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TIME VARYING EXTREMES FOR MONITORING AQUATIC
BIOSENSORS

DURRIEU, G., GRAMA, I., PHAM, Q. K., AND TRICOT, J. M.

Université de Bretagne Sud, LMBA, UMR CNRS 6205, F-56000 Vannes, France.

Abstract. Measurement of mollusks bivalves activity is a way to record the animal

behavior and so to evaluate possible changes in the water quality. In the framework

of ecological time series data at times 0 < t1 < ... < tn ≤ T, we observe independent

observations Xt1 , ..., Xtn where each Xti is distributed according to the distribution

function Fti . For each t ∈ [0, T ], we propose a non parametric adaptive estimator for tail

probabilities and extreme quantiles of Ft. The idea of our approach is to adjust the tail

of the distribution function Ft with a Pareto distribution with parameter θt,τ starting

from a threshold τ . The parameter θt,τ is estimated using a non parametric kernel

estimator of bandwidth h based on the observations larger than τ. Under some regularity

assumptions, we prove that the proposed adaptive estimator of θt,τ is consistent and we

determine its rate of convergence. We also propose a sequential testing based procedure

for the automatic choice of the threshold τ when the bandwidth h is fixed. Finally, we

study the properties of this procedure by simulation and on real data set to estimate

global changes (pollution, temperature change) and so to help in the survey of aquatic

systems.

1. Introduction

Protection of the aquatic environment is a top priority for marine managers, policy

makers, and the general public. Human activities are responsible for significant discharges

of pollutants into environment. These pollutants lead to the degradation of many habitats

disturbing ecosystems and also causing problems in terms of public health. Surveillance

and protection of aquatic systems is thus fundamental and it is of great interest to be able

to inform in real time people of water conditions. Due to an increasing interest in the

health of aquatic systems, there is a compelling need for the use of remote online sensors

to instantly and widely distribute information on a daily basis. Regulations and controls
1



2 DURRIEU, G., GRAMA, I., PHAM, Q. K., AND TRICOT, J. M.

on water quality have already been established. Among these controls, bioindicators are

increasingly used because they can be effective in their ability to reveal the presence

of traces (very low concentrations) of contaminants through accumulation in tissues of

aquatic animals (see Tran et al., 2003, 2004, 2007). In this paper, we focus on the activity

of oysters. The ability of oyster to permanently “taste” their environment is one of the

possible ways to monitor the quality of our coastal waters and read throughout the year

the health of both the oysters and their environment.

The interest in investigating the bivalve’s activities by recording their valve movements

(valvometry) has been explored in ecotoxicology. The basic idea of valvometry is to use

the bivalve’s ability to close its shells when exposed to a contaminant as an alarm signal

(Doherty et al. (1987), Sow et al. (2011), Nagai et al. (2006) among others). Nowadays,

valvometers are available on the market and use the principle of electromagnetic induction

Sloff et al. (1983); Jenner et al. (1989) such as the Mossel Monitor in Kramer et al. (1989)

or the Dreissena Monitor in Borcherding and Volpers (1994). There has been a clear

research interest in the recent years to measuring the bivalve’s behaviors directly in real

conditions (Robson et al. (2007); Tran et al. (2003); Sow et al. (2011)).

These noninvasive valvometric techniques provide high-frequency data and different

statistical models were proposed to study their behavior in their natural habitat and

constantly monitor water quality when faced with stress such as a pollutant: valves can

suddenly close or express abnormal movements indicating a change in water quality (Sow

et al. (2011); Schmitt et al. (2011); Jou and Liao (2006); Coudret et al. (2013); Azäıs

et al.). When faced with pollution or poor quality water, the oyster closes its shells, or in

extreme situations the activity of animals can change dramatically after exposure to even

very low levels of pollution.

Ecological and genetical studies often focus on average and median effects of environ-

mental factors such as temperature, precipitation, salinity etc., but ecological dynamic

is strongly affected by environmental extremes events Denny et al. (2009); Durrieu and
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Briollais (2009). As long as extreme thresholds are not exceeded, the performance of

individuals, the behavior of populations, and composition of communities are often well

described by mean conditions (Brown et al. (2004)). However, biological thresholds are

often excedded in an environmental context (Gaines and Denny (1993)) such as an ex-

cursion of a climate variable like temperature outside of some extreme thresholds (Katz

et al. (2005)). Extreme levels of characteristics variables can lead to impairment of func-

tion or outright mortality of individuals, with important implications for populations,

communities, and ecosystems. For instance, extreme events play an important role in

ecology (Gutschick and BassiriRad (2003)) influencing community dynamics and biodi-

versity (Altman and Whitlatch (2007); Dayton (1971); Connell (1978); Gross et al. (2005);

Gutschick and BassiriRad (2003); Sousa (1979)). Extreme events can cause dramatic eco-

logical change that recovery is not possible. Such effects arise when populations are pushed

below some minimum density threshold (e.g., the Allee effect) or when a community or

ecosystem enters an alternate stable state (Allee et al. (1949); Folke et al. (2004)). Mor-

talities of Pacific oysters during the summer months have been documented throughout

the world and can affect between 10 and 50% of the juveniles (Samain and McCombie

(2008)), with extreme cases involving > 90% mortality (Burge et al. (2007)).

In this article, we propose a new statistical method for the estimation of extreme

conditional probabilities and extreme conditional quantiles in the framework of time series

data collected in an ecological study. The paper is organized as follows. Section 2 describes

the model and estimators. Our approach is based on adjusting a Pareto correction to the

weighted distribution function beyond a given threshold τ. The asymptotic results of the

estimators are stated in Section 3, with proofs given in the supplementary materials. We

determine rates of convergence of the corresponding estimators of the parameters in the

adjusted model when the threshold and the bandwidth are deterministic. As the threshold

is unknown in practice, we propose in Section 4 a selection method based on the maximal

propagation of the Pareto fit. The convergence results are then extended to the resulting
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adaptive estimator. Section 5 illustrates the performance of the proposed procedure via

simulation studies and an application to ecological data sets is provided in Section 6.

The aim of these experiments is to propose a water quality monitoring system through

the observation of extreme oyster’s behavior. Finally, Section 7 concludes with a general

discussion of our approach and its feasibility and applicability in practice.

2. Model and Estimator

Let 0 < T < ∞ and (Ft)t∈[0,T ] be a family of distribution functions indexed in [0, T ].

We observe independent random variables Xt1 , ..., Xtn associated to a sequence of times

0 < t1 < ... < tn ≤ T where for each ti the random variable Xti has a distribution

function Fti supported on the interval [x0,∞), x0 ≥ 0 with a strictly positive density fti .

Given x > x0 and p ∈ (0, 1), the main aim is to provide a pointwise estimate of the tail

probability St (x) = 1− Ft (x) and the extreme p-quantile F−1
t (p) processes on [0, T ].

The empirical survival function is routinely used to estimate St (x) , but this estimator

does not provide a reliable estimation for large values of x, due to the lack of observations

in this range. Otherwise, a parametric model is fitted to data and the values St (x) and

F−1
t (p) are inferred from the corresponding local fit. However this may cause a severe

bias if the fitted model is misspecified. We combine the flexible empirical distribution

function and the parametric fit in one model. The idea is to adjust, for some τ ≥ x0, the

excess distribution function

Ft,τ (x) = 1− 1− Ft (x)

1− Ft (τ)
, x ∈ [τ,∞)

by a parametric model which has good prediction properties. Here, we choose a Pareto

distribution defined by

(2.1) Gτ,θ (x) = 1−
(x
τ

)− 1
θ
, x ∈ [τ,∞),
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where θ > 0 is a parameter and τ ≥ x0 is a threshold value. Before the threshold τ we

estimate Ft by the empirical distribution function, while beyond τ we use the adjusted

probability Gτ,θ where θ has to be estimated. This choice is justified by the extreme value

theory: in the case when Ft belongs to the domain of attraction of the Fréchet distribution

it is known that Ft,τ (x) is approximated by the Pareto distribution Gτ,θ as τ → ∞.

We study the asymptotic properties of the weighted maximum quasi-likelihood estima-

tor of θ and propose a selection rule to determine the threshold τ for a given value of t.

Consider the semi-parametric model defined by

(2.2) Ft,τ,θ (x) =





Ft (x) if x ∈ [x0, τ ],

1− (1− Ft (τ)) (1−Gτ,θ (x)) if x > τ.

Let K (·) be a kernel function assumed to be continuous, non-negative, symmetric with

support on the real line such that K (x) ≤ 1 and define the weights Wt,h(ti) = K
(
ti−t
h

)
,

where h > 0 is a bandwidth parameter. For any t ∈ [0, T ], the weighted quasi-log-

likelihood function is

Lt,h(τ, θ) =
n∑

i=1

Wt,h(ti) log
dFt,τ,θ

dx
(Xti)

=
n∑

i=1

1{Xti≤τ}Wt,h(ti) log ft(Xti)

+
n∑

i=1

1{Xti>τ}Wt,h(ti) log

(
1

τθ

(
Xti

τ

)− 1
θ
−1
)
,

where 1A takes the values 1 when the condition A is verified and 0 otherwise. Maximizing

Lt,h(τ, θ) with respect to θ, we obtain the estimator

(2.3) θ̂t,h,τ =
1

n̂t,h,τ

n∑

i=1

Wt,h(ti)1{Xti>τ} log

(
Xti

τ

)

where

(2.4) n̂t,h,τ =
n∑

i=1

Wt,h(ti)1{Xti>τ}
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is the weighted number of the observations beyond the threshold τ. The distribution

function Ft(x) at time t is then estimated by

(2.5) F̂t,h,τ (x) =





F̂t,h (x) if x ∈ [x0, τ ],

1−
(
1− F̂t,h (τ)

) (
x
τ

)− 1

θ̂t,h,τ if x > τ,

which combines the weighted empirical distribution function

F̂t,h (x) =
1∑n

j=1 Wt,h(tj)

n∑

i=1

Wt,h(ti)1{Xti≤x}

and the fitted Pareto law. For any p ∈ (0, 1), the estimator of the p-quantile of Xt is

defined by

(2.6) q̂p(t) =





F̂−1
t,h (p) if p < p̂τ ,

τ
(

1−p̂τ
1−p

)θ̂t,h,τ
otherwise,

where p̂τ = F̂t,h (τ) .

3. Asymptotic properties

3.1. Main results. Let K (P,Q) =
´

log dP
dQ

dP be the Kullback-Leibler entropy between

two equivalent measures P and Q. The χ2 entropy between P and Q is defined by

χ2(P,Q) =
´

dP
dQ

dP − 1. By Jensen’s inequality we have χ2(P,Q) ≥ 0. For any non-

negative random variables An and Bn, the notation An = OP (Bn) as n → ∞ means that

there exists a constant c > 0 such that P (An ≤ cBn) → 1 as n → ∞.

For any t ∈ [0, T ] denote

nt,h,τ =
n∑

i=1

Wt,h(ti)(1− Fti(τ)).

The number nt,h,τ can be interpreted as the mean number of weighted observations ex-

ceeding the threshold τ associated to t. If the kernel K has a finite support suppK then

nt,h,τ is the mean number of weighted observations Xti exceeding the threshold τ with

ti ∈ suppK.
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The main result of the paper is the following theorem which provides an oracle inequality

for the estimator θ̂t,h,τ .

Theorem 3.1. Assume that {τn} and {hn} are two sequences such that τn ≥ x0 and

(3.1) nt,hn,τn → ∞ as n → ∞.

Then, for any sequence of positive numbers {θn} , we have as n → ∞,

(3.2) K
(
θ̂t,hn,τn , θn

)
= OP

(
log n

nt,hn,τn

+
1

nt,hn,τn

n∑

i=1

Wt,hn(ti)χ
2(Fti , Fti,τn,θn)

)
.

Proof. See Section 8.2 in the supplementary materials. �

The first term in the bound (3.2) is referred as the stochastic error while the second

one is the weighted square modelling bias induced by the use of the local parametric tail

instead of the true one in the neighborhood of the estimation point t. In the case when

K has the compact support [−1, 1], the bias term can be bounded as follows:

1

nt,hn,τn

n∑

i=1

Wt,h(ti)χ
2(Fti , Fti,τn,θn) ≤ sup

s∈[t−h,t+h]

χ2(Fs,τn , Gτn,θn).

To ensure that the second term in the right hand side of (3.2) is at least of the same

order as the first one, we shall assume that the family (Ft)t∈[0,T ] satisfies the following

small modeling bias condition (cf. Spokoiny (2009)):

C1. For any t ∈ [0, T ] there exist sequences {θn} , {τn} and {hn} (generally depending

on t) such that

(3.3)
n∑

i=1

Wt,hn(ti)χ
2(Fti , Fti,τn,θn)= O (log n) as n → ∞.

The best approximation order in (3.2) is attained when the sequences {θn} , {τn} and

{hn} are chosen such that

(3.4)
n∑

i=1

Wt,hn(ti)χ
2(Fti , Fti,τn,θn) ≍ log n,
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where an≍ bn means 0 < c1 ≤ an
bn

≤ c2 < ∞, for any n and some constants c1 and c2. If

(3.4) is satisfied, we say that {θn} (respectively {τn} and {hn}) is the oracle parameter

(respectively oracle threshold and oracle bandwidth). We shall see in the next section

that under some regularity assumptions, (3.4) is true for θn = θt,τn , where

(3.5) θt,τ = argmin
θ>0

K(Ft,τ , Gτ,θ)

is the best fitted Pareto parameter given by

(3.6) θt,τ =

ˆ ∞

τ

log
x

τ

ft(x)dx

1− Ft(τ)
, τ ≥ x0.

From Theorem 3.1, we have:

Theorem 3.2. Assume that the family (Ft)t∈[0,T ] satisfies condition C1 and

nt,hn,τn → ∞ as n → ∞.

Then, we have,

K
(
θ̂t,hn,τn , θn

)
= OP

(
log n

nt,hn,τn

)
as n → ∞.

Proof. This is a consequence of Theorem 3.1 and condition C1. �

The class of distributions (Ft)t∈[0,T ] satisfying condition C1 is very large. For instance,

this is the case when (Ft)t∈[0,T ] is a time varying mixture of Pareto models or the time

varying Hall model which generalizes the model studied in Hall (1982), Hall and Welsh

(1984). Note that the Hall model includes the class of stable non-normal distributions.

In the next section, we determine the explicit rate of convergence for these two models.

3.2. Time varying Hall model. The family (Ft)t∈(0,T ] is a time varying Hall model if

there exists positive finite constants cmin, cmax, γmin, γmax, Amax > 0 and ρ > 0 such that,

for each t ∈ [0, T ], the distribution function Ft satisfies Ft (x0) = 0 and

(3.7) ft(x) =
ct
γt
x
− 1

γt
−1

(1 + rt (x)) , |rt (x)| ≤ Atx
− ρ

γt as x → ∞,
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where γt, ct and At are some time depending functions satisfying cmin ≤ ct ≤ cmax,

γmin ≤ γt ≤ γmax, At ≤ Amax.

For simplicity, we shall assume in this section that the kernel function K has the

compact support [−1, 1].

Proposition 3.3. Assume the time varying Hall model given by (3.7). Let θt,τ be the best

fitted Pareto parameter defined by (3.5). Suppose that there exist constants 0 < β ≤ 1 and

L > 0, such that for any 0 ≤ t, s ≤ T ,

(3.8) |γt − γs| ≤ L|t− s|β.

Then the family (Ft)t∈[0,T ] verifies condition C1 with

hn ≍
(
log n

n

) 1
1+β(2+1/ρ)

, τn ≍
(

n

log n

) γtβ/ρ
1+β(2+1/ρ)

and θn = θt,τn .

Proof. See Section 8.3 in the supplementary materials. �

The following theorem gives an explicit rate of convergence of the estimator θ̂t,hn,τn .

Theorem 3.4. Under the assumptions of Proposition 3.3, we have

√
K
(
θ̂t,hn,τn , θt,τn

)
= OP

((
log n

n

) β
1+β(2+1/ρ)

)
as n → ∞.

Proof. This Theorem is a consequence of Proposition 3.3 and Theorem 3.2. �

3.3. Mixture of two Pareto distributions. We consider that Ft is a mixture of two

Pareto distributions defined by

(3.9) Ft(x) = C(1− x−1/γt) + (1− C)
(
1− x−1/δt

)
, x ≥ 1,

where δmin ≤ δt < γt ≤ γmax and C ∈ (0, 1).

As in the previous section, we shall assume that the kernel function K has the compact

support [−1, 1].

Proposition 3.5. Assume the time varying mixture of two Pareto distributions given

by (3.9). Suppose that there exist constants β ∈ (0, 1] and L > 0, such that for any
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0 ≤ t, s ≤ T ,

|γt − γs| ≤ L|t− s|β,

and

|δt − δs| ≤ L|t− s|β.

Then the family (Ft)t∈[0,T ] verifies condition C1 with

(3.10) hn ≍
(
log n

n

) 1
1+β(2+1/ρt)

, τn ≍
(

n

log n

) γtβ/ρt
1+β(2+1/ρt)

and

θn = θt,τn =
γtCτ

−1/γt
n + δt (1− C) τ

−1/δt
n

Cτ
−1/γt
n + (1− C) τ

−1/δt
n

,

where ρt =
γt
δt
− 1 > 0.

Proof. See Section 8.4 in the supplementary materials. �

The next theorem gives the explicit rate of convergence of the estimator θ̂t,hn,τn .

Theorem 3.6. Under the assumptions of Proposition 3.5, we have

√
K
(
θ̂t,hn,τn , θt,τn

)
= OP

((
log n

n

) β
1+β(2+1/ρt)

)
as n → ∞.

Proof. This Theorem is a consequence of Proposition 3.5 and Theorem 3.2 . �

If ρt → ∞ we obtain the rate
(
logn
n

) β
2β+1 which is the usual rate of convergence in the

non-parametric estimation under the Lipschitz condition (see Stone (1982), Gardes and

Girard (2008)). This shows that the rate of convergence provided by Theorems 3.1, 3.4

and 3.6 are exact up to a log n multiple.

4. Automatic selection of the threshold τ

4.1. Maximum Likelihood Maximal Propagation (MLMP) procedure. An im-

portant problem concerns the choice of the threshold τ. Here, we propose a selection

procedure to determine τ assuming that the bandwidth h is fixed. The idea of the proce-

dure has similarities with the propagation approach proposed by Spokoiny (2009) where a
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sequence of likelihood ratio test is used to detect the maximal length local parametric fit

for the tail. As soon as it is detected the next step of our procedure consists in maximiz-

ing the penalized likelihood. This second part is different from the approach in Spokoiny

(2009) and is inspired by Grama and Spokoiny (2008), Grama et al. (2011) and Grama

et al. (2013a,b).

Let Y1 ≥ ... ≥ YMt,h
be the order statistics pertaining to the observations Yt,h =

{
Xti :

ti−t
h

∈ suppK
}
, where suppK is the support of the kernel K and Mt,h = card(Yt,h) .

We choose the threshold τ in the set Yt,h by maximizing the quasi-log-likelihood function

max
θ

Lt,h (τ, θ)− Pent,h

(
τ, θ̂t,h,ŝ

)
= Lt,h

(
τ, θ̂t,h,τ

)
− Pent,h

(
τ, θ̂t,h,ŝ

)
,

where the penalty function is defined by

(4.1) Pent,h (τ, θ) = Lt,h (τ, θ)

and ŝ is a break time to be determined from a multiple goodness-of-fit testing procedure

below.

Consider the null hypothesis H0 (τ) : Ft = Ft,τ,θ where the distribution function Ft,τ,θ

is defined by (2.2) and the alternative hypothesis H1 (s, τ) : Ft = Ft,µ,s,θ,τ , where Ft,µ,s,θ,τ

is the Pareto change point distribution

(4.2) Ft,µ,s,θ,τ (x) =





Ft (x) if x ∈ [x0, s],

1− (1− Ft (s)) (1−Gs,µ (x)) if x ∈ (s, τ ],

1− (1− Ft (s)) (1−Gs,µ (τ)) (1−Gτ,θ (x)) if x ∈ (τ,∞),

where µ, θ > 0 and x0 ≤ s ≤ τ. We proceed by consecutive testing for the null hypoth-

esis H0 (Yk) against the alternatives H1(Y k, Yl) , for all k ∈ [k0,Mt,h] and l such that

δ′ (k − 1) ≤ l − 1 ≤ (1− δ′′) (k − 1) , where k0 = δ0Mt,h ≥ 3 is a constant interpreted as

the initial value of k, and δ0, δ
′, δ′′ are constants satisfying 0 < δ0, δ

′, δ′′ < 1
2
. The break

time ŝ is the first time Yk for which H0 (Yk) is rejected.



12 DURRIEU, G., GRAMA, I., PHAM, Q. K., AND TRICOT, J. M.

Recall that θ̂t,h,τ is the maximum likelihood estimator of θ given by (2.3). In the same

way we obtain the maximum likelihood estimator of µ :

µ̂t,h,s,t =
n̂t,h,s

n̂t,h,s,τ

θ̂t,h,s −
n̂t,h,τ

n̂t,h,s,τ

θ̂t,h,τ ,

where n̂t,h,s,τ =
∑n

i=1 Wt,h (ti) 1{s<Xti≤τ}. The log-likelihood ratio test statistic for testing

H0 (s) against H1 (s, τ) is given by

(4.3) LRt,h (s, τ) = n̂t,h,s,τK
(
µ̂t,h,s,τ , θ̂t,h,s

)
+ n̂t,h,τK

(
θ̂t,h,τ , θ̂t,h,s

)
.

Taking into account (4.1), we have

Lt,h

(
τ, θ̂t,h,τ

)
− Pent,h (τ, θ) = n̂t,h,τK

(
θ̂t,h,τ , θ

)
,

which implies that the second term in (4.3) can be viewed as the penalized quasi-log-

likelihood

LPen
t,h (s, τ) = Lt,h

(
τ, θ̂t,h,τ

)
− Pent,h

(
τ, θ̂t,h,s

)
.

We denote by D > 0 the critical value in the testing procedure below. To speed up

the calculations, we take k = k0 + i kstep, i = 0, ...,Mgrid, where kstep = [Mt,h/Mgrid] is an

increment for k and Mgrid is fixed. The values δ0, kstep, δ
′, δ′′ and D are the parameters

of the procedure to be determined empirically.

The procedure of the adaptive choice of τ is as follows:

Step 1. Set k = k0.

Step 2. Compute the test statistic

Z (Yk) = max
δ′(k−1)≤l−1≤(1−δ′′)(k−1)

LRt,h (Yk, Yl) .
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Step 3. If k ≤ n − kstep and Z (Yk) ≤ D, increase k by kstep and go to Step 2. If

k > n− kstep or Z (Yk) > D, let k̂ = k,

(4.4) l̂ − 1 = arg max
δ′(k−1)≤l−1≤(1−δ′′)(k−1)

LPen
t,h

(
Yk̂, Yl

)
,

take the adaptive threshold as τ̂n = Yl̂ and exit.

By definition, the adaptive estimator is set to θ̂t,h,τ̂n .

4.2. Propagation property of the test statistic. We shall prove that if Yk ≥ τn then

the test statistic

Z (Yk) = sup
δ′(k−1)≤l−1≤(1−δ′′)(k−1)

LRt,hn (Yk, Yl)

does not exceed

(4.5) D = D (n) = c∗ log n

with high probability for some constant c∗ > 0.

Theorem 4.1. Assume that the family (Ft)t∈[0,T ] satisfies condition C1. Then, there

exists a constant c∗ > 0 in (4.5), such that

P

(
sup
Yk≥τn

Z (Yk) > D (n)

)
≤ 4

n
as n → ∞.

Proof. See Section 8.5 of the supplementary materials. �

Since P
(
supYk≥τn Z (Yk) ≤ D (n)

)
≤ P (τ̂n < τn) , from Theorem 4.1 it follows that

under condition C1,

P (τ̂n < τn) → 1 as n → ∞.

The meaning of this assertion is that the oracle threshold τn is detected by our selection

procedure with high probability as n → ∞.

Since condition C1 means that Ft has a Pareto like tail on [τn,∞), our selection pro-

cedure is equivalent to performing a goodness-of-fit test for testing the null hypothesis

H0 (τ̂n) : Ft = Ft,τ̂n,θ.
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4.3. Rates of convergence of the adaptive estimator. We first compare the perfor-

mance of the adaptive estimator θ̂t,h,τ̂n with that of the non adaptive estimator θ̂t,hn,τn .

Theorem 4.2. Assume that the family (Ft)t∈[0,T ] satisfies condition C1. Then, there

exists a constant c∗ > 0 in 4.5, such that as n → ∞

K(θ̂t,hn,τ̂n , θ̂t,hn,τn) = OP

(
log n

n̄t,hn,τn

)
.

Proof. See Section 8.6 of the supplementary materials. �

The previous theorem allows to extend the results of the non adaptive setting to the

adaptive one. The following theorem gives the rate of convergence of the adaptive esti-

mator θ̂t,hn,τ̂n .

Theorem 4.3. Assume that the family (Ft)t∈[0,T ] satisfies condition C1. Then, there

exists a constant c∗ > 0 in 4.5, such that as n → ∞

K(θ̂t,hn,τ̂n , θn) = OP

(
log n

n̄t,hn,τn

)
.

Proof. Combining Theorem 4.2 and Theorem 3.1 we obtain Theorem 4.3. �

Recall that the adaptive estimator of the excess distribution function Ft,τn is given

by Gτn,θ̂t,hn,τ̂n
(see 2.1). We give now the rate of convergence of the adaptive estimator

Gτn,θ̂t,hn,τ̂n
to Ft,τn in terms of the Kullback-Leibler divergence.

Theorem 4.4. Assume that the family (Ft)t∈[0,T ] satisfies condition C1 with θn = θt,τn.

Moreover, assume that as n → ∞

(4.6) χ2(Ft,τn , Gτn,θn) = O

(
log n

n̄t,hn,τn

)
.

Then, there exists a constant c∗ > 0 in 4.5, such that as n → ∞

K
(
Ft,τn , Gτn,θ̂t,hn,τ̂n

)
= OP

(
log n

n̄t,hn,τn

)
.

Proof. See Section 8.7 of the supplementary materials. �
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In the particular case of the Hall model we obtain an explicit rate of convergence of the

adaptive estimator θ̂t,hn,τ̂n (cf. Theorem 3.4).

Theorem 4.5. Under the assumptions of Proposition 3.3, there exists a constant c∗ > 0

in 4.5, such that

√
K
(
θ̂t,hn,τ̂n , θt,τn

)
= OP

((
log n

n

) β
1+β(2+1/ρ)

)
as n → ∞,

where hn ≍
(
logn
n

) 1
1+β(2+1/ρ) .

Proof. This Theorem is a consequence of Theorem 4.2 and Theorem 3.4. �

In the case of mixture of two Pareto distributions, we obtain similar rate of convergence

for the adaptive estimator.

5. Simulations

We first give arguments on the choice of the parameters of the selection procedure

given in Section 4. The proposed procedure depends on the initial proportion δ0, the

parameters δ′, δ′′, the grid length Mgrid and the critical value D. The parameters δ0,

δ′ and δ′′ should be large enough to prevent from large variability in the first several

iterations of the algorithm. We fix δ0 = 1
20
, δ′ = 1

4
and δ′′ = 1

20
. We observe in the

simulation that the procedure is not very sensitive to the choice of the parameter Mgrid.

We choose Mgrid = 200 to reduce the computation time.

According to the Wilks phenomenon under the null hypothesis which specifies that the

distribution functions Fti , i = 1, ..., n, are i.i.d. Pareto G1,θ, the test statistic 2LRt,h (s, τ)

is asymptotically χ2 with 1 degree of freedom. Our Theorem 4.1 can be regarded as a

non asymptotic version of the Wilks phenomenon. Since our setting is non asymptotic,

to determine practically the critical value D, we simulate the values of the test statistic

Tn = supk0≤k=k0+ikstep≤n Z
(
X(k)

)
under the null hypothesis stated above. The value D

is chosen as the 0.99-empirical quantile to ensure a 0.01 type I error. This is motivated
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Figure 1. Empirical distribution function of the statistic Tn (red line:
2nh = 200; blue line: 2nh = 500; green line: 2nh = 1000; black line:
2nh = 2000).

by the propagation property of the test statistic under the null hypothesis: The selection

procedure should choose the smallest possible threshold τ = X(k) (largest k) i.e. the

test statistic Tn should not exceed D with high probability. One can verify that the test

statistic Tn does not depend on θ and therefore we can fix θ equal to 1.

The empirical distribution functions of Tn for the Gaussian kernel and various sample

sizes in the window [t− h, t+ h] is given in Figure 1. The value D = 3.6382 corresponds

to the empirical quantile of order p = 0.99 from the sampled values.

We now analyze the behavior of the adaptive estimator under the alternative hypothesis.

The performance of the proposed procedure is tested using the mixture model (see Section

3.3)

(5.1) Ft(x) = C(1− x−1/γt) + (1− C)
(
1− x−1/γt−5

)
, x ≥ 1, 0 ≤ t ≤ 1

where C = 0.75 and

γt = 0.5 + 0.25 sin (2πt) .
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Figure 2. Boxplots of adaptive estimators θ̂ti,hn,τ̂n at ti = 0.1, 0.15, ..., 0.9
for the Hall model from 2000 realizations with n = 50000.

We suppose that n = 50000 and the value of hn is fixed to 0.034. We generate B = 2000

replicates of Xt1 , ..., Xtn from the mixture model (5.1). We focus on the estimation of

θ(ti) for ti = 0.1, 0.15, ..., 0.9. The estimators θ̂ti,hn,τ̂n are computed using the adaptive

procedure with the parameters δ0, δ
′, δ′′, Mgrid and D as fixed above. In Figure 2 , we

display the boxplots of 2000 realizations of θ̂ti,hn,τ̂n . Figures 3 and 4 show respectively the

empirical mean square errors of θ̂ti,hn,τ̂n and q̂0.999(ti).

Our simulations also show that the threshold τn = X(l̂) in (4.4) is not very sensitive to

the choice of the critical value D in the sense that the adaptive choice l̂ remains constant

with respect to relatively large variations of D.

6. Application to the real data

We first describe the experimental site and the animal species. Then, we give some

details on evaluation of valve activity. Afterwards, we provide information on data collec-

tion and transmission. Finally, exploring typical features of the valvometric environmental

data samples (i.e. measurements of distances between the two parts of the shell of bivalves)
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Figure 3. MSE of adaptive estimators θ̂ti,hn,τ̂n at ti = 0.1, 0.15, ..., 0.9 for
the Hall model from 2000 realizations with n = 50000.
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Figure 4. MSE of adaptive estimators q̂0.999(ti) at ti = 0.1, 0.15, ..., 0.9 for
the Hall model from 2000 realizations with n = 50000.
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collected by a laboratory called Environnements et Paléoenvironnements Océaniques et

Continentaux (EPOC, http://www.epoc.u-bordeaux.fr/), we explain which inferences

are valuable from the biological point of view.

6.1. Data acquisition. The monitoring site we considered is located in France at Loc-

mariaquer (Latitude: 47°57 N, Longitude: 2°94 W). A group of sixteen Pacific oysters,

Crassostrea gigas, measuring from 8 to 10 cm length, are installed on each site. Every

oyster has almost the same age (1.5 years old). They were placed in a traditional oyster

farmer bag.

The electronic principle of monitoring was described by Tran et al. (2003) and further

modified by Chambon et al. (2007). Some information about these specific aspects can

be found on http://molluscan-eye.epoc.u-bordeaux1.fr. The main challenge was to

ensure the complete autonomy of the system without in-situ human intervention for at

least one full year. In brief, each animal is equipped with two light coils (sensors), of

approximately 53 mg each (unembedded), fixed on the edge of each valve. These coils

measure 2.5×2.5×2 mm and were coated with a resin sealing before fixation on the valves.

One of the coils emits a high-frequency, sinusoidal signal which is received by the other

coil. For each sixteen animals, one measurement is received every 0.1s (10 Hz). This

means that each animal’s behavior is measured every 1.6s. Every day, a data set with

864,000 pairs of values (1 distance value, 1 stamped time value) is generated. A first

electronic card manages the electrodes and is in a waterproof case next to the animals. A

second electronic card handling the data acquisition and the programmed emission is also

in the field but outside the water on a pier. This unit is equipped with a GSM/GPRS

modem and uses Linux operating system for driving the first control unit, managing the

data storage, accessing the Internet, and transferring the data.

A self-developed software module runs on mobile phone technology. After each 24h

period (or any other programmed period of time), the data collected are transmitted to a

http://www.epoc.u-bordeaux.fr/)
http://molluscan-eye.epoc.u-bordeaux1.fr
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remote central workstation server where they are stored in text files. Every day, files from

each site are inserted in a SQL database. This database is accessible with the software R

(R Development Core Team, 2012) or a text terminal, via Internet or directly from the

storage server.

6.2. The biological issue. These measurements produce some characteristic features

that can be examined in Figure 5. As argued in Tran et al. (2003, 2010); Sow et al.

(2011); Coudret et al. (2013), pollution can affect the activity of oysters and in particular

the shells opening and closing speed. For instance in an inhospitable extreme environment,

oysters will close more rapidly its shells. Thus, detecting extreme changes of the closing

speed can provide insights about the health of oysters and so give an insight about the

water quality.

Figure 5. An example of valvometric data for one oyster

6.3. Results. We consider dataset associated to movement speeds which are considered

as an indicator of the animal stress activity since its movements are associated to aquatic

system perturbations. For instance, a stressed oyster in the presence of pollution or

environmental perturbations exhibits irregular and numerous micro-closings and opening

periods with high speed.
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Figure 6. The red line on the top figure displays the estimated tail prob-
abilities P (Xt > 0.3) on April 18, 2011. The red line on the bottom figure
displays the 0.999-quantile process the same day. The black lines represent
the speeds of valve closings.

Figure 6 shows for the 18th of April 2011 the plot of probability P (Xt > 0.3) and

0.999-quantile estimators of the valve closing speed for one oyster in the Locmariaquer

site. For an easier data visualization of the extreme quantiles of the closing velocities of

the 16 oysters through the period starting from 4th of March to 21th of August 2011, we

use in Figure 7 a customized color table (gray color associated to the smallest quantiles

class, yellow to the intermediate quantiles class and red to the largest quantiles class) to

match computed extreme quantile values.

The 4th of March and the 21th of August 2011 correspond respectively to the 63th days

and to the 233th days of the 2011 year. For each day, there are 16 lines of colored points

representing the extreme 0.999-quantiles values at each t ∈ [0, 24] hour of each oyster’s

velocity. The advantage of this representation is to give the extreme quantiles values for
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Figure 7. Representation of the extreme 0.999-quantile estimator of the
closing velocity between the 4th of March and the 21th of August 2011
considering the 16 oysters in Locmariaquer. The x-axis represents the time
in a 24 hour time period and the y-axis represents the number of days since
the 1st of January 2011

.

each of the 16 oysters for a given time period in one single graph. Figure 7 shows that the

closing activity is highly correlated with the tidal amplitude and that the closing state is

synchronized with the low tide period. This is confirmed by Sow et al. (2011); Coudret

et al. (2013) using non parametric methods.

We notice particularly a yellow zone (between the 110th and 125th days) explained

by a sudden change in temperature collected by a temperature sensor installed near the

oysters (data not shown) and a red colored area showing a more intense activity including

spawning activity (days ≥ 210). These results thus contribute to the development of a

tool for monitoring water quality based on the analysis of continuous behavior of bivalves

(bio-indicator of pollution in the field). This velocity information provides an important
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indication of the change in behavior of oysters such as a spawn or a period of abnormal

stress characterized by rapid partial closures, openings).

7. Concluding remarks

The model : this article deals with estimation of the tail probabilities and extreme

quantiles in the framework of time series data Xt1 , ..., Xtn . Our approach is based on

adjusting a Pareto correction to the weighted empirical distribution function beyond a

given threshold τ for observations in the neighborhood of each time t with given bandwidth

h. The choice of the adjusted Pareto model is justified by the extreme value theory.

Theoretical results: we determine rates of convergence of the corresponding estimators

of the parameters in the adjusted model when the threshold and the kernel bandwidth are

deterministic. These results are then extended to the estimator with adaptive threshold.

Adaptive estimator: in applications the threshold usually is not known. We propose

a Maximum Likelihood Maximal Propagation (MLMP) selection procedure based on the

maximal propagation of a parametric adjustment and a subsequent choice of the threshold

using penalized maximum likelihood.

Model validity: the construction of the adaptive estimator is based on a testing proce-

dure which can be viewed as a goodness-of-fit test for the parametric-based part of the

model. So the question of the model validation for the adjusted tail is answered by the

MLMP procedure: at each step of the procedure the adjusted tail is tested and if it is not

rejected the sample is enlarged and tested again until the parametric model is rejected.

The choice of the ”optimal” threshold is made among the already tested models and

therefore the adaptive adjusted tail is validated as well. If the test rejects the parametric

tail fit from the very beginning, the Pareto tail adjustment is not significant. On the

opposite, if all the tests accept the parametric Pareto fit then the underlying distribution

is significantly Pareto.
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Simulations: we study the behavior of the estimators under the null and the alternative

hypotheses. Under the null hypothesis, assuming i.i.d. standard Pareto observations, we

compute the critical value in the MLMP procedure and we show that it remains stable

with respect to the number of observations in the window. This is done for the Gaussian

kernel, but the critical values for other kernels can be determined in the same way. We

perform numerical simulations with the adaptive estimators of the Pareto tail parameter

in order to show that under the alternative hypothesis the mean squared error is small.

We analyze also the relative mean squared error of the extreme quantile estimator.

Application: we apply the developed procedure in the context of an ecological study.

The objective is to determine extreme environmental disturbances through high frequency

measurements of oysters activity considered as a bioindicators of pollution.
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8. supplementary materials

8.1. Auxiliary results. We consider a semiparametric Pareto model with two change

points v and τ defined by

Ft,θ,s,µ,v,θ′,τ (x) =





Ft (x) if x ∈ [x0, s],

1− (1− Ft (s)) (1−Gs,θ (x)) if x ∈ (s, v],

1− (1− Ft (s)) (1−Gs,θ (v)) (1−Gv,µ (x)) if x ∈ (v, τ ],

1− (1− Ft (s)) (1−Gs,θ (v)) (1−Gv,µ (τ)) (1−Gτ,θ′ (x)) if x > τ,

where θ′, θ, µ > 0 τ ≥ v ≥ s ≥ x0. Let

Lt,h(Ft,v,θ) = Lt,h(v, θ) =
n∑

i=1

Wt,h(ti) log
dFt,v,θ

dx
(Xti),

Lt,h(Ft,µ,v,θ,τ ) =
n∑

i=1

Wt,h(ti) log
dFt,µ,v,θ,τ

dx
(Xti),

Zt,h(Ft,v,θ′ , Ft,v,θ) = Lt,h(Ft,v,θ′)− Lt,h(Ft,v,θ) =
n∑

i=1

Wt,h(ti) log
dFt,v,θ′

dFt,v,θ

(Xti),

and

Zt,h(Ft,µ,v,θ,τ , Ft,v,θ) = Lt,h(Ft,µ,v,θ,τ )− Lt,h(Ft,v,θ) =
n∑

i=1

Wt,h(ti) log
dFt,µ,v,θ,τ

dFt,v,θ

(Xti).

The following proposition gives the exponential bounds for the quasi-log-likelihood ra-

tios Zt,h(Ft,v,θ′ , Ft,v,θ) and Zt,h(Ft,µ,v,θ,τ , Ft,v,θ). We introduce a measure of discrepancy

between the family of distributions (Fu)u∈[0,T ] and the adjusted models (Fu,s,θ)u∈[0,T ] at

time t by

dt,h,s,θ =
n∑

i=1

Wt,h(ti)χ
2(Fti , Fti,s,θ).

Proposition 8.1. For any y > 0, τ ≥ v ≥ s ≥ x0, and any µ, θ, θ′ > 0, we have

P (Zt,h(Ft,v,θ′ , Ft,v,θ) > y) ≤ exp

(
−y

2
+

dt,h,s,θ
2

)
,(8.1)

P (Zt,h(Ft,µ,v,θ,τ , Ft,v,θ) > y) ≤ exp

(
−y

2
+

dt,h,s,θ
2

)
.(8.2)
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Proof. We first prove (8.1). Let v ≥ s ≥ x0. Since
dFt,v,θ′

dFt,v,θ
=

dFti,θ,s,θ
′,v

dFti,s,θ
for i = 1, ..., n, by

the definition of Zt,h(Ft,v,θ′ , Ft,v,θ), we have

Zt,h(Ft,v,θ′ , Ft,v,θ) =
n∑

i=1

Wt,h(ti) log
dFti,θ,s,θ′,v

dFti,s,θ

(Xti).

Denote for brevity Hti = Fti,θ,s,θ′,v. Applying exponential Chebyshev’s inequality, we have

(8.3) P (Zt,h(Ft,v,θ′ , Ft,v,θ) > y) ≤ exp
(
−y

2

)
E

(
exp

(
1

2
Zt,h(Ft,v,θ′ , Ft,v,θ)

))
.

Since 0 ≤ Wt,h(ti) ≤ 1 for all i = 1, ..., n, we deduce by Hölder’s inequality

logE

(
exp

(
1

2
Zt,h(Ft,v,θ′ , Ft,v,θ)

))

=
n∑

i=1

logE

(
exp

(
1

2
1{Xti>s} log

dHti

dFti,s,θ

(Xti)

))Wt,h(ti)

≤
n∑

i=1

Wt,h(ti) logE

(
exp

(
1

2
1{Xti>τ} log

dHti

dFti,s,θ

(Xti)

))

and

E

(
exp

(
1

2
1{Xti>s} log

dHti

dFti,s,θ

(Xti)

))

= E

(
exp

(
1

2
1{Xti>s} log

dHti

dFti

(Xti)

)
exp

(
1

2
1{Xti>s} log

dFti

dFti,s,θ

(Xti)

))

≤
√

E

(
exp

(
1{Xti>s} log

dHti

dFti

(Xti)

))√
E

(
exp

(
1{Xti>s} log

dFti

dFti,s,θ

(Xti)

))
.

Using the fact that, for i = 1, ..., n

E

(
exp

(
1{Xti>s} log

dHti

dFti

(Xti)

))
= 1

and

E

(
exp

(
1{Xti>s} log

dFti

dFti,s,θ

(Xti)

))
= 1 + χ2(Fti , Fti,s,θ),
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we obtain

log

(
E

(
exp

(
1

2
Zt,h(Ft,v,θ′ , Ft,v,θ)

)))
≤ 1

2

n∑

i=1

Wt,h(ti) log
(
1 + χ2(Fti , Fti,s,θ)

)

≤ 1

2

n∑

i=1

Wt,h(ti)χ
2(Fti , Fti,s,θ) =

dt,h,s,θ
2

.(8.4)

Combining (8.3) and (8.4), we deduce that

(8.5) P (Zt,h(Ft,v,θ′ , Ft,v,θ) > y) ≤ exp

(
−y

2
+

dt,h,s,θ
2

)
,

which prove that (8.1) is satisfied.

Since, for i = 1, ..., n

dFt,µ,v,θ,τ

dFt,v,θ

(Xti) =
dFti,θ,s,µ,v,θ,τ

dFti,s,θ

(Xti),

we have

Zt,h(Ft,µ,v,θ,τ , Ft,v,θ) =
n∑

i=1

Wt,h(ti) log
dFti,θ,s,µ,v,θ,τ

dFti,s,θ

(Xti).

Now (8.2) is proved in the same way as (8.1). �

Next, we give an exponential bound for the maximum quasi-log-likelihood ratio which

permits to obtain a rate of convergence of nonadaptive estimator θ̂t,h,τn .

Proposition 8.2. For any y > 0, τ ≥ v ≥ s ≥ x0, and θ > 0, we have

P

(
[n̂t,h,v]K(θ̂t,h,v, θ) > y

)
≤ 2n exp

(
−y

2
+

dt,h,s,θ
2

)
,

P ([n̂t,h,v,τ ]K(µ̂t,h,v,τ , θ) > y) ≤ 2n exp

(
−y

2
+

dt,h,s,θ
2

)
,

where [u] is the integer part of u.

Proof. We shall prove only the first inequality, the second one being proved in the same

way. We start with the obvious relation Zt,h(Ft,v,θ′ , Ft,v,θ) = n̂t,h,vΛ(θ
′), where Λ(u) =

log θ
u
− ( 1

u
− 1

θ
)θ̂t,h,v. Denote for brevity g(u, k) =

(
log θ

u
− y

k

)
/
(
1
u
− 1

θ

)
. Note that for

k > 0 and 0 < u < θ, the inequality kΛ(u) > y is equivalent to g(u, k) > θ̂t,h,v for k > 0.

Similarly, for u > θ the inequality kΛ(u) > y is equivalent to g(u, k) < θ̂t,h,v. Moreover

with k > 0 fixed, the function g(u, k) has a maximum for 0 < u < θ and a minimum for
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u > θ. Let θ+(k) = argmax0<u<θ g(u, k) and θ−(k) = argminu>θ g(u, k). One can see

that

{
[n̂t,h,v] Λ(θ̂t,h,v) > y, θ̂t,h,v < θ

}
=

{
g(θ̂t,h,v, [n̂t,h,v]) > θ̂t,h,v, θ̂t,h,v < θ

}

⊆
{
g(θ+([n̂t,h,v]), [n̂t,h,v]) > θ̂t,h,v, θ̂t,h,v < θ

}

=
{
[n̂t,h,v] Λ(θ

+([n̂t,h,v]) > y, θ̂t,h,v, < θ
}

⊆
{
[n̂t,h,v] Λ(θ

+([n̂t,h,v]) > y
}
.

In the same way, we have

{
[n̂t,h,v] Λ(θ̂t,h,v) > y, θ̂t,h,v, > θ

}
⊆
{
[n̂t,h,v] Λ(θ

−([n̂t,h,v]) > y
}
.

Since Λ(θ̂t,h,v) = K(θ̂t,h,v, θ) for any θ > 0 and K(θ̂t,h,v, θ) = 0 for θ = θ̂t,h,v, these inclusions

imply

{
[n̂t,h,v]K(θ̂t,h,v, θ) > y

}
⊆
{
[n̂t,h,v] Λ(θ

+([n̂t,h,v]) > y
}
∪
{
[n̂t,h,v] Λ(θ

−([n̂t,h,v]) > y
}
.

Hence,

P

(
[n̂t,h,v]K(θ̂t,h,v, θ) > y

)

≤ P
(
[n̂t,h,v] Λ(θ

+([n̂t,h,v]) > y
)
+ P

(
[n̂t,h,v] Λ(θ

−([n̂t,h,v]) > y
)

≤
[nt,h]∑

k=1

P
(
[n̂t,h,v] Λ(θ

+(k)) > y
)
+

[nt,h]∑

k=1

P
(
[n̂t,h,v] Λ(θ

−(k)) > y
)
,

where nt,h =
∑n

i=1 Wt,h(ti). From Proposition 8.1, and the inclusion {[n̂t,h,v] Λ(θ
′) > y} ⊆

{n̂t,h,vΛ(θ
′) > y} , we have, for any θ′ > 0

P ([n̂t,h,v] Λ(θ
′) > y) ≤ P (n̂t,h,vΛ(θ

′) > y)

= P(Zt,h(Ft,v,θ′ , Ft,v,θ) > y),

≤ exp

(
−y

2
+

dt,h,s,θ
2

)
.

We deduce

P

(
[n̂t,h,v]K(θ̂t,h,v, θ) > y

)
≤ 2[nt,h] exp

(
−y

2
+

dt,h,s,θ
2

)
.
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Since [nt,h] ≤ n, we have

P

(
[n̂t,h,v]K(θ̂t,h,v, θ) > y

)
≤ 2n exp

(
−y

2
+

dt,h,s,θ
2

)
.

�

Proposition 8.3. For any y > 0, s ≥ x0 and θ > 0, we have

P

(
sup
s≤v

[n̂t,h,v]K(µ̂t,h,v, θ) > y

)
≤ 2n4 exp

(
−y

2
+

dt,h,s,θ
2

)
+

1

n

and

P

(
sup

s≤v≤τ
[n̂t,h,v,τ ]K(µ̂t,h,v,τ , θ) > y

)
≤ n7 exp

(
−y

2
+

dt,h,s,θ
2

)
+

1

n
.

Proof. The proof of the proposition is similar that of Proposition 7.4 in Grama and

Spokoiny (2008). �

The following Proposition gives an exponential bound for the statistic LRt,h(v, τ) (see

(4.3) ).

Proposition 8.4. For any y > 0, s ≥ x0 and θ > 0, we have

P

(
sup

s≤v≤τ
LRt,h(v, τ) > 4y

)
≤ 2n7 exp

(
−y

2
+

dt,h,s,θ
2

)
+

2

n
.

Proof. From the fact that

LRt,h(v, τ) = max
µ,θ′>0

Lt,h(Ft,µ,v,θ′,τ )−max
θ>0

Lt,h(Ft,v,θ)

and

max
θ>0

Lt,h(Ft,v,θ) ≥ Lt,h(Ft,v,θ),

it follows that

LRt,h(v, τ) ≤ max
µ,θ′>0

Lt,h(Ft,µ,v,θ′,τ )− Lt,h(Ft,v,θ).

Proceeding as in the proof of (4.3), we see that

max
µ,θ′>0

Lt,h(Fµ,v,θ′,τ )− Lt,h(Ft,v,θ) = n̂t,h,v,τK(µ̂t,h,v,τ , θ) + n̂t,h,τK(θ̂t,h,τ , θ)

≤ 2[n̂t,h,v,τ ]K(µ̂t,h,v,τ , θ) + 2[n̂t,h,τ ]K(θ̂t,h,τ , θ).

We deduce

LRt,h(v, τ) ≤ 2[n̂t,h,v,τ ]K(µ̂t,h,v,τ , θ) + 2[n̂t,h,τ ]K(θ̂t,h,τ , θ)
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and
{

sup
s≤v≤τ

LRt,h(v, τ) > 4y

}
⊆

{
sup

s≤v≤τ
[n̂t,h,v,τ ]K(µ̂t,h,v,τ , θ) > y

}

∪
{
sup
s≤τ

[n̂t,h,τ ]K(θ̂t,h,τ , θ) > y

}
.

From Proposition 8.3 and the previous inclusion, we obtain

P

(
sup

s≤v≤τ
LRt,h(v, τ) > 4y

)

≤ P

(
sup

s≤v≤τ
[n̂t,h,v,τ ]K(µ̂t,h,v,τ , θ) > y

)
+ P

(
sup
s≤τ

[n̂t,h,τ ]K(θ̂t,h,τ , θ) > y

)

≤ 2n7 exp

(
−y

2
+

dt,h,s,θ
2

)
+

2

n
.

�

Denote

n̄t,hn,τn =
n∑

i=1

Wt,hn(ti)(1− Fti(τn)).

Lemma 8.5. If the sequence (τn) is such that n̄t,hn,τn → ∞ as n → ∞, then n̂t,hn,τn

P≍
n̄t,hn,τn as n → ∞. Moreover, [n̂t,hn,τn ]

P≍ n̄t,hn,τn as n → ∞.

Proof. By Chebyshev’s exponential inequality, for any u > 0 and ǫ ∈ (0, 1),

(8.6) P

(
n̂t,hn,τn

n̄t,hn,τn

< 1− ǫ

)
≤ exp

(
u(1− ǫ)n̄t,h,τn + logE

(
e−un̂t,hn,τn

))
.

Applying Hölder’s inequality, we have

logEe−un̂t,hn,τn =
n∑

i=1

logE

((
e
−u1{Xti

>τn}

)Wt,hn (ti)
)

≤
n∑

i=1

Wt,hn(ti) logE
(
e
−u1{Xti

>τn}

)
.

Using the fact that

logE
(
e
−u1{Xti

>τn}

)
= log

(
1− (1− FXti

(τn))(1− e−u)
)
≤ −

(
1− FXti

(τn)
) (

1− e−u
)
),
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we have

(8.7) un̄t,hn,τn + logE
(
e−un̂t,h,τn

)
≤ n̄t,hn,τn(e

−u + u− 1) ≤ nt,hn,τn

u2

2
.

From (8.6) and (8.7) it follows that

(8.8) P

(
n̂t,hn,τn

n̄t,hn,τn

< 1− ǫ

)
≤ exp

(
n̄t,hn,τn(−uǫ+

u2

2
)

)
.

In the same way, we have

(8.9) P

(
n̂t,hn,τn

n̄t,hn,τn

> 1 + ǫ

)
≤ exp (n̄t,hn,τn (e

u − (1 + ǫ)u− 1)) .

Note that, there exist δ > 0 such that, for all 0 < u < δ it holds eu−u−1
u

< ǫ. Taking

u = min
{
ǫ, δ

2

}
, we obtain

(8.10) (eu − (1 + ǫ)u− 1) < 0, and − uǫ+
u2

2
< 0.

Then from (8.8), (8.9) and (8.10), we have

lim
n→∞

P

(
n̂t,hn,τn

n̄t,hn,τn

< 1− ǫ

)
= lim

n→∞
P

(
n̂t,hn,τn

n̄t,hn,τn

> 1 + ǫ

)
= 0,

which is equivalent to

lim
n→∞

P

(∣∣∣∣
n̂t,hn,τn

n̄t,hn,τn

− 1

∣∣∣∣ > ǫ

)
= 0,

or n̂t,hn,τn

P≍ n̄t,hn,τn as n → ∞. On the other hand, since n̄t,hn,τn → ∞ as n → ∞, we

have

[n̂t,hn,τn ] ≤ n̂t,h,τn ≤ 2 [n̂t,hn,τn ] ,

which implies that [n̂t,hn,τn ]
P≍ n̄t,hn,τn , as n → ∞.This completes the proof. �

Lemma 8.6. For any given integer positive k0 and any sequence τn, n = 1, 2, ..., satisfying

n̄t,hn,τn → ∞ as n → ∞, it holds limn→∞ P(Yk0 > τn) = 1.

Proof. Since n̄t,hn,τn → ∞ as n → ∞, by Lemma 8.5, there exist constants C1, C2 > 0

such that, as n → ∞,

P(C1n̄t,hn,τn ≤ n̂t,hn,τn ≤ C2n̄t,hn,τn) → 1,

and, for M = k0/C1, there exist n0 > 0 such that, for any n > n0,

n̄t,hn,τn > M.
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So that, for any n > n0,

{C1n̄t,hn,τn ≤ n̂t,hn,τn} ⊆ {n̂t,hn,τn > k0}.

Since 0 ≤ Wt,hn(ti) ≤ 1, i = 1, ..., n, we have

{n̂t,hn,τn > k0} ⊆ {Yk0 > τn}.

It follows that

P(Yk0 > τn) → 1,

which ends the proof. �

8.2. Proof of Theorem 3.1. Letting s = v = τn, h = hn, θ = θn and y = 4 log n + dτn .

Using the first inequality of Proposition 8.2, we have, as n → ∞,

K
(
θ̂t,hn,τn , θn

)
= OP

(
1

[n̂t,hn,τn ]
(4 log n+ dτn)

)
.

By lemma 8.5, [n̂t,hn,τn ]
P≍ n̄t,hn,τn . Therefore,

K
(
θ̂t,hn,τn , θn

)
= OP

(
1

n̄t,hn,τn

(4 log n+ dτn)

)
,

as n → ∞.

8.3. Proof of Proposition 3.3. We fix some notations. For any distribution function F

supported on the interval [x0,∞), x0 ≥ 0 and having a strictly positive density fF define

αF (x) =
1

xλF (x)
, x ≥ x0,

where λF (x) =
fF (x)
1−F (x)

is the hazard rate function corresponding to F. Consider the dis-

tance

ρ∗(x, y) = max

{∣∣∣∣log
x

y

∣∣∣∣ ,
∣∣∣∣
1

x
− 1

y

∣∣∣∣
}
, x, y > 0.

Denote Ut,h = [t− h, t+ h].
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Without loss of generality, we can assume that Amax > 1. For any t ∈ [0, T ], we shall

determine two sequences {τn} and {hn} such that

(8.11) sup
s∈Ut,hn

sup
x≥τn

ρ∗(αFs,τn , θt,τn)
2 = O

(
nt,hn

nt,hn(1− Ft(τn))

)
→ 0 as n → ∞

and

(8.12) sup
s∈Ut,hn

ˆ ∞

τn

(
1 + log

x

τn

)2(
x

τn

)ǫ0 fs(x)dx

1− Fs(τn)
≤ ǫ1, for any n ≥ N ,

where ǫ0, ǫ1 and N are some constants. To do this, let 0 < ǫ0 < 1
γmax

and t ∈ [0, T ].

Denote

It(τ) =

ˆ ∞

τ

(
1 + log

x

τ

)2 (x
τ

)ǫ0 ft(x)dx

1− Ft(τ)
, τ ≥ x0.

We first prove that

(8.13) It(τ) ≤ ǫ1,

for all t ∈ [0, T ] and τ ≥ N with some constants ǫ1 > 0 and N > 0. Since ρ > 0,

0 < γmin ≤ γt ≤ γmax < ∞, |rt(x)| ≤ Atx
− ρ

γt and |Rt(x)| ≤ Atx
− ρ

γt , x ≥ x0, we have

(8.14) Atx
− ρ

γt ≤ Amaxx
− ρ

γmax ≤ 1

2

for any x ≥ max
(
x0, (2Amax)

γmax
ρ

)
= N . Hence,

(8.15)
1 + rt(x)

1 +Rt(τ)
≤ 1 +

∣∣∣∣
1 + rt(x)

1 +Rt(τ)
− 1

∣∣∣∣ ≤ 1 + 4Aτ−
ρ

γmax ≤ 3,

for any x ≥ τ ≥ N . Since 0 < ǫ0 < 1
γmax

, there exists an integer k > 0 such that

ǫ0+
1
k
< 1

γmax
. Using (8.15) and log x

τ
≤ k

(
x
τ

)1/2k
, for all x ≥ τ ,we deduce, for any τ ≥ N,

It(τ) =

ˆ ∞

τ

(
1 + log

x

τ

)2 (x
τ

)ǫ0− 1
γt

−1 (1 + rt(x))

1 +Rt(τ)

dx

τ

≤ 3

ˆ ∞

τ

(
1 + log

x

τ

)2 (x
τ

)ǫ0− 1
γmax

−1 dx

τ

≤ 3

ˆ ∞

τ

4k2
(x
τ

)ǫ0+ 1
k
− 1

γmax
−1 dx

τ
.



38 DURRIEU, G., GRAMA, I., PHAM, Q. K., AND TRICOT, J. M.

By taking ǫ1 =
12k2

1
γmax

−ǫ0−
1
k

, the inequality (8.13) is satisfied.

Next, we prove that

(8.16) sup
x≥τ

ρ∗(αFs,τ (x), θt,τ ) ≤ Cα

(
12Atγmaxτ

− ρ
γt + 4Atγmaxτ

− ρ
γs + Lγh

β
)
.

for any s ∈ Ut,h and τ ≥ N with some constant Cα > 0. Indeed, we have

αFt(x) =

(
1 +Rt(x)

1 + rt(x)

)
γt.

From (8.14), for all x ≥ N

∣∣∣∣
1 +Rt(x)

1 + rt(x)
− 1

∣∣∣∣ =
|Rt(x)− rt(x)|

1 + rt(x)
≤ |Rt(x)|+ |rt(x)|

1 + rt(x)
≤ 4Atx

− ρ
γt ≤ 2.

This implies for any x, τ ≥ N

(8.17) sup
x≥τ

|αFt(x)− γt| ≤ 4Atγtτ
− ρ

γt ,

and

0 < αmin ≤ αFt(x) ≤ αmax < ∞,

where αmin = γmin and αmax = 3γmax. Integrating by parts in (3.6), we obtain

θt,τ = log
x

τ

1− Ft(x)

1− Ft(τ)
|∞τ +

ˆ ∞

τ

1− Ft(x)

1− Ft(τ)

dx

x

=

ˆ ∞

τ

(x
τ

)− 1
γt

−1 1 +Rt(x)

1 +Rt(τ)

dx

τ
.(8.18)

From (8.14), for any x ≥ N

(8.19)

∣∣∣∣
1 +Rt(x)

1 +Rt(τ)
− 1

∣∣∣∣ ≤ 4Atτ
− ρ

γt ≤ 2.

Combining (8.18) and (8.19) gives

(8.20) |θt,τ − γt| ≤
ˆ ∞

τ

(x
τ

)− 1
γt

−1
∣∣∣∣
1 +Rt(x)

1 +Rt(τ)
− 1

∣∣∣∣
dx

τ
≤ 4Atγtτ

− ρ
γt ≤ 2γt.
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Therefore γmin ≤ θt,τ ≤ 3γmax. Using αFt(x) = αFt,τ (x) for any x ≥ τ ≥ x0 , from (8.17)

and (8.20) we have, for any x ≥ τ ≥ N,

sup
x≥τ

ρ∗(αFt,τ (x), θt,τ ) ≤ Cα sup
x≥τ

|αFt,τ (x)− θt,τ |

≤ Cα

(
sup
x≥τ

|αFt(x)− γt|+ |θt,τ − γt|
)

≤ 8CαAtγtτ
− ρ

γt ,

where Cα = max(α−1
min, α

−2
min). Taking into account that γt ≤ γmax, we conclude

(8.21) sup
x≥τ

ρ∗(αFt,τ (x), θt,τ ) ≤ 8CαAtγmaxτ
− ρ

γt .

Since for any t, s ∈ [0, T ], x ≥ N,

|αFt(x)− αFs(x)| =

∣∣∣∣
(
1 +Rt(x)

1 + rt(x)
− 1

)
γt + (γt − γs) +

(
1− 1 +Rs(x)

1 + rs(x)

)
γs

∣∣∣∣

≤ γmax

∣∣∣∣
1 +Rt(x)

1 + rt(x)
− 1

∣∣∣∣+ |γt − γs|+ γmax

∣∣∣∣
1 +Rs(x)

1 + rs(x)
− 1

∣∣∣∣ ,

≤ 4Atγmax

(
x
− ρ

γt + x− ρ
γs

)
+ Lγ|t− s|β

and

ρ∗(αFt(x), αFs(x)) ≤ Cα|αFt(x)− αFs(x)|,

we obtain

(8.22) ρ∗(αFt(x), αFs(x)) ≤ Cα

(
4Atγmax(x

− ρ
γt + x− ρ

γs ) + Lγ|t− s|β
)
.

From (8.21), (8.22), we deduce, for any x ≥ τ ≥ N , s ∈ Ut,h,

ρ∗(αFs,τ (x), αFt,τ (x)) = ρ∗(αFt(x), αFs(x))

≤ Cα

(
4Atγmax(τ

− ρ
γt + τ−

ρ
γs ) + Lγh

β
)
.
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Therefore,

sup
x≥τ

ρ∗(αFs,τ (x), θt,τ ) ≤ sup
x≥τ

ρ∗(αFs,τ (x), αFt,τ (x)) + sup
x≥τ

ρ∗(αFt,τ (x), θt,τ )

≤ Cα

(
12Atγmaxτ

− ρ
γt + 4Atγmaxτ

− ρ
γs + Lγh

β
)
,

which proves that (8.16 ) is satisfied.

From inequality (8.16), by taking the sequences {τn}, {hn} such that τn → ∞ and

hn → 0 as n → ∞, we have

lim
n→∞

sup
s∈Ut,hn

sup
x≥τn

ρ∗(αFs,τn (x), θt,τn) = 0.

Hence, for any 0 < ǫ0 <
1

γmax
, there exists n0 > 0 such that

(8.23) sup
s∈Ut,hn

sup
x≥τn

ρ∗(αFs,τn (x), θt,τn) ≤ ǫ0

for any n ≥ n0 . Moreover, from (8.13), the inequality (8.12) is satisfied with τn and hn

defined above. Therefore, by Proposition 8.6 in Grama and Spokoiny (2008), it follows

that, for any n ≥ n0, s ∈ Ut,hn ,

χ2(Fs,τn , Gτn,θt,τn ) ≤ C(ǫ0, ǫ1) sup
x≥τn

ρ2∗(αFs,τn (x), θt,τn),

where C(ǫ0, ǫ1) = ǫ1 ∗ exp(ǫ0). This implies

sup
s∈Ut,hn

χ2(Fs,τn , Gτn,θt,τn )

≤ C(ǫ0, ǫ1)max(α−2
min, α

−4
min)

(
12Aγmaxτ

− ρ
γt

n (1 +
1

3
τ

ρLα
γ2
min

hβ
n

n ) + Lγh
β
n

)2

.

We now determine the location τn and bandwidth hn satisfying (8.11). The balance

conditions are

h2β
n ≍ τ

− 2ρ
γt

n ,

τ
− 2ρ

γt
n ≍ log nt,hn

nt,hnτ
− 1

γt
n

(
1 + Aτ

− ρ
γt

n

) .
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The optimal choice is given by

τn ≍
(
log nt,hn

nt,hn

) −γt
1+2ρ

.

Taking into account that nt,hn ≍ 2nhn, we obtain as n → ∞

hn ≍
(
log n

n

) 1
1+β(2+ρ−1)

,

τn ≍
(
log n

n

) −γtβρ
−1

1+β(2+ρ−1)

,

log nt,hn

nt,hn(1− Ft(τn))
≍

(
log n

n

) 2β

1+β(2+ρ−1)

,

and

χ2(Fs,τn , Gτn,θt,τn ) = O

(
log nt,hn

nt,hn(1− Ft(τn))

)

uniformly in s ∈ Ut,hn .This implies, as n → ∞,

sup
s∈Ut,hn

χ2(Fs,τn , Gτn,θt,τn ) = O

(
log nt,hn

nt,hn(1− Ft(τn))

)
.

It is easy to verify that, as n → ∞,

n̄t,hn,τn =
∑

ti∈Ut,hn

Wt,hn(ti)(1− Fti(τn)) ≍ nt,hn(1− Ft(τn)),

which completes the proof.

8.4. Proof of Proposition 3.5. We shall determine sequences (τn) and (hn), satisfying

τn ≥ x0, τn → ∞, hn → 0 and

sup
x≥τn

ρ∗(αFs,τn(x), θt,τn) = o (1) ,(8.24)

ˆ ∞

τn

(
1 + log

x

τn

)2(
x

τn

)ǫ0(n)

Fs,τn(dx) = O (1)(8.25)

as n → ∞, uniformly in s ∈ Ut,hn .
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We prove first (8.24). Indeed, by straightforward calculations, we have

αFt(x) = α(x, γt, δt) =
Cx−1/γt + (1− C)x−1/δt

γ−1
t Cx−1/γt + δ−1

t (1− C)x−1/δt

θt,τ = θ(τ, γt, δt) =
γtCτ−1/γt + δt(1− C)τ−1/δt

Cτ−1/γt + (1− C)τ−1/δt
.

It easy to see that there exist a constant N > 0 such that, for any x ≥ N,

∣∣∣∣
∂α

∂γt
(x, γt, δt)

∣∣∣∣ ≤ C1(t) and

∣∣∣∣
∂α

∂δt
(x, γt, δt)

∣∣∣∣ ≤ C1(t),

uniformly in γt and δt with some constant C1(t) depending on t. Therefore, by Taylor’s

expansion,

αFt(x)− αFs(x) =
∂α

∂γt
(x, γs + κ(γt − γs), δs + κ(δt − δs))(γt − γs) +

+
∂α

∂δt
(x, γs + κ(γt − γs), δs + κ(δt − δs))(δt − δs),

where κ ∈ (0, 1). So that, for any x ≥ N,

|αFt(x)− αFs(x)| ≤ Lα|t− s|β,

where Lα = C1(t)(Lγ +Lδ). Let h > 0. Since ρ∗(αFt(x), αFs(x)) ≤ max(δ−1
0 , δ−2

0 )|αFt(x)−

αFs(x)|, we have, for any s ∈ Ut,h, x ≥ N,

ρ∗(αFt(x), αFs(x)) ≤ max(δ−1
0 , δ−2

0 )Lαh
β,

and, for any τ ≥ N,

ρ∗(αFs,τ (x), θt,τ ) ≤ ρ∗(αFs,τ (x), αFt,τ (x)) + ρ∗(αFt,τ (x), θt,τ )

= ρ∗(αFs(x), αFt(x)) + ρ∗(αFt,τ (x), θt,τ )

≤ max(δ−1
0 , δ−2

0 )Lαh
β + ρ∗(αFt,τ (x), θt,τ ).

It follows that, for any τ ≥ N,

sup
x≥τ

ρ∗(αFs,τ (x), θt,τ ) ≤ max(δ−1
0 , δ−2

0 )Lαh
β + sup

x≥τ
ρ∗(αFt,τ (x), θt,τ ),
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uniformly in s ∈ Ut,h. On the other hand, in the same way as in Section 8.3 (cf. bound

(8.14)), there exist a constant C2(t) > 0 such that for any sequence (τn) satisfying τn ≥ x0,

it holds

sup
x≥τn

ρ∗(αFt,τn
(x), θt,τn) ≤ C2(t)τ

1
γt

− 1
δt

n .

By choosing τn → ∞ and h = hn, where (hn) is a sequence satisfying hn → 0, we obtain

(8.26) sup
x≥τn

ρ∗(αFs,τn
(x), θt,τn) ≤ max(δ−1

0 , δ−2
0 )Lαh

β
n + C2(t)τ

1
γt

− 1
δt

n = ǫ0(n).

From this, we obtain (8.24).

We now prove (8.25). Denote Is(n) =
´∞

τn

(
1 + log x

τn

)2 (
x
τn

)ǫ0(n)
Fs,τn(dx). As ǫ0(n) →

0 as n → ∞, there exist n0 > 0 such that, for any n > n0, ǫ0(n) < γ−1
max. By straightforward

calculations

Is(n) =
Cγ−1

s

C + (1− C)τ
1
γt

− 1
δt

n

g(γ−1
s − ǫ0(n)) +

(1− C)δ−1
s τ

1
γt

− 1
δt

n

C + (1− C)τ
1
γt

− 1
δt

n

g(δ−1
s − ǫ0(n)),

where g(x) = 1
x
+ 2

x2 + 2
x3 , x 6= 0 and n ≥ n0. It easy to see that, for any n ≥ n0 and

s ∈ Ut,hn ,

Is(n) ≤ 2δ−1
ming(γ

−1
max − ǫ0(n)) = ǫ1(n).

This implies (8.25).

Combining (8.24) and (8.25), from Proposition 8.6 in Grama and Spokoiny (2008), we

have

(8.27) χ2(Fs,τn , Gτn,θt,τn ) ≤ ǫ1(n) exp(ǫ0(n)) sup
x≥τn

ρ∗(αFs,τn
(x), θt,τn),

uniformly in s ∈ Ut,hn , for all n ≥ n0. Note that ǫ1(n) exp(ǫ0(n)) ≤ C3 for large n, say

n ≥ n1, where n1 is a constant. From (8.26) and (8.27), we obtain

sup
s∈Ut,hn

χ2(Fs,τn , Gτn,θt,τn ) ≤ C3

(
max(δ−1

0 , δ−2
0 )Lαh

β
n + C2(t)τ

1
γt

− 1
δt

n

)2



44 DURRIEU, G., GRAMA, I., PHAM, Q. K., AND TRICOT, J. M.

for any n ≥ max{n0, n1}. From this, we have the balance conditions for determining the

oracle location τn, and oracle bandwidth hn :

τ
2
γt

− 2
δt

n ≍ log nt,hn

nt,hn(Cτ
−1/γt
n + (1− C)τ

−1/δt
n )

, and

h2β
n ≍ τ

2
γt

− 2
δt

n .(8.28)

Optimizing in τn gives τn ≍
(

nt,hn

lognt,hn

)γtδt/(2γt−δt)

, where δt =
γt

1+νt
. Taking into account

(8.28) with nt,hn ≍ 2nhn, we obtain, as n → ∞,

hn ≍
(
log n

n

) 1

1+β(2+ν−1
t )

, τn ≍
(
log n

n

) −βγtν
−1
t

1+β(2+ν−1
t )

,

log nt,h

nt,h(1− Ft(τn))
= O

((
log n

n

) 2β

1+β(2+ν−1
t )

)
,

and

χ2(Fs,τn , Gτn,θt,τn ) = O

(
log nt,h

nt,h(1− Ft(τn))

)
, uniformly in s ∈ Ut,hn ,

This implies, as n → ∞,

sup
s∈Ut,hn

χ2(Fs,τn , Gτn,θt,τn ) = O

(
log nt,hn

nt,hn(1− Ft(τn))

)
.

Finally, it is easy to verify that as n → ∞,

n̄t,hn,τn =
∑

ti∈Ut,hn

Wt,hn(ti)(1− Fti(τn)) ≍ nt,hn(1− Ft(τn)),

which completes the proof.

8.5. Proof of Theorem 4.1. First we prove that there exists c∗ such that, for n suffi-

ciently large,

(8.29) P

(
sup

τn≤v≤τ
LRt,hn(v, τ) > c∗ log n

)
≤ 4

n
.

By Proposition 8.4, we have, for any y > 0,

P

(
sup

τn≤v≤τ
LRt,hn(v, τ) > 4y

)
≤ 2n7 exp

(
−y

2
+

dτn
2

)
+

2

n
,
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where dτn =
∑n

i=1 Wt,hn(ti)χ
2(Fti , Fti,τn,θn). Letting y = 16 log n+ dτn

2
, we obtain

P

(
sup

τn≤v≤τ
LRt,hn(v, τ) > 4y

)
≤ 4

n
.

Moreover, by condition C1, we can choose 4y < D = c∗ log n, for some constant c∗ and

n sufficiently large, which implies (8.29). Now the assertion of the theorem comes from

(8.29) and the inclusion

{ sup
X(k)≥τn

Z(X(k)) > D} ⊆ { sup
τn≤v≤τ

LRt,hn(v, τ) > D}.

8.6. Proof of Theorem 4.2. We use the notations n̂r = n̂t,hn,Yr = r − 1, θ̂r = θ̂t,hn,Yr

and

Z (τn) = max
δ′n̂t,hn,τn≤n̂l≤(1−δ′′)n̂t,hn,τn

LRt,h (τn, Yl) ,

for r = 2, ..., n. Let Ωt,hn,τn =
⋂

Yr≥τn
{Z(Yr) ≤ D}

⋂
{Z(τn) ≤ D} and Ω∗

t,hn,τn
=

Ωt,hn,τn

⋂{Z(Yk0) ≤ D}. Obviously, we have

Ωt,h,τn ∩ {Yk0 ≥ τn} ⊆ Ω∗
t,hn,τn .

Since Ωc
t,hn,τn

⊆
{
supτn≤v≤τ LRt,hn(v, τ) > D

}
, by Theorem 4.1, it follows that

lim
n→∞

(
Ωc

t,hn,τn

)
= 0.

From this and Lemma 8.6, we obtain,

(8.30) lim
n→∞

(
Ω∗

t,hn,τn

)
= 1

By the definition of k̂, on the set Ω∗
t,h,τn

, it holds n̂k̂−1 ≥ n̂t,hn,τn .

First we compare θ̂k̂−1 and θ̂t,hn,τn . To this end define the sequence of natural numbers

mi, i = 0, ..., i∗, such that m0 = k̂ − 1 and δ′n̂mi−1 ≤ n̂mi
≤ 1

2
n̂mi−1 ≤ (1 − δ′′)n̂mi−1, for

i = 1, ..., i∗, where i∗ such that δ′n̂mi∗
≤ n̂t,hn,τn ≤ (1− δ′′)n̂mi∗

. Denote n̂mi∗+1
= n̂t,hn,τn

and θ̂mi∗+1
= θ̂t,hn,τn . Since, on the set Ω∗

t,h,τn
,

Z(τn) ≤ D = c∗ log n
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and

Z(X(r)) ≤ D = c∗ log n, for k0 ≤ r ≤ k̂ − 1,

by (4.3) with s = Ymi−1
≤ τ = Ymi

, we have

n̂mi
K(θ̂mi

, θ̂mi−1
) ≤ LRt,hn(s, τ) ≤ D, i = 1, ..., i∗.

In the same way, with s = Ymi∗
≤ τ = τn , we have

n̂t,hn,τnK(θ̂t,hn,τn , θ̂mi∗
) ≤ LRt,hn(s, τ) ≤ D.

This, in turn, implies

i∗+1∑

i=1

√
K(θ̂mi

, θ̂mi−1
) ≤ D1/2

i∗+1∑

i=1

n̂−1/2
mi

.

Taking into account that n̂mi
≤ n̂mi−1

, for i = 1, ..., i∗ + 1, we obtain

i∗+1∑

i=1

n̂−1/2
mi

≤ n̂−1/2
mi∗+1

i∗+1∑

i=1

2−(i∗−i+1)/2 ≤ (2 +
√
2)n̂−1/2

mi∗+1
.

According to Lemma 8.1 and 8.2 in Gama and Spokoiny (2008), for n sufficiently large,

it holds

√
K(θ̂mi∗+1

, θ̂m0) ≤
3

2

i∗+1∑

i=1

√
K(θ̂mi

, θ̂mi−1
) ≤ 3

2
(2 +

√
2)D1/2n̂−1/2

mi∗+1
,

and

√
K(θ̂k̂−1, θ̂t,hn,τn) =

√
K(θ̂m0 , θ̂mi∗+1

)

≤ 9

4
(2 +

√
2)D1/2n̂−1/2

mi∗+1

=
9

4
(2 +

√
2)

√
c∗

log n

n̂t,hn,τn

.(8.31)

Now we shall compare θ̂k̂−1 = θ̂m0 and θ̂l̂. Recall that l̂ satisfies

δ′n̂t,hn,τn ≤ δ′n̂k̂−1 < δ′n̂k̂ ≤ n̂l̂ ≤ (1− δ′′)n̂k̂.
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Since, on the set Ω∗
t,hn,τn

, we have LRt,h(Yk̂−1, Yl) ≤ D = c∗ log n, it follows that

(8.32)

√
K(θ̂l̂, θ̂k̂−1) ≤

√
c∗
log n

n̂l̂

≤
√

c∗

δ′
log n

n̂t,hn,τn

Combining (8.31) and (8.32), by Lemma 8.2 in Gama and Spokoiny (2008), it follows

that, on the set Ω∗
t,hn,τn

,
√

K(θ̂l̂, θ̂t,hn,τn) ≤
√

cc∗
log n

n̂t,hn,τn

,

where c is a positive constant. Taking into account (8.30), we have

P

(
K(θ̂l̂, θ̂t,hn,τn) ≤ cc∗

log n

n̂t,hn,τn

)
→ 1 as n → ∞.

Hence, by Lemma 8.5, we obtain

P

(
K(θ̂l̂, θ̂t,hn,τn) ≤ cc∗

log n

n̄t,hn,τn

)
→ 1 as n → ∞,

the result follows.

8.7. Proof of Theorem 4.4. From the decomposition

K(Ft,τ , Gτ,θ) = K(Ft,τ , Gτ,θt,τ ) +

ˆ ∞

τ

log
dGτ,θt,τ

dGτ,θ

dFt,τ

and the identity
´∞

τ
log

dGτ,θt,τ

dGτ,θ
dFt,τ = K(θt,τ , θ) , we have, for any θ > 0 and any τ ≥ x0,

(8.33) K(Ft,τ , Gτ,θ) = K(Ft,τ , Gτ,θt,τ ) +K(θt,τ , θ).

Using (8.33) with τ = τn, h = hn and θ = θ̂t,hn,τ̂n , we have

(8.34) K(Ft,τn , Gτn,θ̂t,hn,τ̂n
) = K(Ft,τn , Gτn,θt,τn ) +K(θt,τn , θ̂t,hn,τ̂n).

From Theorem 4.3 and Lemma 8.1 in Grama and Spokoiny (2008), we have, for n suffi-

ciently large,

(8.35) K(θt,τn , θ̂t,hn,τ̂n) ≤
9

4
K(θ̂t,hn,τ̂n , θt,τn) = OP

(
log n

n̄t,hn,τn

)
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as n → ∞. Using condition (4.6) and the bounds

K(Ft,τn , Gτn,θt,τn ) ≤ log
(
1 + χ2(Ft,τn , Gτn,θt,τn )

)
≤ χ2(Ft,τn , Gτn,θt,τn ),

we obtain

(8.36) K(Ft,τn , Gτn,θt,τn ) = O

(
log nt,hn

n̄t,hn,τn

)
.

Combining (8.34), (8.35) and (8.36), it follows that as n → ∞

K
(
Ft,τn , Gτn,θ̂t,hn,τ̂n

)
= OP

(
log nt,hn

n̄t,hn,τn

)
.
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