x−(n+1)(α∧1)),

whose leading term is negative for α < 1 and positive for α > 1, in accordance with (b) and
(d). Throughout this paper, we will often encounter functions depending on a parameter
which become CM when they are positive - see Remark 1 (b) below. Notice also that the
coefficients in the expansion all vanish for α = 1, which matches the easily established - see
(3.3) below - identity

E1,β(x) =
x1−βexγ(β − 1, x)

Γ(β − 1)
·

It is possible to improve Part (a) of Theorem A as well as Parts (a) and (b) of Theorem B,
in showing the CM property for the functions taken at x1/α. For Theorem B the situation is
quite different according as α < 1/2 or α ∈ [1/2, 1], where the functions under consideration
turn out to have tight connections with the spectrally positive (1/α)−stable Lévy process.
On the other hand, when α ∈ (1, 2] the involved functions are linked with the spectrally
positive α−stable Lévy process. All these relationships are explained in details towards the
end of the paper. Theorems A and B are proved in Section 2 and 3 respectively, following an
approach which is mainly based on Mellin and Stieltjes inversions, and depends in a crucial
way on certain Abelian transformations inspired by that of [7] and connecting the relevant
functions with one another. The argumentation becomes quite intricate for 0 < α, β < 1
inside the necktie domain. At the end of each proof, we provide a complete list of the
underlying Bernstein measures.

2. Proof of Theorem A

2.1. Proof of (a). We begin with the only if part. The necessity of α ∈ (0, 1) comes from
the fact that if α > 1,

Dα,β(0+) = − 1

Γ(α + β)
< 0.

Suppose now α ∈ (0, 1). Then

Dα,β(x) ∼ xα−1

Γ(α + β − 1)

as x → 0+, an expression which is negative if β < 1−α. Finally, if 1−α ≤ β < α then (1.1)
entails

Dα,β(x) = xα−1Fα,α+β−1(x)− Fα,β(x) ∼ x−α

Γ(β − α)
< 0, x → +∞,

where the equivalence comes from the aforementioned asymptotic expansion 18.1(22) in [3].

We now show that if α ∈ (0, 1) and β ≥ α ∨ (1− α), then Dα,β is CM. We start with the
case β = 1, a situation which was already settled in [11] - see Remark 2 (b) therein - with
the help of Hankel’s contour formula for the reciprocal of the Gamma function. We provide
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here an alternative argument relying on Stieltjes inversion. Using (1.1), we first compute the
Laplace transform ∫ ∞

0

e−sxDα,1(x) dx =
1− sα−1

sα − 1

for every s > 0. The function

Fα(s) =
1− sα−1

sα − 1
has an analytic extension on C/(−∞, 0] such that Fα(z) → 0 as |z| → ∞ and Fα(z) =
o(|z|−1) as |z| → 0, uniformly in every sector | arg z| ≤ π− ε, ε > 0. Besides, for every r > 0
and θ ∈ (−π, π) one has, setting γ = α− 1/2 ∈ (−1/2, 1/2),

ℜ(eiθ/2Fα(re
iθ)) =

2(rα−1 + rα) cos(γθ)− 2(1 + r2α−1) cos(θ/2)

r2α − 2rα cos(θ) + 1

=
2(rα−1 + rα)(cos(γθ)− cos(θ/2)) + 2(rα − 1)(1− rα−1) cos(θ/2)

r2α − 2rα cos(θ) + 1
≥ 0.

From [5] p. 238, we deduce that Fα is the Stieltjes transform of some positive measure µα(dt)
on (0,+∞), viz. it writes

Fα(s) =

∫ ∞

0

µα(dt)

t+ s
=

∫ ∞

0

e−sx

(∫ ∞

0

e−xtµα(dt)

)
dx.

Moreover, the Perron-Stieltjes inversion formula - see e.g. Theorem VIII.7.a p. 339 in [13] -
entails

µα(b) − µα(a) = lim
η→0+

1

2πi

∫ b

a

(Fα(−t− iη)− Fα(−t + iη)) dt

=

∫ b

a

sin(πα)tα−1(1 + t)

π(t2α − 2 cos(πα)tα + 1)
dt

for every 0 < a < b. By uniqueness of the Laplace transform, this yields

Dα,1(x) =

∫ ∞

0

e−xt sin(πα)tα−1(1 + t)

π(t2α − 2 cos(πα)tα + 1)
dt, x > 0, (2.1)

and shows that Dα,1 is CM. To handle the case β > 1 we appeal to the formula

Dα,β(x) =
1

Γ(β − 1)

∫ 1

0

(1− t)β−2Dα,1(xt) dt, (2.2)

which can be checked from (1.1). Setting

fα(t) =
sin(πα)tα−1(1 + t)

π(t2α − 2 cos(πα)tα + 1)

we deduce from (2.2) and Fubini’s theorem

Dα,β(x) =

∫ ∞

0

e−xt

(
1

Γ(β − 1)

∫ 1

0

(1− u)β−2fα(
t

u
)
du

u

)
dt, x > 0.



MITTAG-LEFFLER FUNCTIONS AND COMPLETE MONOTONICITY 6

This shows that Dα,β is CM for every β > 1.

We now proceed to the case α∨ (1−α) ≤ β < 1 which is more delicate, except in the case
α = 1/2 where (1.1) entails

D1/2,β(x) =
x−1/2

Γ(β − 1/2)
,

a CM function if β ≥ 1/2 (and the zero function if β = 1/2). We must divide the proof
according as α > 1/2 or α < 1/2.

2.1.1. The case α > 1/2 and β ≥ α. A computation based on (1.1) reveals that

Dα,β(x) =
1

Γ(β − α)

∫ 1

0

(1− t)β−α−1tα−1Dα,α(xt) dt (2.3)

for every β > α, so that it is enough to show that Dα,α is CM. The proof of this fact
hinges upon a certain multiplicative factorization of the σ−finite measure µα on (0,+∞)
with density fα. The Mellin transform1

Mα(s) =

∫ ∞

0

tsfα(t) dt

is well-defined for s ∈ (−α, α− 1) and a computation similar to Proposition 4 in [12] yields
the closed formula

Mα(s) = − sin(π/α) sin(πs)

α sin(πs/α) sin(π(s+ 1)/α)
·

Introduce the Bα,1−α random variable with density

xα−1(1− x)−α

Γ(α)Γ(1− α)
1(0,1)(x)

and with Mellin transform

E[Bs
α,1−α] =

Γ(α + s)

Γ(1 + s)Γ(α)
, s > −α.

The complement and concatenation formulæ for the Gamma function entail

Γ(1 + s)Γ(α)Mα(s)

Γ(α + s)
=

Γ(1− s/α)

Γ(1− s)
× Γ(1 + s/α)Γ(α)

Γ(α+ s)
× − sin(π/α)

sin(π(s+ 1)/α)

for s ∈ (−α, α−1). We will now show that the three factors on the right hand side are Mellin
transforms of positive σ−finite measures on (0,+∞). First, recall e.g. from Theorem 2.6.3
in [15] that

Γ(1− s/α)

Γ(1− s)
= E[Zs

α], s < α,

where Zα is the standard positive α−stable random variable which is defined through the
Laplace transform

E[e−λZα ] = e−λα

, λ ≥ 0.

1Throughout this paper we integrate along t
s instead of ts−1 to define Mellin transforms, because this

leads to shorter formulæ.
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The following Lemma, which might be well-known although we could locate it in the litera-
ture, shows the property for the second factor.

Lemma 1. For every α ∈ (0, 1) there exists a positive random variable Xα such that

Γ(1 + s/α)Γ(α)

Γ(α + s)
= E[Xs

α], s > −α.

Proof. A simple application of Helly’s selection theorem, and the fact that the quotient on
the left-hand side equals 1 at s = 0, show that it is enough to consider the case when α is
rational. Set α = p/q with q > p ≥ 1. A repeated use of the Legendre-Gauss multiplication
formula for the Gamma function entails

Γ(1 + qs
p
)Γ(p

q
)

Γ(p
q
+ s)

=

(
q

q
p

p
p
q

)s p∏

i=2

Γ( i
q
+ s

p
)Γ( i−1

p
+ 1

q
)

Γ(1
q
+ i−1

p
+ s

p
)Γ( i

q
)

×
q∏

j=p+1

Γ( j
q
+ s

p
)

Γ( j
q
)

= E[Xs
p,q]

where Ba,b and Γc stand for the Beta and Gamma random variables with respective param-
eters a, b, c > 0, and Xp,q is the independent product

q
q
p

p
p
q

×
(

p∏

i=2

B i
q
,(i−1)( 1

p
− 1

q
) ×

q∏

j=p+1

Γ j
q

) 1
p

·

This completes the proof.
�

To handle the third factor we rewrite, for every s ∈ (−α, α− 1),

− sin(π/α)

sin(π(s+ 1)/α)
=

Γ((1 + s)/α)

Γ(1/α)
× Γ(1− (1 + s)/α)

−Γ(1 − 1/α)

= E[Γ
s/α
1/α] ×

∫ ∞

0

(
(1− α)t−αe−t−α

Γ(2− 1/α)

)
ts dt.

Setting gα for the integrated function on the right-hand side and putting everything together
shows finally that

Mα(s) = E[Bs
α,1−α] × E[Ys

α] × Mgα(s), s ∈ (−α, α− 1),

where Yα = Zα ×Xα × Γ
1
α
1
α

is meant as an independent product and we denote by

Mf(s) =

∫ ∞

0

f(t) ts dt

the Mellin transform of a positive measurable function on (0,+∞). Set now ⊙ for the mul-
tiplicative convolution of two positive measurable functions on (0,+∞) :

f ⊙ g(x) =

∫ ∞

0

f(t) g(
x

t
)
dt

t
,
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and recall from Fubini’s theorem that Mf⊙g = Mf × Mg (with possible infinite values).
Setting fX for the density of an absolutely continuous random variable X and hα = gα⊙fYα ,
we get

Mα(s) = Mf
Bα,1−α

(s) × Mhα(s) < +∞
for every s ∈ (−α, α− 1). Inverting these Mellin transforms entails the crucial factorization

fα = f
Bα,1−α

⊙ hα, (2.4)

which seems difficult to obtain from a direct computation. We can now finish the proof of
the case α > 1/2. On the one hand, it follows from (2.3) with β = 1 that

Dα,1(x) = Γ(α)

∫ 1

0

f
Bα,1−α

(t)Dα,α(xt) dt.

On the other hand, we deduce from (2.1), (2.4) and Fubini’s theorem

Dα,1(x) =

∫ 1

0

f
Bα,1−α

(t)

(∫ ∞

0

e−xtuhα(u) du

)
dt.

Setting

Hα(x) =
1

Γ(α)

∫ ∞

0

e−xuhα(u) du, x > 0,

which is a CM function, and comparing the two identities, we obtain
∫ 1

0

f
Bα,1−α

(t)Dα,α(xt) dt =

∫ 1

0

f
Bα,1−α

(t)Hα(xt) dt, x > 0.

This is an identity between certain Abelian transforms for which we did not find any direct
inversion formula in the literature. After a change of variable, this identity changes into

kα ⊙ Dα,α = kα ⊙ Hα

with kα(x) = (x− 1)−α1{x>1}. The Mellin transform of the left-hand side is well-defined on
(−α, α− 1) because

Dα,α(x) ∼ xα−1

Γ(2α− 1)
as x → 0+ and Dα,α(x) ∼ − x−1

Γ(α− 1)
as x → +∞.

Hence, taking the Mellin transform on both sides and factorizing by that of kα entails finally,
after Mellin inversion, that Dα,α = Hα and the proof is complete.

�

2.1.2. The case α < 1/2 and β ≥ 1− α. Another direct computation based on (1.1) yields

Dα,β(x) =
xα−1

Γ(α + β − 1)
+

1

Γ(α + β − 1)

∫ 1

0

(1− t)α+β−2t−αDα,1−α(xt) dt (2.5)

for every β > 1 − α, so that it is enough to show that Dα,1−α is CM. As before, this fact
will follow from a certain multiplicative factorization of the measure µα. However the Mellin
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transform of µα is here everywhere infinite, because α < 1/2. Set nα = [α−1] ≥ 2, which is
the unique integer such that

1

nα + 1
< α ≤ 1

nα

·

We will show the stronger result that the function

D̃α,1−α(x) = Dα,1−α(x) −
nα−1∑

k=2

xαk−1

Γ(α(k − 1))
(2.6)

(with an empty sum if nα = 2) is CM. This result is indeed stronger because the sum on the

right-hand side is clearly CM. Observe first from (1.1) that D̃α,1−α = 0 if α is the reciprocal
of an integer viz. α = 1/nα. From now on we will hence suppose α < 1/nα. Decompose

Dα,1(x) =

nα−1∑

k=1

xαk−1

Γ(αk)
+
∑

k≥nα

xαk−1

Γ(αk)
−
∑

k≥0

xαk

Γ(1 + αk)

=
nα−1∑

k=1

sin(παk)

π

∫ ∞

0

e−xtt−αkdt +
∑

k≥nα

xαk−1

Γ(αk)
−
∑

k≥0

xαk

Γ(1 + αk)

=
sin(πα)

π

∫ ∞

0

e−xt

(
nα−1∑

k=1

Uk−1(cosπα) t
−αk

)
dt +

∑

k≥nα

xαk−1

Γ(αk)
−
∑

k≥0

xαk

Γ(1 + αk)

where

Un(cos θ) =
sin(n+ 1)θ

sin θ
stands for the n−th Chebyshev polynomial of the second kind. Using the notation Uα

n =
Un(cosπα) for every n ≥ 0 and

D̃α,1(x) =
∑

k≥nα

xαk−1

Γ(αk)
−
∑

k≥0

xαk

Γ(1 + αk)
,

we get

D̃α,1(x) =

∫ ∞

0

e−xtf̃α(t) dt

where, simplifying with the help of the recurrence relations Un+2+Un = U1Un+1, we compute

f̃α(t) =
sin(πα)tα−1(1 + t)

π(t2α − Uα
1 t

α + 1)
− sin(πα)

π

nα−1∑

k=1

Uα
k−1t

−αk

=
sin(πα)(tα−1 − Uα

nα−2t
−α(nα−1) + Uα

nα−1t
−α(nα−2))

π(t2α − Uα
1 t

α + 1)
·

From (2.5) with β = 1 and the fact that

nα−1∑

k=2

xαk−1

Γ(αk)
=

1

Γ(α)

∫ 1

0

(1− t)α−1t−α

(
nα−1∑

k=2

(xt)αk−1

Γ(α(k − 1))

)
dt
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we also have ∫ ∞

0

e−xtf̃α(t) dt =
1

Γ(α)

∫ 1

0

(1− t)α−1t−αD̃α,1−α(xt) dt. (2.7)

Similarly as in the case α > 1/2, our next step is now to show that the density of the random

variable B1−α,α is a multiplicative factor of f̃α. The Mellin transform

M̃α(s) =

∫ ∞

0

tsf̃α(t) dt

is finite for every s ∈ (−α, nαα− 1) which is a non-empty interval. Using

sin πα

π

∫ ∞

0

tα−1+sdt

t2α − Uα
1 t

α + 1
=

sin πα

πα

∫ ∞

0

u
s
αdu

u2 + 2u cosπ(1− α) + 1
=

sin(πs(1− α)/α)

α sin(πs/α)

for every s ∈ (−α, α), where the second computation comes from a standard application of
the residue theorem, we deduce

M̃α(s) =
sin(πs(1− α)/α)

α sin(πs/α)
− Uα

nα−2 sin(π(1− α)(s+ 1− nαα)/α)

α sin(π(s+ 1− nαα)/α)

+
Uα
nα−1 sin(π(1− α)(s+ 1 + α− nαα)/α)/α)

α sin(π(s+ 1 + α− nαα)/α)/α)

= − sin(π/α) sin(πs)

α sin(πs/α) sin(π(s+ 1)/α)

for every s ∈ (−α, nαα−1), where the second equality follows after some trigonometry. This
entails, with the above notation,

Γ(1 + s)Γ(1− α)M̃α(s)

Γ(1− α + s)
=

Γ(1− s/α)

Γ(1− s)
× Γ(1 + s/α)Γ(α)

Γ(α + s)

× Γ(α + s)Γ(1− α)

Γ(1− α + s)Γ(α)
× − sin(π/α)

sin(π(s+ 1)/α)

= Mf
Zα
(s) × Mf

Xα
(s) × Mf

Bα,1−2α
(s) × − sin(π/α)

sin(π(s+ 1)/α)
·

Using the concatenation formula for the Gamma function and setting U for the uniform
random variable on (0, 1), we finally decompose

− sin(π/α)

sin(π(s+ 1)/α)
=

Γ((1 + s)/α)

Γ(1/α)
× Γ(1− (1 + s)/α)

−Γ(1− 1/α)

= E[Γ
s/α
1/α] ×

nα−1∏

k=1

(
1− αk

1− αk + s

)
× Γ(nα − 1/α− s/α)(1/α− nα)

Γ(nα + 1− 1/α)

= E[Γ
s/α
1/α] ×

nα−1∏

k=1

E[Us/(1−αk)] ×
∫ ∞

0

(
(1− nαα)t

−nααe−t−α

Γ(nα + 1− 1/α)

)
ts dt
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for every s ∈ (−α, nαα − 1). Setting g̃α for the integrated function on the right-hand side
and

h̃α = g̃α ⊙ f
Bα,1−2α

⊙ f
Zα

⊙ f
Xα

⊙ f
Γ
1/a
1/α

⊙
(

nα−1⊙

k=1

f
U1/(1−αk)

)
,

an inversion of the Mellin transform yields the factorization

f̃α = f
B1−α,α

⊙ h̃α.

Comparing with (2.7), we deduce
∫ 1

0

f
B1−α,α

D̃α,1−α(xt) dt =

∫ 1

0

f
B1−α,α

H̃α(xt) dt, x > 0,

where H̃α is the CM function

H̃α(x) =
1

Γ(1− α)

∫ ∞

0

e−xt h̃α(t) dt, x > 0.

The latter identity transforms into

k̃α ⊙ D̃α,1−α = k̃α ⊙ H̃α

with k̃α(x) = (x− 1)α−11{x>1}. The Mellin transform of the left-hand side is well-defined on
the non-empty interval (−nαα, α− 1) because

D̃α,1−α(x) ∼ xnαα−1

Γ(nαα− α)
as x → 0+ and D̃α,1−α(x) ∼ x−α

Γ(1− 2α)
as x → +∞.

Similarly as above, we obtain the identification D̃α,1−α = H̃α and the proof is complete.
�

2.2. Proof of (b). We begin with the only if part, which is analogous to the above. The
necessity of α ≤ 2 comes from the fact that if α > 2, then Dα,β(0+)′ = 0 so that Dα,β is not
CM. Suppose now α ∈ (0, 1). Then

Dα,β(x) ∼ −xα−1

Γ(α+ β − 1)
as x → 0+ and Dα,β(x) ∼ −x−α

Γ(β − α)
as x → +∞,

and at least one of these expressions is negative if β > α∧ (1−α). Finally, if α ∈ (1, 2] then
again the expansion 18.1.(22) in [3] entails

Dα,β(x) ∼ x−1

Γ(β − 1)
as x → +∞,

which is negative if β < 1.

We next show that if α ∈ (1, 2] and β ≥ 1, then Dα,β is CM. The case β = 1 is stated as
Theorem 1 in [11] and can also be handled with exactly the same Stieltjes inversion argument
as in the proof of (a). For α < 2 this reads

Dα,1(x) =

∫ ∞

0

e−xt − sin(πα)tα−1(1 + t)

π(t2α − 2 cos(πα)tα + 1)
dt, x > 0, (2.8)
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whereas for α = 2 we simply have D2,1(x) = e−x, the prototype of a CM function. The case
β > 1 follows from the formula

Dα,β(x) =
1

Γ(β − 1)

∫ 1

0

(1− t)β−2Dα,1(xt) dt (2.9)

which is again a direct computation relying on (1.1).

We finally show that if α ∈ (0, 1) and β ≤ α ∧ (1 − α), then Dα,β is CM. This is the
delicate part. After some further computations relying on (1.1), we get

Dα,β(x) = x1−β d

dx
(xβDα,β+1(x)) = −(xD′

α,β+1(x) + βDα,β+1(x))

=
1

Γ(β)

∫ 1

0

(1− t)β−1Hα,β(xt) dt

with

Hα,β(x) = −(βDα,1(x) + xD′
α,1(x)) =

∫ ∞

0

e−xt(tf ′
α(t) + (1− β)fα(t)) dt

where the last equality comes after an integration by parts in (2.1). We are hence reduced
to show that Hα,β is CM, in other words that the function

hα,β(t) = (1− β)fα(t) + tf ′
α(t)

is non-negative. We must divide the proof according as α ≤ 1/2 or α > 1/2.

(i) The case α ≤ 1/2 and β ≤ α. It is enough to show the non-negativity of hα,α which,
after some computations, amounts to that of the function

t 7→ (1− 2α)t3α − 2(1− α) cos(πα)t2α + tα − 2αt3α−1 + 2α cos(πα)t2α−1.

(ii) The case α > 1/2 and β ≤ 1− α. Here we need to show the non-negativity of hα,1−α,
which is equivalent to that of the function

t 7→ −2α cos(πα)t2α − t3α−1 + 2αtα + 2(1− α) cos(πα)t2α−1 + (2α− 1)tα−1.

The non-negativity of these two polynomial functions, which are zero for α = 1/2, can be
observed heuristically with the help of some plotting software. A strict proof is obtained in
using the sequence of signs +−+−+ for the coefficients, and the following equivalence for
all a, b, c, ρ > 0 :

at1+ρ − bt + c ≥ 0 for all t > 0 ⇔ a ≥
(ρ
c

)ρ( b

1 + ρ

)1+ρ

.

Though interesting, the details of this strict proof are lenghty and will be not included here.
They have been typesetted and are available upon request.

�
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Remark 1. (a) Proceeding along the same way as in [11], we obtain the following integral
representation which is valid for any 0 < α, β < 2.

Dα,β(x) =
x1−β

2πi

∫

H

(
tα−1 − 1

tα − 1

)
t1−βext dt,

where H is a standard Hankel path encircling the origin. This transforms into

x1−β

π

∫ ∞

0

e−xt

(
sin(πβ)t1−β(t2α−1 − 1) + sin(π(α + β))tα+1−β + sin(π(α− β))tα−β

t2α − 2 cos(πα)tα + 1

)
dt

and simplifies to (2.1) resp. (2.8) for β = 1. Using this representation it is an easy exercise,
which is left to the reader, to prove the weaker result that for any α ∈ (0, 1) the function

xβ−1Dα,β(x) resp. xβ−1Dα,β(x)

is CM when β ∈ [α ∨ (1− α), 1) resp. β ∈ (0, α ∧ (1− α)].

(b) It is clear from the above proofs that for any α ∈ (0, 2] the following equivalences hold

Dα,β is CM ⇔ Dα,β ≥ 0 and Dα,β is CM ⇔ Dα,β ≥ 0.

When α > 4, the asymptotic expansion 18.1 (22) p.210 in [3] shows that Dα,β has leading
term

4 cos(2π(α− 1)/α)ecos(2π/α)xx1−β cos(x sin(2π/α) + 2π(3− α− β)/α)

at infinity, and hence oscillates. It can also be shown directly that

D4,1(x) =
1

2
(e−x + cos(x) + sin(x))

and also oscillates. It is however unclear to the author whether the function Dα,β is every-
where non-negative for α ∈ (2, 4], β > 0, or not. Indeed, the leading term at infinity is then
a positive monomial. See [14] for more complete results on the asymptotic expansions of
Mittag-Leffler functions.

2.3. List of the Bernstein measures and an improvement of (a). In this paragraph
we recapitulate the explicit Bernstein measures µα,β associated with the CM functions |Dα,β|.
Recall that these are the positive σ−finite measures such that

|Dα,β|(x) =

∫ ∞

0

e−xtµα,β(dt) dt, x > 0.

For the sake of completeness we also rephrase the Bernstein measures associated with the
main result of [10]. Finally, we improve part (a) and show that the function

x 7→ Dα,β(x
1/α)

is also CM for every α ∈ (0, 1) and β ≥ α ∨ (1− α).
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2.3.1. The case α ∈ (1, 2]. In this case one has Dα,β(0+) = 1/Γ(β) and the underlying
Bernstein measure is hence finite. For β = 1 it follows from (2.8) that

Dα,1(x) = E[e−xTα]

where T2 = 1 and Tα is for α ∈ (1, 2) the positive random variable with density

− sin(πα)tα−1(1 + t)

π(t2α − 2 cos(πα)tα + 1)
·

This latter random variable is connected to first-passage time of spectrally positive α−stable
Lévy processes - see Theorem 3 in [11], a connection which will be discussed in further details
in the next section. For β > 1, a direct consequence of (2.9) and Fubini’s theorem is that

Dα,β(x) =
1

Γ(β)
E[e−x(B1,β−1×Tα)], (2.10)

where here and throughout the product is assumed to be independent. Notice that for α = 2
one obtains

D2,β(x) =
1

Γ(β)
E[e−xB1,β−1],

in accordance with (2.4) in [10] because

D2,β(x) =
∑

n≥0

(−x)n

Γ(β + n)
= Eβ,1(−x).

Remark 2. Using the representation of Remark 1 (a) and some computations, we also
obtain the explicit formula

D3/2,3/2(x) =
1

π
√
x

∫ ∞

0

e−xt

(
1− t2√
t(t3 + 1)

)
dt

=
1

π
√
π

∫ ∞

0

e−xt

(∫ t

0

(1− s)ds√
s(t− s)(s2 − s+ 1)

)
dt

=
2√
3π

∫ ∞

0

e−xt

( ℜ(√j− t)√
t2 − t + 1

)
dt

with the notation j = e2iπ/3. Observe that the function between brackets on the third line
is indeed positive. This formula can also be obtained directly from (2.10). Except in this
particular case α = β = 3/2, it does not seem that anything more explicit can be obtained
from the integral representation of Remark 1 (a).

2.3.2. The case α ∈ (0, 1). In this case the underlying Bernstein measure is infinite since
|Dα,β|(0+) = +∞. It also follows from the above proofs that this measure has a density,
which we denote by dα,β. The latter will be expressed with the notations introduced during
the above proofs, to which we refer without further repetition. We distinguish several sub-
cases.
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• β ≥ 1. It follows from (2.1) and (2.2) that dα,1 = fα and that for every β > 1,

dα,β =
1

Γ(β)
fB1,β−1

⊙ fα. (2.11)

• α > 1/2 and β ∈ [α, 1). One has

dα,α =
1

Γ(α)
hα =

1

Γ(α)
fZα ⊙ fXα ⊙ f

Γ
1/α
1/α

⊙ gα (2.12)

and, for every β > α,

dα,β =
1

Γ(β)
fBα,β−α

⊙ hα.

• α ≤ 1/2 and β ∈ [1− α, 1). It follows from (2.6) that

dα,1−α(x) =
1

Γ(1− α)
h̃α(x) +

nα−1∑

k=2

x−αk

Γ(1− αk)Γ(α(k − 1))
· (2.13)

Recall that h̃α is zero if α = 1/nα viz. α is the reciprocal of an integer, and that the
sum is empty if nα = 2 viz. α = 1/2. In particular one has d1/2,1/2 = 0, in accordance
with D1/2,1/2 = 0. For β > 1− α, from (2.5) and (2.6) we deduce

Dα,β(x) =
1

Γ(α + β − 1)

∫ 1

0

(1− t)α+β−2t−αD̃α,1−α(xt) dt +

nα−1∑

k=1

xαk−1

Γ(αk + β − 1)
,

so that

dα,β(x) =
1

Γ(β)
fB1−α,α+β−1

⊙ h̃α(x) +
nα−1∑

k=1

x−αk

Γ(1− αk)Γ(αk + β − 1)
·

• α ≤ 1/2 and β ≤ α ∧ (1− α). The Bernstein density is

dα,β =
1

Γ(β + 1)
fB1,β

⊙ hα,β

where

hα,β(t) = (1− β)fα(t) + tf ′
α(t) =

sin(πα)h̃α,β(t)

π(t2α − 2 cos(πα)tα + 1)2

and we have set

h̃α,β(t) = (1− α− β)t3α − 2(1− β) cos(πα)t2α + (1− α− β)tα

− (α+ β)t3α−1 + 2β cos(πα)t2α−1 + (α− β)tα−1.

Observe that this latter function h̃α,β takes negative values when β > α ∧ (1− α).
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2.3.3. Bernstein densities associated with Eα,β(−x). In this paragraph we express the posi-
tive random variables underlying the CM functions Eα,β(−x) for α ∈ (0, 1), β ≥ α. This is
basically a reformulation of the main results of [10, 7], which we however believe to be worth
mentioning. In the case α = 1, we saw above during the analysis of D2,β that

E1,β(−x) =
1

Γ(β)
E[e−xB1,β−1].

The classical case β = 1 had been settled in [9], whose main result reads

Eα(−x) = E[e−xMα]

where Mα
d
= Z−α

α is the so-called Mittag-Leffler random variable. It follows from Lemma 1
in [7] that

Eα,α(−x) = αE[Mαe
−xMα] =

1

Γ(α)
E[e−xM̃α ]

where M̃α
d
= Z̃α

−α
and Z̃α is the so-called size bias of order −α of Zα that is the random

variable with density function αΓ(α) x−αf
Zα
(x), which is characterized by

E[f(Z̃α)] =
E[Z−α

α f(Zα)]

E[Z−α
α ]

for every f bounded continuous. Finally, for every β > α, Lemma 2 in [7] and a change of
variable show that

Eα,β(−x) =
1

Γ(β)
E[e−x(Bα

α,β−α× M̃α)].

In particular we observe the identity

Mα
d
= Bα

α,1−α × M̃α

for every α ∈ (0, 1), which is not obvious at first sight. Notice also that the above identifi-
cations can be performed directly from the proof of Part (c) of the Theorem in [10].

2.3.4. An improvement of (a). It is a well-known fact - see e.g. Theorem 2 in [8] - that if f is
CM, then the function f(xγ) is also CM for every γ ∈ (0, 1). In particular, we see from Part
(b) that the function Dα,β(x

1/α) is CM for every α ∈ (1, 2] and β ≥ 1. In this paragraph, we
improve Part (a) and show that the function Dα,β(x

1/α) is also CM for every α ∈ (0, 1) and
β ≥ α ∨ (1 − α). The argument relies on the following lemma, which is fairly obvious. If f
is a positive function and µ a positive measure on (0,+∞), we set

f ⊙ µ(t) =

∫ ∞

0

f(
t

s
)
µ(ds)

s
·

Lemma 2. Let α ∈ (0, 1) and

F (x) =

∫ ∞

0

e−xtf(t) dt

be a CM function. Then F (x1/α) is also CM if and only if the Bernstein density factorizes

into f = f
Zα

⊙ µ for some positive σ−finite measure µ.
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Proof. Suppose that the factorization holds. Two changes of variable and Fubini’s theorem
show that

F (x) =

∫ ∞

0

e−xt f
Zα

⊙ µ(t) dt =

∫ ∞

0

(∫ ∞

0

e−xtsf
Zα
(t) dt

)
µ(ds)

=

∫ ∞

0

e−xαsαµ(ds) =

∫ ∞

0

e−xαt µ[α](dt),

where µ[α] = xα[µ] is a push-forward of µ and also a positive σ−finite measure. This shows
that F (x1/α) is CM with Bernstein measure µ[α].

Suppose now that F (x1/α) is CM and let µ be its Bernstein measure. Setting µ1/α =
x1/α[µ], a comparison and two changes of variable show that

∫ ∞

0

e−xtf(t) dt =

∫ ∞

0

e−xαtµ(dt) =

∫ ∞

0

(∫ ∞

0

e−xt1/αsf
Zα
(s) ds

)
µ(dt)

=

∫ ∞

0

(∫ ∞

0

e−xtsf
Zα
(s) ds

)
µ[1/α](dt)

=

∫ ∞

0

e−xs f
Zα

⊙ µ[1/α](s) ds,

with the same notation as above for the push-forward. We hence obtain the required factor-
ization f = f

Zα
⊙ µ[1/α], by uniqueness of the Laplace transform.

�

We can now finish the proof. Suppose first that α > 1/2. From (2.3) we see that it
is enough to show that Dα,α(x

1/α) is CM. From (2.12), we know that f
Zα

factorizes the
Bernstein density dα,α ofDα,α, and we can conclude by Lemma 2. Assume next that α ≤ 1/2.
The decomposition

Dα,β(x
1/α) =

1

Γ(α + β − 1)

∫ 1

0

(1− t)α+β−2t−αD̃α,1−α(x
1/αt) dt +

nα−1∑

k=1

xk−1/α

Γ(αk + β − 1)
,

and the preceding argument entail that it is enough to show that f
Zα

factorizes the Bernstein

density of D̃α,1−α. By (2.13), the latter is a constant multiple of

h̃α = f
Zα

⊙ g̃α ⊙ f
Bα,1−2α

⊙ f
Xα

⊙ f
Γ
1/α
1/α

⊙
(

nα−1⊙

k=1

f
U1/(1−αk)

)
,

and hence satisfies the required property.
�

3. Proof of Theorem B

Observe first that E1,1(x) = ex = E ′
1,1(x), so that the assertions (a) and (c) are obvious

for α = 1. To handle the case α = 1, β > 1 we appeal to the formulæ

Fα,β(x) =
1

Γ(β − 1)

∫ 1

0

(1− t)β−2Fα,1(xt) dt (3.1)
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and

LβFα,β(x) =
1

Γ(β − 1)

∫ 1

0

(1− t)β−2F ′
α,1(xt) dt (3.2)

which can be obtained as for (2.2). Setting α = 1 entails

E1,β(x) = LβE1,β(x) =
1

Γ(β − 1)

∫ 1

0

(1− t)β−2ext dt =
x1−βexγ(β − 1, x)

Γ(β − 1)
, (3.3)

where the last equality follows from a straightforward change of variable. This shows that
all functions in (a)-(d) are zero if α = 1. We now focus on the case α 6= 1.

3.1. Proofs of (a) and (b). We first notice that (b) is a simple consequence of (a). Indeed,
(3.1), (3.2) and the last equality in (3.3) show that

x1−βexγ(β − 1, x)

αΓ(β − 1)
− Fα,β(x) =

1

Γ(β − 1)

∫ 1

0

(1− t)β−2

(
ext

α
− Fα,1(xt)

)
dt

and

LβFα,β(x) − x1−βexγ(β − 1, x)

αΓ(β − 1)
=

1

Γ(β − 1)

∫ 1

0

(1− t)β−2

(
F ′
α,1(xt)−

ext

α

)
dt,

and it is clear that (a) entails that both functions between brackets are CM in x for all
t ∈ [0, 1]. We hence focus on the case β = 1. We will proceed again via Laplace inversion.
Computing the Laplace transforms yields the following identity, which makes sense for every
s > 0 : ∫ ∞

0

e−sx

(
ex

α
− Eα(x

α)

)
dx =

1

α(s− 1)
− sα−1

sα − 1
·

However, to show as in the preceding section that the function Fα on the right-hand side
satisfies ℜ(eiθ/2Fα(re

iθ)) ≥ 0 for every r > 0 and θ ∈ (−π, π), is very tedious. We hence
follow a direct approach and compute the Stieltjes transform
∫ ∞

0

dt

s+ t

(
sin(πα)tα−1

π(t2α − 2 cos(πα)tα + 1)

)
=

sin(πα)

πα

∫ ∞

0

dt

(s+ t1/α)(t− eiπα)(t− e−iπα)
,

which rewrites

1

2πiα

(∫ ∞

0

dt

(s+ t1/α)(t− eiπα)
−
∫ ∞

0

dt

(s+ t1/α)(t− e−iπα)

)
.

Consider the contour ΓR made out of the segment [Reiπ(1−α), Re−iπα] oriented downwards,
and of the half-circle CR leading anticlockwise from Re−iπα to Reiπ(1−α). Taking s 6= 1, R > s,
and applying the residue theorem shows on the one hand that

∫

ΓR

dz

(s− z1/α)(z − 1)
= 2πi

(
1

s− 1
− αsα−1

sα − 1

)
.

On the other hand, the integral on the left-hand side is evaluated as
∫ R

0

dt

(s+ t1/α)(t− eiπα)
−
∫ R

0

dt

(s+ t1/α)(t− e−iπα)
+

∫

CR

dz

(s− z1/α)(z − 1)
·
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Letting R → +∞ and putting everything together entails
∫ ∞

0

dt

s+ t

(
sin(πα)tα−1

π(t2α − 2 cos(πα)tα + 1)

)
=

1

s− 1
− αsα−1

sα − 1
·

Therefore, by Laplace inversion,

ex

α
− Eα(x

α) =

∫ ∞

0

e−xt

(
sin(πα)tα−1

π(t2α − 2 cos(πα)tα + 1)

)
dt (3.4)

is a CM function as required.
�

Remark 3. (a) The above formula (3.4) should be compared with the classical formula (see
(7.7) in [4], bewaring the misprint therein)

Eα(−xα) =

∫ ∞

0

e−xt

(
sin(πα)tα−1

π(t2α + 2 cos(πα)tα + 1)

)
dt.

In particular setting α = 1/2 we retrieve the identity E1/2(−
√
x) + E1/2(

√
x) = 2ex, which

follows directly from the very definition of E1/2.

(b) Subtracting (3.4) on both sides of (2.8), we get the other CM function

αxα−1E ′
α(x

α) − ex

α
=

∫ ∞

0

e−xt

(
sin(πα)tα

π(t2α − 2 cos(πα)tα + 1)

)
dt,

which can also be obtained from a mere differentiation of (3.4).

3.2. Proofs of (c) and (d). Again, a direct application of (3.1), (3.2) and the last equality
in (3.3) show that (d) is a consequence of (c). To show (c), it is possible to use a contour
integral analogous to that of (a). However, we will provide yet another argument which
is specific to the case α ∈ (1, 2]. This proof is slightly lengthier but it has an independent
interest. Referring to [12] for details and further references, let {Xt, t ≥ 0} be the spectrally
positive Lévy α−stable process, starting from zero and normalized such that

E
[
e−sXt

]
= ets

α

, s, t ≥ 0. (3.5)

Taking the Laplace transform, for every λ > sα we get

1

λ− sα
=

∫ ∞

0

e−λtE
[
e−sXt

]
dt =

∫

R

e−sx

(∫ ∞

0

e−λtfX1
(xt−1/α)t−1/αdt

)
dx,

where the second equality follows from Fubini’s theorem and the (1/α)−self-similarity of
{Xt, t ≥ 0}. Differentiating with respect to s and integrating in λ we get

αsα−1

sα − λ
=

∫

R

e−sx

(∫ ∞

0

e−λtfX1
(xt−1/α)xt−(1+1/α)dt

)
dx.

Specifying to λ = 1 and adding the two equalities, we obtain

sα−1 − 1

sα − 1
=

∫

R

e−sx

(∫ ∞

0

e−tfX1
(xt−1/α)t−1/α(1 +

x

αt
)dt

)
dx,



MITTAG-LEFFLER FUNCTIONS AND COMPLETE MONOTONICITY 20

which makes sense for every s > 0. It is well-known - see Theorem 2.10.2 in [15] - that |X1|
conditioned on {X1 < 0} has the same law as Z−α

α , and that P[X1 < 0] = 1/α. Hence, for
every x < 0 one has

∫ ∞

0

e−tfX1
(xt−1/α)t−1/α dt =

∫ ∞

0

e−tf
Zα
(t|x|−α)

t dt

|x|α+1

= |x|α−1

∫ ∞

0

e−|x|αtf
Zα
(t)t dt =

e−|x|

α
·

Similarly, for every x < 0 we have

−
(∫ ∞

0

e−tfX1
(xt−1/α)

x dt

αt1+1/α

)
=

1

α|x|α
∫ ∞

0

e−tf
Zα
(t|x|−α)dt

=
1

α

∫ ∞

0

e−|x|αtf
Zα
(t)dt =

e−|x|

α
·

Therefore, for every s ≥ 0,

sα−1 − 1

sα − 1
=

∫ ∞

0

e−sx

(∫ ∞

0

e−tfX1
(xt−1/α)t−1/α(1 +

x

αt
)dt

)
dx, s ≥ 0.

Inverting the Laplace transform, we deduce

Dα,1(x) = Fα,1(x) − F ′
α,1(x) =

∫ ∞

0

e−tfX1
(xt−1/α)t−1/α(1 +

x

αt
)dt

=

∫ ∞

0

e−xαtfX1
(t−1/α)(1 + αxα−1t)

dt

αt1+1/α

= Gα(x) − G′
α(x)

where we have set X+
1 = X1 |X1 > 0 and

Gα(x) =

∫ ∞

0

e−xαtfX1
(t−1/α)

dt

αt1+1/α
=

(
1− 1

α

)
E[e−xα(X+

1 )−α

]

for every x ≥ 0. Solving the linear ODE with initial condition Fα,1(0) = 1 shows that

Fα,1(x) =

(
1− 1

α

)
E[e−xα(X+

1 )−α

] +
ex

α
·

On the other hand, formula (3.3.16) in [15] (beware the notation for Z(α, ρ) which is that
of Chapter 3.1 therein) and Bochner’s subordination for stable subordinators entail

(X+
1 )

−α d
=

(
Z1−1/α

Zα−1

)α−1
d
=

(
Zα−1

Zα−1

)α−1

× Z1/α.

By Lemma 2, this entails

Eα(x
α) − ex

α
=

(
1− 1

α

)
E[e−xU

1/α
α−1 ]
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with the notation

Uα−1 =

(
Zα−1

Zα−1

)α−1

.

It is well-known - see e.g. (3.3.16) in [15] and compare with the positive part of a drifted

Cauchy random variable - that U
1/α
α−1 has the explicit density

α sin(π(α− 1))tα−1

π(α− 1)(t2α + 2 cos(π(α− 1))tα + 1)
=

−α sin(πα)tα−1

π(α− 1)(t2α − 2 cos(πα)tα + 1)
·

We finally obtain

Eα(x
α) − ex

α
=

∫ ∞

0

e−xt

( − sin(πα)tα−1

π(t2α − 2 cos(πα)tα + 1)

)
dt, (3.6)

which concludes the proof.
�

3.3. List of the Bernstein measures and an improvement of (a) and (b). We detail
here the Bernstein densities associated with the CM functions of Theorem B, discarding
the trivial case α = 1 where all functions are zero. We will use all our previous notations
without further repetition. We also improve parts (a) and (b) in the same way as we did
in Paragraph 2.3.4. We next rephrase our results in the realm of spectrally positive stable
Lévy processes. Finally we compare some of them with the existing works on the so-called
Mittag-Leffler distributions.

3.3.1. The case α ∈ (0, 1). From (3.4) and (3.1) we have

ex

α
− Eα(x

α) =

(
1

α
− 1

)
E[e−xU

1/α
1−α ] (3.7)

and, for every β > 1,

x1−βexγ(β − 1, x)

αΓ(β − 1)
− Fα,β(x) =

1

Γ(β)

(
1

α
− 1

)
E[e−x(U

1/α
1−α×B1,β−1)].

From (2.11), we finally see that the infinite Bernstein measure associated with the CM
function

LβFα,β(x) − x1−βexγ(β − 1, x)

αΓ(β − 1)

has density
1

Γ(β)
f
B1,β−1

⊙ f̂α,

where

f̂α(t) =
sin(πα)tα

π(t2α − 2 cos(πα)tα + 1)
·
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3.3.2. The case α ∈ (1, 2]. We have seen above that

Eα(x
α) − ex

α
=

(
1− 1

α

)
E[e−xU

1/α
α−1 ],

and again (3.1) entails

Fα,β(x) − x1−βexγ(β − 1, x)

αΓ(β − 1)
=

1

Γ(β)

(
1− 1

α

)
E[e−x(U

1/α
α−1×B1,β−1)]

for every β > 1. Introduce now with the size bias of order 1 of the random variable U
1/α
α−1

and denote it by (U
1/α
α−1)

(1). This is a proper random variable with density

−α sin(πα)tα

π(t2α − 2 cos(πα)tα + 1)
·

The above entail the further formulæ

ex

α
− αxα−1E ′

α(x
α) =

1

α
E[e−x(U

1/α
α−1)

(1)

]

and, for every β > 1,

x1−βexγ(β − 1, x)

αΓ(β − 1)
− LβFα,β(x) =

1

αΓ(β)
E[e−x((U

1/α
α−1)

(1)×B1,β−1)].

3.3.3. An improvement of (a) and (b). In this paragraph we show the following proposition.

Proposition 1. Let α ∈ (0, 1). The function

x 7→ ex
1/α

α
− Eα(x)

is CM if and only if α ≥ 1/2.

Proof. We first compute the fractional moments of the random variable U
1/α
1−α appearing in

(3.7). For every s ∈ (−α, α), we find

E[U
s/α
1−α] =

Γ(1− s
α
)Γ(1 + s

α
)

Γ(1− (1−α
α

)s)Γ(1 + (1−α
α

)s)

= E[Zs
α] ×

(
Γ(1− s)

Γ(1− (1−α
α

)s)
× Γ(1 + s

α
)

Γ(1 + (1−α
α

)s)

)
.

If α ≥ 1/2, this can be read off in the following way

E[U
s/α
1−α] = E[Zs

α] × E[W
s
α
α ],

with the notation

Wα =

(
Z 1−α

α

Z1−α

)1−α

.
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From (3.7) and Lemma 2, this entails that

ex
1/α

α
− Eα(x) =

(
1

α
− 1

)
E[e−xWα]

is a CM function. On the other hand, if α < 1/2 then the quotient under brackets vanishes
at s = α/(1− α) < 1. If this quotient were the Mellin transform of a positive measure, then
it would vanish inside its definition strip which is −α < ℜ(s) < 1, and this is a contradiction.
This shows that fZα does not factorize the Bernstein density f

U
1/α
1−α

and, by Lemma 2, that

x 7→ ex
1/α

α
− Eα(x)

is not CM.
�

From (3.1) and the above, we see that for every α ∈ [1/2, 1) the function

x
1−β
α ex

1
α γ(β − 1, x

1
α )

αΓ(β − 1)
− Eα,β(x) =

1

Γ(β)

(
1− 1

α

)
E[e−x(Wα ×B1,β−1)]

is CM, which also improves (b). Observe also that this function taken at xγ is not CM
for any γ > 1, since the derivative at zero is then zero. It is however unclear whether this
function is CM or not for α < 1/2. To characterize the CM property of the functions

αxα−1E ′
α(x) − ex

1/α

α
and LβFα,β(x

1
α ) − x

1−β
α ex

1
α γ(β − 1, x

1
α )

αΓ(β − 1)

is also an open question.

3.3.4. Connections with spectrally positive stable Lévy processes. In this paragraph we fix
β = 1 and α ∈ (1, 2]. As in Section 3.2, let X = {Xt, t ≥ 0} be the spectrally positive Lévy
α−stable process, starting from zero and normalized by (3.5). Let

T1 = inf{t > 0, Xt > 1} and τ1 = inf{t > 0, Xt = 1}

be respectively the first passage time above 1 and the first hitting time of 1 for X. It is
well-known from the Wiener-Hopf factorization - see (7) in [11] and the references therein
for further details - that

Eα(x) − αx1−1/αE ′
α(x) = E[e−xT1 ].

On the other hand, a consequence of Fristedt’s formula - see (1.4) in [12] and the computa-
tions therebefore for an explanation - is that

ex
1/α

α
− αx1−1/αE ′

α(x) =
1

α
E[e−xτ1 ].



MITTAG-LEFFLER FUNCTIONS AND COMPLETE MONOTONICITY 24

Besides, we saw above in Paragraph 3.3.1 that

Eα(x) − ex
1/α

α
=

(
1− 1

α

)
E[e−(xUα−1)1/α ]

=

(
1− 1

α

)
E[e−x(Uα−1×Z1/α)] =

(
1− 1

α

)
E[e−x(X+

1 )−α

],

where the third equality follows from formula (3.3.16) in [15] and Bochner’s subordination.
Hence, we see that the decomposition in two CM functions

Eα(x) − αx1−1/αE ′
α(x) =

(
Eα(x) − ex

1/α

α

)
+

(
ex

1/α

α
− αx1−1/αE ′

α(x)

)

can be interpreted as an explicit relationship between three Laplace transforms connected
to the Lévy process X :

E[e−xT1 ] =

(
1− 1

α

)
E[e−x(X+

1 )−α

] +
1

α
E[e−xτ1 ].

In particular, inverting these Laplace transforms shows that for every x ≥ 0,

fT1
(x) =

(
1− 1

α

)
f
(X+

1 )−α(x) +
1

α
fτ1(x), (3.8)

which clarifies formula (14) in [11]. Notice that the decomposition (3.8) can actually also be
derived in comparing Propositions 2 and 3 in [12], Corollary 6 in [12] and the classical series
representation (2.4.6) in [15].

Remark 4. (a) Set now β = 1 and α ∈ [1/2, 1). Let Y = {Yt, t ≥ 0} be the spectrally
positive Lévy (1/α)−stable process, starting from zero and normalized as in (3.5). Recall
that this process has positivity parameter P[Y1 > 0] = 1 − α. It follows from the proof of
Proposition 1, and the same considerations as above around formula (3.3.16) in [15], that

ex
1/α

α
− Eα(x) =

(
1

α
− 1

)
E[e−xWα] =

(
1

α
− 1

)
E[e−xY +

1 ].

This hence establishes a link between Eα and yet another spectrally positive stable Lévy
process.

(b) Setting again β = 1 and α ∈ [1/2, 1), consider I1 = inf{Yt, t ∈ [0, 1]}. It is well-known
- see e.g. Proposition 1 (iii) in [1] - that

Eα(−x) = E[e−xI1 ] = E[e−xY −

1 ],

with Y −
1 = |Y1| conditioned on {Y1 < 0}. This is the usual connection between Mittag-Leffler

functions and spectrally negative stable Lévy processes.
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3.3.5. Comparison with the other Mittag-Leffler distribution. Let L be the unit exponential
random variable and α ∈ (0, 1). The random variable

MLα = L1/α × Zα (3.9)

is known as the ”other” Mittag-Leffler random variable, the classical one being the above
I1. It is a particular instance of the Linnik (or geometric stable) random variables. It has an
explicit and completely monotone density which is

xα−1Eα,α(−xα),

and an explicit Laplace transform

E[e−λMLα] =
1

1 + λα
·

It is infinitely divisible viz. the function
(

1

1 + λα

)t

is CM for all t ≥ 0, and the associated semi-group, which is sometimes called the Mittag-
Leffler semi-group in the literature, has also a semi-explicit transition density which is given
by (20.1.2) in [4]. The factorization (3.9) means that this semi-group is subordinated to
the positive α−stable semi-group. We refer to Section 19 in [4] for details and references
on the above properties, and also for further features of the other Mittag-Leffler distribution.

Let now α ∈ (1, 2). In the present paper we exhibited a positive random variable M̃Lα,
with an explicit and completely monotone density which is

Eα(x
α) − αxα−1E ′

α(x
α),

and an explicit Laplace transform

E[e−λM̃Lα] =
λα−1 − 1

λα − 1
·

This random variable is infinitely divisible and the associated semi-group is subordinated to
the positive (α/2)−stable semi-group, viz. one has the factorization

M̃Lα = X2/α × Zα/2,

where the random variable X is infinitely divisible. One can also show that M̃Lα has MLα/2

as an additive factor. In a forthcoming work, we will show these properties and also present
further features of this Mittag-Leffler random variable of the second kind.
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d’Ascq Cedex. Email : simon@math.univ-lille1.fr
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