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Properties of a periodic ansatz for the coarsening of soliton-lattice

Simon Villain-Guillot

Laboratoire Onde et Matière d�Aquitaine, Université Bordeaux I,

351 cours de la Libération 33405 Talence Cedex, France �

Abstract

Soliton lattices are periodic solutions of Ginzburg-Landau equation which can be usefull tools

to explore the coarsening process (or Ostwald ripening) which takes place during a Cahn-Hilliard

dynamics. They can be used to identify the stationary solutions of the dynamics and how these

intermediate states are destroyed by �uctuations.

The coarsening process drives the systems from a stationary solution to the next one which is

of period double and of lower energy. Using another family of soliton lattices, this process can be

described continuously via a phase �eld equation.

We present here properties of these two families, including the Fourier series decomposition of

the non symetric soliton lattice which we use as building block of our ansatz.

�Electronic address: simon.villain-guillot@u-bordeaux1.fr
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I. INTRODUCTION AND PHYSICAL MOTIVATION

In thermodynamics, when a homogenous system departs suddenly from equilibrium, the

�uctuations around the initial ground state are linearly ampli�ed and the homogenous phase

can for example spontaneously separate into two di¤erent more stable states. The interfaces

which delimit the numerous resulting monophasic domains will interact with each other.

The domains of the same state will slowly coalesce, minimizing the overall interfacial energy

and either give rise to formation of a complex pattern, or merge into a single interface. It

results then in only two well separated domains.

When the system is led into a linearly unstable con�guration, this process is initiated via

a spinodal decomposition. The leading instability then selects a modulation of the order

parameter at a well de�ned length scale, which grows and, due to non-linearities, saturates.

The resulting pattern is composed of well de�ned interfaces delimiting domains containing

one of the two stable phases. Remarkably, this dynamics conserves the modulation width,

and the resulting stationary pattern is of almost the same length scale as the one selected

initially [1, 2]. The dynamics �nally ends with a much slower, self-inhibiting process, domi-

nated by the interactions between the interfaces. The di¤erent regions of each phase coalesce

in the so-called Ostwald ripening where the number of domains diminishes whereas their

typical size increases. This dynamics can be described as a self similar process of synchro-

nous fusion and evaporation of domains [3], the asymptotic state being composed of only

two domains, one for each phase.

In this article, by spinodal decomposition, we refer to the �rst stage of the dynamics only,

while coarsening will denote the second stage. Hillert[4], Cahn and Hilliard[5] have proposed

a model equation describing the segregation for a binary mixture. This model, known as

the Cahn-Hilliard equation (C-H later on), belongs to the Model B class in Hohenberg and

Halperin�s classi�cation [6]. It is a standard model for phase transition with conserved quan-

tities and has applications to phase transition in liquid crystals[7], segregation of granular

mixtures in a rotating drum [8] , or formation of sand ripples [9, 10].

The aim of this article is to present a one dimensional ansatz describing continuously the

coalescence process. This ansatz is in the form of a one parameter family of symmetric pro-

�les which interpolates between two stationary states composed of homogeneous domains

of length �=2 and �. It allows to realize a self similar sequence of coalescence process in
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1D, starting from the regular micro phase separated states issued from the non-linear sat-

uration of the spinodal decomposition dynamics and ending with the single interface which

characterize the in�nite time, thermodynamic stable state.

The paper is organized as follows: �rst, we present in part II a brief review on general

properties of phase segregations and on the (C-H) model, mainly to �x the notations. We will

reproduce brie�y the original derivation by Cahn and Hilliard, restricting ourselves to the one

dimensional case. In part III, we present a family of symmetric solutions of the Ginzburg-

Landau equation which can be used to study the dynamics of spinodal decomposition and

to determine all the symmetric stationary state of the (C-H) dynamics. Then in part IV,

we introduce a non-symmetric family of solutions of the (G-L) equation which is used to

construct a continuous interpolation between two consecutive symmetric stationary states.

In part V, the main original part of this work, we show as an application that this periodic

family of solutions can be used as an ansatz which enable to follow continuously each step

of the coarsening process. We use the Fourier series associated with these particular pro�les

as tools to check the hypotheses and to follow along time the dynamics of coarsening. The

Fourier coe¢cients are computed in the appendix, where detailed calculations are presented.

II. THE CAHN-HILLIARD MODEL

The Cahn-Hilliard theory is a modi�ed di¤usion equation; it is a continuous conservative

model for the scalar order parameter 	, which reads in its dimensionless form:

@	

@t
(r; t) =r2(

"0
2
	 + 2	3 �r2	) (1)

The real order parameter 	 can correspond to the dimensionless magnetization in Ising

ferromagnet, to the �uctuation of density of a �uid around its mean value during a phase

separation or to the concentration in some region around r of one of the components of a

binary solution. "0 is the dimensionless control parameter of the system ; it is often identi�ed

to the reduced temperature ("0 =
T�Tc
Tc

where Tc is the critical temperature of the phase

transition). This equation, �rst derived by Cahn and Hilliard [5], has also been retrieved by

Langer[3] from microscopic considerations.
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The homogeneous stationary solutions for the (C-H) equation are extrema of the e¤ective

Ginzburg-Landau potential V (	) = "0
2
	2 + 	4 (G-L later on). For positive "0, there is

only one homogenous solution 	 = 0 which is linearly stable; for negative "0, the stationary

solution 	 = 0 undergoes a pitchfork bifurcation and three stationary solutions exist. 	 = 0

is still a stationary solution, but it is now linearly unstable ; two other symmetric solutions

	 = �
p
�"0
2

are stable and have the same free energy F = �"20=32. Thus, a �rst order
transition can be experienced by quenching the system suddenly from a positive reduced

temperature " to a negative one. Spinodal decomposition is the resulting dynamics.

The stability of the solution 	 = 0 can be studied by linearizing equation (1) around

	 = 0 (i.e. neglecting the nonlinear term 	3); considering 	 as a sum of Fourier modes:

	(r; t) =
X

q

	qe
iq�r+�t (2)

where 	q is the Fourier coe¢cient at t = 0, we obtain for the ampli�cation factor �(q) (or

growth rate) :

�(q) = �(q2 + "0
2
)q2 (3)

It shows immediately that 	 = 0 is linearly stable for "0 > 0 while a band of Fourier modes

are unstable for negative "0, since �(q) > 0 for 0 < q <
p
(�"0=2). Moreover, the most

unstable mode is for qC�H =
p�"0=2 (with �max = "2

0

16
). This wave number of maximum

ampli�cation factor will dominate the �rst stage of the dynamics; in particular, it explains

why the modulations appear at length scales close to �C�H = 2�=qC�H , the associated wave

length. Later on, interfaces separating each domain interact through coalescence dynamics,

causing < � > to change slowly toward higher values [1, 11]

We will now use known results on non-homogeneous solutions of the (G-L) equation to

study both the saturation of the spinodal decomposition and the coalescence.
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III. STATIONARY STATES OF THE CAHN-HILLIARD DYNAMICS

A. Symmetric Soliton Lattice Solutions

For " < 0, there exists a stationary solution of the one dimensional (C-H) that relies the

two homogenous phases 	 = �
p
�"
2

	(x) =

p
j"0j
2

tanh(

p
j"0jx
2

): (4)

Such a monotonic solution describes a continuum interface between the two stable homo-

geneous phases, and corresponds to the thermodynamically stable solution that ends the

phase transition dynamics. But this is a particular member of a one parameter family of

stationary solutions of the (G-L) equation

"

2
	 + 2	3 �r2	 = 0 (5)

These solutions, the so-called soliton-lattice solutions, are :

	k;"(x) = k�Sn(
x

�
; k) with � = ��1 =

r
2
k2 + 1

�" (6)

where Sn(x; k) is the Jacobian elliptic function sine-amplitude, or cnoidal mode. This family

of solutions is parametrized by " and by the modulus k 2 [0; 1], or �segregation parameter�.
These solutions describe periodic patterns of periods

� = 4K(k)�, where K(k) =

Z �
2

0

dtp
1� k2 sin2 t

=
�

4�
(7)

is the complete Jacobian elliptic integral of the �rst kind. Together with k, it characterizes

the segregation, de�ned as the ratio between the size of the homogeneous domains, 0:5� �,
and the width of the interface separating them, 2 � �. The equation (7) and the relation

� = ��1, enable to rewrite this family as :

	k;�(x) =
4K(k) � k

�
Sn(

4K(k)

�
x; k): (8)

This family of pro�les (or alternating interfaces) can be obtained exactly as a periodic sum

of single solitons and antisolitons[12]

X

n

(�1)n tanh(�s(x� n)) =
2k(s)K(s)

�s
Sn(x; k) with s =

K(k)

K(k0)
and k02 = 1� k2 (9)
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B. Antsatz for the Spinodal Decomposition Dynamics

The preceding family of pro�les can be used to explore the spinodal decomposition dy-

namics. It can be associated with a micro phase separation, locally limited by the �nite

di¤usion coe¢cient. For k = 1, Sn(x; 1) = tanh(x), we recover the usual single interface

solution (4), of width 2=
p
j"j; it is associated with a one soliton solution and corresponds

to a strong, or macroscopic segregation. Note that K(1) diverges ; the solution

	1;"(x) =

p
j"j
2

tanh(

p
j"j
2

x): (10)

is thus the limit of in�nite s, when the solitons, entering in relation (9), are far apart one each

others. In the opposite limit (weak segregation regime), it describes a sinusoidal modulation

limk!0	k;"(x) = k

r
j"j
2
sin(

r
j"j
2
x) = k

2�

�
sin(

2�

�
x) = kq sin(qx) (11)

It will correspond to the Fourier mode q = 2�
�
of the initial white noise, with an arbitrary

small amplitude � = kq. Since initially, the spatial period of the pattern is constant during

spinodal decomposition, we identify � with the most unstable wave length obtained with

the Cahn Hilliard linear approach, � = �C�H =
4�p
�"0
, where "0 is the quench temperature.

Thus, we obtain a one parameter family of pro�les 	�(x; k) = 	k;�C�H (x) which describe

very well both the linear growth and the saturation . The dynamics is now reduced to the

time evolution of the single free parameter : k(t). Using equations (6) and (7), we �nd that

�, k and " are related one to another through the state equation

"(k) = �2"0(1 + k2)
�
4K(k)

�

�2
: (12)

So, this implicit equation tells us that if we �x � = �C�H , the dynamics can be reduced to

the evolution of "(k(t)).

Given a periodic function � (obtained from experimental data or numerical simulation

of equation (5)) at time t, the ansatz assumes that it corresponds to a soliton lattice of the

same period: i.e., there exists k(t) such that 	(x; t) � 	k(t);�C�H (x) for each time t. The

value of k(t) can be determined taking advantage of the general properties of the family of

solutions 	�(x; k) : either, k can be deduced both from the amplitude of the oscillation

equals to 4kK(k)=�, or from the relation k = 1 � ((	(�=2; k)=	(�=4; k))2 � 1)2; thirdly,
a straightforward computation relates k to the ratio of the two �rst Fourier modes of the
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soliton lattice 	�(x; k). We have observed numerically that the three methods show in

general similar results within an error of one percent.

In this approach, "(k(t)) can be then interpreted as a �ctitious temperature or �local

temperature� of the domains: it is the temperature extracted from the pro�le k(t) at a

given time, using the correspondence between " and k of equation (12). For instance, at

t = 0, the amplitude is small and we �nd that k(0) = ��m
2�

! 0 and thus "(0) = 8�2=�2"0,

di¤erent a priori from "0 ("(0) =
"0
2
for � = �C�H).

Somehow, the dynamics of (C-H) can be projected at �rst order onto a dynamics along the

sub-family 	�(x; k) = 	k;�C�H (x), which can be considered as an attractor of the solutions,

i.e. the density pro�le of the system will evolve with time, staying always close to a function

	�(x; k). We can now write Cahn-Hilliard dynamics as

@	

@t
(x; t) =

@	�

@k
:
dk

dt
=

@2

@x2

�"0
2
	� + 2	�3 �r2	�

�
=
"0 � "(k(t))

2

@2

@x2
	�(x; k)

Using a solubility condition, it is possible to solve this equation for k(t) and thus to compute

the full nonlinear part of this dynamics, the saturation of the spinodal decomposition, which

leads the system in a well de�ned stationary state [2].

C. Saturations of the Spinodal Decomposition Dynamics

According to the previous interpretation of the parameter ", as "(t=0)="0
2
, the system is

initially out of equilibrium. The dynamics will saturate when this �ctitious temperature will

reach the real thermodynamic one, i.e. the quench temperature "0. Using equation of state

(12) for �=�C-H , the dynamics will saturate when k=k
s
0 is solution of the implicit equation:

2(1 + ks20 )K(k
s
0)
2 = �"0�

2
C�H

16
= �2 that is ks0=0:687 (13)

Note that in this case, the width of the interface, which was initially, just after the quench,

proportional to 2p
�"0

has now become proportional to �p
�"0K(ks0)

=

p
2(1+ks

0
2)

p
�"0

w
1:7p
�"0
:

the segregation has slightly increased. Langer has shown that the pro�le thus obtained,

	�(x; ks0) = 	(x; ks0; �C�H), is linearly unstable and he has identi�ed the most unstable

mode as an �antiferro� mode, leading to a period doubling. The result of this destabi-

lization is another pro�le of alternate interface, where the length of the domains is now :
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� = 2�C�H =
8�p
�"0
. This means that the new stationary pro�le is given by 	(x; ks1; 2�C�H),

where ks1 is solution of the implicit relation

2(1 + ks21 )K(k
s
1)
2 = �"0(2�C�H)

2

16
= 4�2 = 8(1 + ks20 )K(k

s
0)
2 that is ks1=0:985 (14)

The interface of this new pro�le is relatively sharper compared to the size of the homogeneous

domains : the width of the interface has increased and is now proportional to 2�p
�"0K(ks1)

=p
2(1+ks

1
2)

p
�"0

w
2�0:99p
�"0

but the size of the homogeneous domains has now double, see Figure

(1). Again, this new stationary pro�le turns out to be linearly unstable with respect to an

�antiferro� perturbation of period 4�C�H .

Thus these families of pro�les and related instabilities enable to describe one dimensional

coarsening as a cascade of doubling process, leading continuously from a pattern of wave

length �C�H composed of domains separated by interfaces to a single tanh(
p
�"0
2
x) interface

separating two semi in�nite domains. Each of these successive intermediate pro�les can be

described by an element of the above family of soliton lattice 	(x; ksn; 2
n � �C�H). We thus

have a family of segregation parameter fksng, which are determined by the implicit relations

2(1 + ks2n )K(k
s
n)
2 = �"0(2

n�C�H)
2

16
= �222n: (15)

We have found numerically for the �rst of them

ks0= ks=0:6869795924

ks1=0:9851675587

ks2= 0:99997210165

ks3=0:9999999999027

ks0�
s
0=0:400

p�"0
ks1�

s
1=0:496250

p�"0
ks2�

s
2= 0:499990

p�"0
ks3�

s
3=0:49999846

p�"0

(16)

fksng converges toward ks1 = 1 (single interface case) according to the relation :

k02n = 1� k2n '
n!1

4 exp(�2K(k)) = 4 exp(��2n)

Meanwhile the amplitude of the modulation ksn�
s
n goes toward

p
j"0j=2, as can be seen in

the second column of the table above. For large n, we can conclude from the implicit relation

(15) that the ratio of the domain size to the interface width characterized by K(ksn) behaves

as �2n�1. Each of the stationary pro�les

	n(x) = 	(x; k
s
n; 2

n�C�H) =

p�"0K(ksn) � ksn
2n�

Sn(

p�"0K(ksn)
2n�

x; ksn) =

p�"0ksnp
2(1 + ks2n )

Sn(

p�"0p
2(1 + ks2n )

x; ksn);

(17)
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for which the interface width is proportional to 2n�p
�"0K(ksn)

(which tends to 2p
�"0
, in agreement

with tanh(
p
�"0
2
x)), is identically destroyed by the Langer �antiferro� instability.

Note that if we had taken for the initial equation

@	

@t
(r; t) =r2(�	+ �	3 �r2	): (18)

then we would have found for the ampli�cation factor �(q) :

�(q) = �(q2 + �)q2 (19)

for which the most unstable mode is qC�H =
p
��=2and �C�H = 2

p
2�=

p
��. Meanwhile,

the period of the static Ginzburg-Langau solution would be

� = 2��1��1 =

r
k2 + 1

��

leading to the same implicit relation and therefore to the same family of modulus fksng

� = �C�H = 4K(k)�

2
p
2�=

p
�� = 4K(k)

r
k2 + 1

��p
2(k2 + 1)K(k) = �

IV. AN ANSATZ FOR THE 1D COARSENING PROCESS

A. Non-symmetric soliton lattice Pro�le

In order to describe one step of the coalescence process, i.e. the dynamics that start

from 	n(x) and ends with the pro�le 	n+1(x), we will use another family of equilibrium

pro�les[13], solutions of (G-L) equation, which write:

 (a; k; x) =
�(a; k)� k=

p
a�(a; k)Sn(2xK(k)

�
; k)

1� k=
p
aSn(2xK(k)

�
; k)

(20)

where �(a; k) = �2k2=a+1+k2

((1+k2)2�12k2+2(a+k2=a)(1+k2))
1
2

and �(a; k) = 2a�1�k2

((1+k2)2�12k2+2(a+k2=a)(1+k2))
1
2

.

It is still a periodic lattice of interfaces, of period 2�, but now, the mean value of the

order parameter is non zero (non symmetric case). It is controlled by the parameter a > 1 :

if a goes in�nity, we recover the previous family of periodic pro�les.
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B. Ansatz for the continuous interpolation between two stationary states

If we choose a to be equal to 1+k0 (where k02 = 1�k2), we can then construct symmetric
pro�les using the sum of two non-symmetric ones. Indeed, using Gauss� transformation (or

descending Landen transformation [14]), which relates the soliton lattice of spatial period

2� and modulus k to the soliton lattice of period � and modulus �=Gauss(k)=1�k0
1+k0

, we have

1�
p
5�k2
2
( (k; x� �

4
) +  (k; x+ �

4
)) = k Sn(2xK(k)

�
; k) (21)

1�
p
5�k2
2
( (k; x� �

2
) +  (k; x+ �

2
)) = (1� k0)Sn((4x+ �)K(�)

�
; �) (22)

with the notation  (k; x)= (a=1 + k
0

; k; x). Thus, we then can show from equation (21)

that
K(k)

�

�
2-
p
5� k2( (k; x� �

4
) +  (k; x+

�

4
))

�
=
4kK(k)

2�
Sn(4x

K(k)

2�
; k): (23)

This is the solution of the G-L equation of period 2�. Moreover, using the properties of

Landen Transformation, we get :

(1� k0)K(k) = 2�K(�); (24)

and using relation (22), the solution of the (G-L) equation of period � can be expressed as

K(k)

�

�
2-
p
5� k2( (k; x� �

2
) +  (k; x+

�

2
))

�
=
4�K(�)

�
Sn((4x+ �)

K(�)

�
; �): (25)

So, we see that both the initial state 	�(x; �; �) = 	�(x; ksn�1; 2
n�1�C�H) and the �nal state

	�(x; k; 2�) = 	�(x; ksn; 2
n�C�H) of a step of the coalescence process can be describe, modulo

a phase shift, by the same function :

�(x; k; �) =
K(k)

�

�
2�

p
5� k2( (k; x� (1� �=2)

�

2
) +  (k; x+ (1� �=2)

�

2
))

�
(26)

with k = ksn, k
s
n�1 = Gauss(k

s
n) and � = 2

n�1�C�H . Therefore we can describe the coales-

cence by a transformation at constant segregation parameter k, during which the degree of

freedom �, associated with the relative phase between the two pro�les, evolves in time from

0 to 1 according to the C-H dynamics.

This non up-down-symmetric lattice of interfaces can be interpreted as a periodic sum of

alternating single interfaces (kinks and antikinks). In the same spirit as relation (9), if one

forgets in the in�nite sum every two out of four interfaces, one gets :

 (x) v
X

p

[tanh(�s(x� 4� p))� tanh(�s(x� 4� p+ 1))] : (27)
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Then (see Figure (2)) adding  (x+2) to  (x) enables to recover relation (9), while, after a

translation, adding  (x+ 1) and  (x) gives the soliton lattice of double period, because of

the cancellation of half of the interfaces (annihilation of kinks and antikinks).

The relation (26) can also be written in a more symmetric ways

�(x; k; �) =
K(k)

�

�
b	(k; x� (1� �=2)

�

2
) + b	(k; x+ (1� �=2)

�

2
)

�

where

b	(k; x) = 1-
p
5-k2 (k; x) =

k
p
aSn(2xK(k)

�
; k)� k2=a

1� k=
p
aSn(2xK(k)

�
; k)

=
1� k0�(1 + k0)

p
1� k0Sn(2xK(k)

�
; k)

p
1� k0Sn(2xK(k)

�
; k)� 1

is still a non up-down-symmetric function but of zero mean values :
R �
0
b	(k; x) = 0

If we look at the time evolution of the pro�le �(x; k; �), starting from � ' 0, we

can transform the (C-H) equation into a phase �eld equation, replacing @
@t
�(x; k; �) by

@
@�
�(x; k; �(t))� d�

dt
. The dynamics will be similar to a spinodal decomposition, with � grow-

ing and saturating exponentially. @
@�
�(x; k; �) is the most unstable mode found in Langer�s

linear stability analysis, characterized by the alternate growth and decrease of domains (�an-

tiferro� mode). Note that when Langer was studying the most unstable perturbation, he

was looking at the linearized version of C-H equation around 	�(k; x) = 	(x; k; �C�H) :

L(') =
�"0
2
+ 6	�2 �r2

�
' =

�"0
2
+ l � (l + 1)	�2 �r2

�
': (28)

L(') = E' is the Lamé equation, for l = 2. This equation doesn�t have simple (algebraic)

exact eigenfunction of period 2�C�H [15].
@
@�
�(x; k; �) for � = 0 is not an exact eigenfunc-

tion either [16]. Nevertheless, it happens to be a good approximation for the eigenfunction

of lowest eigenvalue. Due to the concavity of F(�) around � = 0 (see below Figure (4)),

this eingenvalue will be negative, triggering a linear destabilization and an exponential am-

pli�cation of the perturbation, i.e. an exponential growth of the translation � with time.

Langer�s phenomenon of �antiferro� instability appears due to the existence of two possi-

ble directions for displacement of the interfaces " tanh " (or of the non-symmetric lattice of

interfaces  ), one with a positive velocity (+d�
dt
) and one with a negative one (�d�

dt
). The four

di¤erent kinds of interfaces present in a cell of length 2�C�H have alternately a positive or

a negative velocity. This can be seen as the existence of two antisymmetric patterns [17], or

building blocks for the leading instability around a intermediate state 	�(x; ksn; 2
n�1��C�H)
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(see Figure (3)). These two building blocks are � d
dx
 (x) and are associated with the two

pairs of interfaces,  (x) and  (x+ 2) which have been used to construct our ansatz.

Note that in Langer�s analysis, the breaking of symmetry for the choice of the antiferro

cell, corresponds here to the freedom we have when choosing the range of variation of � : we

could have chosen to go from 0 to �1, ending after a step of coarsening with the symmetric
pattern, or equivalently, the pattern translated of half a period.

C. Energy landscape

In order to prove the usefulness of this ansatz, we have plot the energy averaged over the

�nal period, F(�) =
R
F (�(x; k; �))dx, as a function of the parameter �, keeping k constant.

We see for example in Figure (4) that the value � = 0 correspond to a local maximum of

energy, while � = 1 (or �1) is a minimum. Note that there is no energy barrier in this
particular energy landscape, in agreement with linear stability analysis.

V. CONCLUSION : FOURIER DECOMPOSITION AND SOME APPLICATIONS

As  (k; x), the building blocks of our ansatz, are 2� periodic, we can decompose them in

Fourier series with w = 2�=T = �=�:

 (k; x) =
X

an cos(nwx) + bn sin(nwx)

where the Fourier coe¢cients an and bn are computed in the Appendix and are such that

b	(k; x) = 1�
p
5-k2 (k; x)

=
2�

K(k)

X q(k)n+1=2

q(k)2n+1 � 1

�
2
(-1)nq(k)n+1=2

1 + q(k)2n+1
cos(2�(2n+1)x=�)+

sin((2n+1)�x=�))

sin(n�
2
� �

4
)

�

where q(k) = exp(��K(k0)
K(k)

) (see equation (30) of the appendix). This enables to write

(equation (31) of the appendix)

�(x; k; �) =
K(k)

�

�
b	(k; x� (1� �=2)

�

2
) + b	(k; x+ (1� �=2)

�

2
)

�

=
4�

�

X (�1)nq(k)n+1=2
1� q(k)2n+1

h
2 q(k)n+1=2

1+q(k)2n+1
cos((4n+2)�x

�
) cos(�(2n+1)�=2)+

sin((2n+1)�x=�) sin((n�=2+�
4
)�)

cos(n�
2
+�
4
)

i
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This last result can be useful to track the dynamics of the coarsening. It enable to

relate the evolution of the pro�le in some speci�c point. For example, in x = 0, the pro�le

is directly related to phase parameter � (which evolves in time), and to the segregation

parameter (which should remain constant according to our hypothesis) :

�(0; k; �) =
8�

�

X q(k)n+1=2

1� q(k)2n+1
(�1)nq(k)n+1=2
1 + q(k)2n+1

cos(�(2n+ 1)�=2)

=
4�K(�)

�
Cd(K(�)�; �) =

4�K(�)

�
Sn(K(�)(�+ 1); �)

This is also true for the pro�le in x =�=4 and x = ��=4 :

�(�=4; k; �) = -�(��=4; k; �) = 4�

�

X
(�1)n q(k)n+1=2

1� q(k)2n+1
tan((2n+ 1)�=4) sin

�
(n�=2+

�

4
)�
�

=
4�

�

X q(k)n+1=2

1� q(k)2n+1
sin
�
(n�=2 +

�

4
)�
�
= 2kK=�Sn(K�=2)

The (adiabatic) hypothesis underlying our approach postulates that coalescence is a dy-

namics at constant segregation parameter k; the sole degree of freedom varying in time is the

relative phase between the two pro�les �. To check the hypothesis, for example numerically,

one can use the values of the pro�le in x = ��=2 where the amplitude of the pro�le varies
the most (less) as it corresponds to the center of the domain which disappears (grows). In

these two points

�(�=2; k; �) + �(��=2; k; �) = �16�
�

X (�1)nq(k)2n+12
1 + q(k)2(2n+1)

cos(�(2n+ 1)�=2)

= �8�K(�)
�

Cd(K(�)�; �) = �2�(0; k; �)

This is a strong constraint on the dynamics that should be veri�ed if the dynamics can be

approximate on this particular family of coarsening soliton lattice ; it relates the amplitudes

in x = ��=2 to the amplitude in x = 0, and is indeed almost veri�ed numerically.
We also have the useful relation :

�(�=2; k; �)� �(��=2; k; �) = 4kK=�

�
Sn(

K(k)

2
(�+ 1)) + Sn(

K(k)

2
(�� 1))

�

=
k0p
1 + k0

8kK=�Sn(K(k)
2
�)

1� (1� k0)Sn2(K(k)
2
�)

13



Using this relation, from numerical or experimental values of a given 2� periodic pro�le

at the two special points x = �=2 and x = ��=2, one can extract Sn(�K(k)
2
) and thus the

phase � at a given time of the dynamics, like in Figure (4).

When investigating a coarsening process, theses results enable to map a pro�le of the

order parameter onto a soliton lattice solution. This particular family of coarsening pro�les

can therefore be a useful tool to investigate in various 1D systems Ostwald ripening dynamics

and its interruption which might lead to pattern formations [18].

Appendix : Fourier decomposition

As  (k; x), the building blocks of our ansatz, are 2� periodic, we can decompose them in

Fourier series with w = 2�=T = �=�:

 (k; x) =
X

an cos(nwx) + bn sin(nwx)

Using the Fourier series for the cnoidal function of period 2� and q(k) = exp(��K(k0)
K(k)

),

we can write

kSn(4x
K(k)

2�
; k) =

2�

K(k)

X q(k)n+1=2

1� q(k)2n+1
sin((2n+ 1)�x=�) =

"
1-

p
5-k2

2
( (k; x-

�

4
) +  (k; x+

�

4
))

#

= 1�
p
5� k2

2

X
ap

�
cos(pw(x� �

4
))+ cos(pw(x+

�

4
))

�
+bp

�
sin(pw(x� �

4
))+ sin(pw(x+

�

4
))

�

= 1�
p
5� k2

X�
ap cos(pwx) cos(pw

�

4
) + bp sin(pwx) cos(pw

�

4
)

�

= 1�
p
5� k2 cos(p

�

4
)
X

(ap cos(p�x=�) + bp sin(p�x=�))

So when p is such that cos(p�
4
) 6= 0 we can conclude that a0 = (5� k2)

� 1

2 ; a4n = a4n+1 =

a4n+3 = 0; b4n = 0 and

b2n+1 =
2�

K(k)
p
5� k2 sin(n�

2
� �

4
)

q(k)n+1=2

1� q(k)2n+1
:

Using Landen transformation

q(�) = exp(��K(�
0)

K(�)
) = exp(�2�K(k

0)

K(k)
) = q(k)2: (29)
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together with 2�K(�)=(1� k0)K(k); we �nd similarly

(1� k0)Sn((4x+ �)
K(�)

�
; �) =

�
1�

p
5� k2

2
( (k; x� �

2
) +  (k; x+

�

2
))

�

=
2�(1� k0)

�K(�)

X

n=0

q(�)n+1=2

1� q(�)2n+1
sin((2n+1)�

4x+ �

2�
) = 1-

p
5-k2

X
cos(p

�

2
)(ap cos(pwx) + bp sin(pwx))

=
4�(1� k0)

(1� k0)K(k)

X

n=0

(�1)nq(k)2n+1
1� q(k)4n+2

cos((4n+ 2)�x=�)

= 1+
p
5� k2(

X
a4p+2 cos(�(4p+2)

x

�
)�
X

a4p cos(4�n
x

�
)�
X
(�1)nb2p sin(2�n

x

�
))

So b2n = 0, a4n = 0 except a0 = (5� k2)
� 1

2 and

a4n+2 =
4�

K(k)
p
5� k2

X (�1)nq(k)2n+1
1� q(k)4n+2

We thus conclude that

p
5-k2 (k; x) = 1+

2�

K(k)

X
"
2
(-1)nq(k)2n+1

1� q(k)4n+2
cos(2�(2n+1)x=�)+

q(k)n+1=2

1-q(k)2n+1
sin((2n+1)�x=�))

sin(n�
2
� �

4
)

#

= 1+
2�

K(k)

X q(k)n+1=2

1-q(k)2n+1

"
2
(�1)nq(k)n+1=2

1 + q(k)2n+1
cos((4n+2)

�x

�
)+
sin((2n+1)�x=�))

sin(n�
2
� �

4
)

#

b	(k; x) = 1�
p
5-k2 (k; x) =

k
p
aSn(2xK(k)

�
; k)�k2=a

1� k=
p
aSn(2xK(k)

�
; k)

=
k0-1 + (1 + k0)

p
1� k0Sn(2xK(k)

�
; k)

1�
p
1� k0Sn(2xK(k)

�
; k)

=
2�

K(k)

X q(k)n+1=2

q(k)2n+1 � 1

�
2
(-1)nq(k)n+1=2

1 + q(k)2n+1
cos(2�(2n+1)x=�)+

sin((2n+1)�x=�))

sin(n�
2
� �

4
)

�
(30)

and we can now write

�(x; k; �) =
K(k)

�

�
b	(k; x� (1� �=2)

�

2
) + b	(k; x+ (1� �=2)

�

2
)

�

=
X 2�q(k)n+1=2=�

q(k)2n+1�1

2
4

2(�1)nq(k)n+1=2( cos (�(2n+1)(2x=��(1��=2)))+ cos (�(2n+1)(2x=�+(1��=2))))
1+q(k)2n+1

+
sin((2n+1)�

2
(2x=��(1��=2)))+sin((2n+1)�

2
(2x=�+(1��=2)))

sin(n�
2
��
4
)

3
5

=
4�

�

X (�1)nq(k)n+1=2
1� q(k)2n+1

h
2 q(k)n+1=2

1+q(k)2n+1
cos((4n+2)�x

�
) cos(�(2n+1)�=2)+

sin((2n+1)�x=�) sin((n�=2+�
4
)�)

cos(n�
2
+�
4
)

i

(31)
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FIG. 1: Pro�les of the two �rst metastable solutions of the (C-H) dynamics, with ks1=0:687 and

ks2=0:985, corresponding to the �rst step of the coarsening process.
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FIG. 2: Construction of the two �rst steady solutions of the (C-H) dynamics, with ks0=0:687 and

ks1=0:985; using a superposition of the non-symmetric pro�le  (k; x), itself stationary solution of

the (C-H) equation. By changing the phase shift between the two pro�les entering into the linear

combination, one obtains two di¤erent symmetric pro�les, of periods � and 2�:
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FIG. 3: Langer�s most instable perturbation mode of destabilization of the soliton lattice is iden-

ti�ed with @
@� �(x; k; �) at � = 0: It is composed of two antisymmetric patterns, plotted in dotted

(plain) line, evolving toward right (left) at velocity +d�
dt (-

d�
dt ), causing an �antiferro� instability

leading to a period doubling of the pattern. They are the spatial derivatives of the initial non

symmetric pro�le  (x) which has been used to construct our ansatz in Figure 2.
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FIG. 4: Pro�le of the free energy landscape during a coarsening process, F(�). It starts at � = 0

for a con�guration characterized by the segregation ratio ks1=0:687 for which the energy per unit

length is F(�)' �0:135; one sees that in this region, the free energy is a concave function of � and

thus, the associated pattern is linearly instable. The elementary step of the coarsening process ends

for � = 1 associated with a pattern characterized by the segregation ratio ks2=0:985 for which the

energy per unit length is F(�)' �0:45. In the region � = 1, the free energy is a convex function

of �.
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