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Abstract

We recall the groundwork of spinoptics based on the coadjoint orbits, of given color

and spin, of the group of isometries of Euclidean three-space; this model has originally

been put forward by Souriau in his treatise Structure des Systèmes Dynamiques, whose

manuscript was initially entitled Physique symplectique. We then set up a model of

polarized spinoptics, namely an extension of geometrical optics accounting for elliptical-

ly polarized light rays in terms of a certain fibre bundle associated with the bundle of

Euclidean frames of a given Riemannian three-manifold. The characteristic foliation of

a natural presymplectic two-form introduced on this bundle via the Ansatz of minimal

coupling is determined, yielding a set of differential equations governing the trajectory

of light, as well as the evolution of polarization in this Riemannian manifold. Those

equations, when specialized to the Fermat metric (for a slowly varying refractive index),

enable us to recover, and justify, a set of differential equations earlier proposed in the

literature, in another context, namely in terms of a semi-classical limit of wave optics.

They feature a specific anomalous velocity responsible for the recently observed Spin

Hall Effect of Light, namely a tiny spatial deflection of polarized light rays, transversal-

ly to the gradient of the refractive index. Our model, constructed from the start on

purely geometric grounds, turns out to encode automatically the Berry as well as the

Pancharatnam connections that usually appear in the framework of wave optics.

‡mailto: duval@cpt.univ-mrs.fr
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1 Introduction

Geometrical optics, going back in time as early as Euclid’s Optika [21], has a very long

history pinnacling with the discoveries of the laws of reflection and refraction by Ibn Sahl

(984), Snel (1621), and Descartes [15]. But the main step has been taken by Fermat [22] via

the “principle of least optical path”, opening the way to the modern calculus of variations.

Geometrical optics has, since then, been at the heart of the focal interplay between geo-

metry and physics, see, e.g., [14, 35, 2, 3, 6, 11, 30]; its past and present is multi-faceted

and rich enough to deter anyone from undertaking a detailed survey. We will, henceforth,

limit ourselves to review some of the most recent developments of what has been coined

spinoptics and its generalizations.

From the mid-sixties, onward, Souriau has highlighted the distinguished status of homo-

geneous symplectic manifolds of a given Lie group, G, of “space(time) symmetries” that con-

stitute the classical elementary systems, some of them corresponding to unitary irreducible
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representations of G, interpreted via Geometric Quantization (GQ) as the quantum counter-

parts of these classical physical systems [35]. This correspondence has also been indepen-

dently put forward, in the context of representation theory, by Kirillov [26] and Kostant [27].

As regards symplectic physics, Souriau has achieved the classification of (prequantizable)

homogeneous symplectic manifolds for the Galilei and Poincaré groups; he has shown that

GQ indeed leads to the corresponding (free) quantum wave equations, e.g., to the Schrödinger

and Schrödinger-Pauli equations in the non-relativistic case, and to the Klein-Gordon, Dirac,

Maxwell equations in the relativistic framework.

Now, the coadjoint orbits of the Euclidean group, SE(3), have been completely classified

by Souriau [35], see also [23, 29]. Those with spin Casimir s = ±~, i.e., the elementary clas-

sical states of spinning light rays, have played a paramount rôle in the theory of spinoptics.

These Euclidean coadjoint orbits have recently been taken in due consideration [18, 19, 16]

in an effort to provide a purely classical interpretation of the subtle Spin Hall Effect of Light

(SHEL) [9, 31]. Let us emphasize that the SHEL, a tiny spin-governed transverse shift of

light rays across an optical interface, has been observed experimentally [25, 11] very recent-

ly using the innovative method of “weak quantum measurements” — we refer to the latest,

comprehensive, review of “Beam Shifts” written by Bliokh and Aiello [8]. We have indeed

shown [18, 19, 20] that, astonishingly enough, the SHEL admits a classical interpretation in

terms of Souriau’s symplectic scattering [35] between SE(3)-coadjoint orbits modeling clas-

sical photonic states. Let us mention, en passant, that spinoptics has also been formulated

on Finsler manifolds [16] to cope with inhomogeneous and anisotropic optical media.

The purpose of this article is to enlarge the previous approach, which dealt essentially

with circular polarization, so as to incorporate, in an exclusively geometric fashion, the

generic elliptic polarization of light. Our endeavor is therefore to set up a SE(3)-invariant

(pre)symplectic model so as to make it possible to account for the geometrodynamics of

polarized light rays in inhomogeneous dielectric media; our standpoint is therefore to build

our theory starting with the Euclidean photonic models rather than from a semi-classical

approximation of stationary Maxwell’s field equations, as usual in the optics literature [28].

The plan is as follows.

We recall in Section 2 Souriau’s definition of an elementary system associated with a

coadjoint orbit of a given space(time) symmetry group G. This definition, once specialized

to the Euclidean group, G = SE(3), leads to the theory spinoptics (in vacuum) where the

manifold of spinning light rays is viewed as the coadjoint orbit of a given point µ0 ∈ se(3)∗

with color, p, and spin, s. It is well-known that the prequantizable orbits are associated
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with s ∈ ~Z; those for which s = ±~ characterize photons as advocated by their geometric

quantization which, as we show, lead to the stationary Maxwell equations for Euclidean

wave-optics. Spinoptics merely describes classical states of circularly polarized photons.

In an attempt to go a step further and aim at a classical description of polarized light

rays, we resort, in Section 3, to a natural Hermitian extension ˜SE(3) = SU(3) ⋉ C3 of the

Euclidean group to work out Souriau’s construction of a Hamiltonian SE(3)-space, namely

the manifold (3.17) endowed with the symplectic 2-form (3.16) associated with the previous

photonic origin µ0. See Figure 2 for a diagrammatic rendition. The new observable super-

seding the photonic spin for polarized light is then the U(1)-momentum mapping, s̃, given

by (3.12); see also (3.21). Let us emphasize that the natural 1-form (3.5) accordingly defined

on the evolution space (3.4) features in an unifying way the Fermat 1-form, the Berry and

the Pantcharatnam connection forms, as conspicuous from the expression (3.10).

Section 4 is ultimately devoted to the determination of the system of ordinary dif-

ferential equations governing the dynamics of polarized light rays in inhomogeneous iso-

tropic dielectric media modeled by Riemannian 3-dimensional connected manifolds (M, g).

This system stems, in full generality, from the characteristic foliation of a new evolution

space (Ṽ, σ̃) defined by (4.3), and (4.4), via the prescription of “minimal coupling” to the

Levi-Civita connection of a given metric, g, on configuration space M. The resulting differ-

ential equations happen to generalize those obtained by Liberman and Zel’dovich [28]. We

duly recover the latter equations in the regime of a slowly varying refractive index defining

a Fermat metric on Euclidean space E3. In particular, we do confirm the — quite recently

experimentally verified [11] — precession of the Stokes vector which accounts for the polar-

ization state of the system in such an optical medium. This section ends with the derivation

of the above-mentioned Spin Hall Effect of Light in the herewith developed formalism of

polarized spinoptics.
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2 An overview of Euclidean spinoptics

We recall, and justify, that the SE(3)-coadjoint orbits of color p and spin s = ±~ may be

interpreted as providing a model of circularly polarized Euclidean photon [35], that serves

as a fundamental ingredient in the theory of spinoptics [18, 19].

2.1 Photons as Euclidean coadjoint orbits

Let us start with a Lie group G whose Lie algebra is denoted by g. Call ϑ the left-invariant

Maurer-Cartan 1-form of G. Let us then fix a point µ0 in the dual, g∗, of g, and define

̟ = µ0 · ϑ, a preferred 1-form of G. It is a classical result that the exterior derivative,

σ = d̟, descends to the coadjoint orbit Oµ0
= G/ ker(σ) as the Kirillov-Kostant-Souriau

symplectic 2-form, ω, which is, hence, canonically associated to µ0 ∈ g∗.
Here, we specialize this construction to the group of orientation-preserving isometries of

Euclidean space E3, associated to (R3, 〈 ·, · 〉). Those constitute the Euclidean group, SE(3),

isomorphic to the multiplicative group of the matrices

g =

(
R x

0 1

)
(2.1)

where R = (u v w) ∈ SO(3) is thought of as an orthonormal, positively oriented, frame of

Euclidean space E3, and x ∈ (R3,+) is a translation.

The 1-form on SE(3) = SO(3)⋉R3 we consider, namely̟ = µ0 ·g−1dg, is characterized

by the generic Euclidean coadjoint-invariants p > 0, and s , 0 interpreted as the color

and the spin [35, 23, 29]. The explicit expression we will be using stems from the choice

µ0 = (ℓ0, p0) ∈ se(3)∗ � R3 × R3, with

ℓ0 =


s

0

0

 & p0 =


p

0

0

 (2.2)

so that ̟ = 〈ℓ0, j−1(R−1dR)〉 + 〈p0,R
−1dx〉, where j : (R3,×) → so(3) is the canonical Lie

algebra isomorphism (with × the the standard cross-product). We, hence, find

̟ = p〈u, dx〉 − s〈v, dw〉. (2.3)

The 1-forms (2.3) associated with photons correspond to the special values

s = χ~, (2.4)
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of spin, where ~ stands for the reduced Planck constant, and

χ = sign s (2.5)

for the helicity. See [35, 29] and [18, 19]. We will, in the sequel, denote these 1-forms by

̟χ = p〈u, dx〉 − χ~〈v, dw〉. Notice that the choice (2.4) is dictated by the fact that geometric

quantization of the model (see Section 2.3) should ultimately lead to the Maxwell equations

that rule wave optics. But the model just introduced should, nevertheless, be considered

purely “classical”.

Let us now introduce the complex 3-vector

z =
v + iw√

2
(2.6)

which clearly satisfies1

〈z, z〉 = 0, (2.7)

〈z, z〉 = 1, (2.8)

〈u, z〉 = 0, (2.9)

where z 7→ z stands for complex conjugation. We recall that SO(3) is diffeomorphic to the

submanifold Z ֒→ C3 defined by Equations (2.7) and (2.8); this diffeomorphism

Z
�−→ SO(3) : z 7→ (u v w) (2.10)

is given by Equation (2.6) and

u =
z × z

i
, (2.11)

where × is the standard cross-product of C3. The familiar principal fibration SO(3) → S 2 :

z 7→ u is therefore as in (2.11).

We thus obtain the new expression of the 1-form (2.3) on the Euclidean group, viz.,

̟χ = p 〈u, dx〉 − χ~
i
〈z, dz〉 (2.12)

Let us recall that d̟χ actually passes to Souriau’s 5-dimensional evolution space2

V = SE(3)/SO(2) � S 2 × R3 (2.13)

as a rank-4 presymplectic 1-form σχ; that is d̟χ = (SE(3)→V)∗σχ. See Figure 1.

1The Euclidean scalar product, 〈 · , · 〉, of Rn is readily C-linearly extended to Cn, for all n ∈ N.
2The equivalence relation on SE(3) is given by (z′, x′) ∼ (z, x) iff z′ = eiθz for some θ ∈ R, and x′ = x.
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Upon defining the new complex 3-vector eχ = (v+ iχw)/
√

2, we find the useful decom-

position

eχ = (z z)ψχ where ψχ =


1
2
(1 + χ)

1
2
(1 − χ)

 (2.14)

on the basis (z z) of the complex 2-space (u⊥)C. These vectors, eχ, also trivially satisfy

Equations (2.7)–(2.9), where χ = ±1 is the helicity (2.5). In view of (2.6), we have e+ = z,

and e− = z. We can, hence, rewrite Equation (2.12) as

̟χ = p 〈u, dx〉 − ~
i
〈eχ, deχ〉, (2.15)

with

su =
~

i
eχ × eχ, (2.16)

where s = χ~ denotes the photonic spin, and u is as in (2.11).

The equations of motion are associated with the characteristic foliation of the exact

2-form d̟χ of SE(3), the 1-form ̟χ being given by (2.12); we easily get

δ(x, z) ∈ ker(d̟χ)⇐⇒
{
δx = α u

δz = iβ z
(2.17)

where α, β ∈ R are Lagrange multipliers. As a direct consequence, and in view of (2.11),

the direction of propagation, u, is a constant of the motion (independent of χ); the same

is true for the photon location q = x − u〈u, x〉 ∈ u⊥. This entails that the coadjoint orbit

Oµ0
= SE(3)/ ker(d̟χ) ֒→ se(3)∗ is diffeomorphic to the tangent bundle, TS 2, of the 2-

sphere S 2 described by the pairs (q, u). Hence

M = Oµ0
� TS 2 (2.18)

may be interpreted as the space of motions (or of classical states) of photons of color p and

helicity χ; this Euclidean coadjoint orbit is endowed with its canonical symplectic structure,

ωχ, viz., d̟χ = (SE(3)→ TS 2)∗ωχ, which reads

ωχ = −p d〈q, du〉 − χ~ surfu, (2.19)

where surf stands for the surface element of S 2, i.e., surfu(δu, δ′u〉 = 〈u, δu × δ′u〉 for all

vectors δu, δ′u ∈ TuS 2. See [35]. Let us emphasizes that the Euclidean coadjoint orbit of

photonics states (M, ωχ) of helicity χ possesses a Pukanszky polarization [17, 12], namely

the vertical polarization; this entails automatically the “twisted” symplectic structure (2.19).
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2.2 Prequantization of colored photonic states

Putting p = pu, for the linear momentum, elementary manipulations on Equation (2.15) then

yield ̟χ = −〈x, dp〉 − χ~ 〈ζ, dζ〉/i, where

ζ = e−
i
χ~
〈p,x〉 z. (2.20)

Straightforward calculation shows that the 1-form ̟χ, given by (2.15), descends as

αχ = −〈q, dp〉 − χ~
i
〈ζ, dζ〉 (2.21)

on the circle-bundle P = SE(3)/(ker(̟χ) ∩ ker (d̟χ)) over Oµ0
. We also readily find that

dαχ = (P → Oµ0
)∗ωχ. See Figure 1. One can show that P � TS 2 ×S 2 SO(3); at last (P, αχ)

prequantizes (M, ωχ) in the sense of [27, 35].

The last term in the RHS of (2.21) may be interpreted as the Berry connection of the

principal circle-bundle SO(3)→ S 2 over the 2-sphere of unit momenta [4, 34]. This connec-

tion happens, hence, to be built in within our approach!

SE(3)

SO(2)

��

ker(̟χ)∩ ker(d̟χ)
// P

U(1)

��

V � S 2 × R3
ker(σχ)

//M � TS 2

Figure 1: Evolution (V, σ) & prequantum (P, αχ) bundles over space of states (M, ωχ)

The quantity ζ can be thought of as representing the polarization vector of the prequan-

tum state (q, ζ) ∈ P of our photon. It is, via (2.20), an elementary solution of the Helmholtz

equation (∆ + k2)ζ = 0, where ∆ =
∑3

j=1 (∂/∂x j)2 is the Laplace operator and

k =
p

~
(2.22)

the “wave-number” associated with the color invariant, p.3

In view of (2.7), i.e., 〈ζ, ζ〉 = 0, we call these (prequantum) states circularly polarized.

(This is just an interpretation since there is yet no electric and magnetic field at work; see

below, however.) We claim that ours bundle (P, αχ) represents the optical prequantum states

of color p and handedness χ, namely (q, ζ) with χ = 1 is a right-handed prequantum state,

whereas (q, ζ) is its left-handed companion.

3The “reduced wavelength”

Ż =
~

p
(2.23)

appears as a small parameter involved in semi-classical approximations [9, 11] of Maxwell’s equations.
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2.3 Polarization of light & geometric quantization

Let us now quantize the model (P, αχ) by constructing the wave functions associated with

a chosen SE(3)-invariant polarization [27]. In doing so, we will follow, almost verbatim,

the quantization of the massless & spin-one coadjoint orbits of the restricted Poincaré group

originally due to Souriau — see Equations (19.135)–(19.161) in [35].

Fix the helicity χ = +1 to begin with. The manifold P turns out to carry a natural

U(1)-action, (q, ζ) 7→ (q, e−iθζ), for all eiθ ∈ U(1). This action preserves the 1-form α+ given

by (2.21); its infinitesimal generator δ(q, ζ) = (0,−iζ) satisfies α+(δ(q, ζ)) = ~. This 1-form

is therefore (up to an overall factor ~) a U(1)-connection whose curvature, dα+, descends as

our symplectic form, ω+, onM = P/U(1) � Oµ0
. Hence, (P, α+) prequantizes (M, ω+).

The polarization [27] we choose now is the vertical polarization u = const. of the sym-

plectic manifold (M = TS 2, ω+).
4 This polarization is SE(3)-invariant. Its horizontal lift to

(P, α+) is given by the trace on P of the mixed vertical and anti-holomorphic polarization

F =
⊕3

j=1
R ∂/∂q j

⊕3

j=1
C ∂/∂ζ j of T ∗R3 × C3 (see (2.21)).

The associated “wave-function” Ψ : P → C are, by definition, U(1)-equivariant and

constant along F ; they are thus antiholomorphic homogeneous functions of degree one in

the variables ζ ∈ C3, hence of the general form

Ψ+(q, ζ) = 〈ζ,A(u)〉, (2.24)

where A : S 2 → C3 is an otherwise arbitrary function.

Now, the constraint (2.9) shows that πz = z where π is the orthogonal projector on u⊥, so

that Ψ+(q, ζ) = 〈ζ, πA(u)〉. This entails that the function A can be, with no loss of generality,

restricted by the condition

〈u,A(u)〉 = 0, (2.25)

and becomes a section of the complexified tangent bundle of S 2. In view of (2.20), our

wave-functions (2.24) can be pulled-back to SE(3) as the functions

Ψ̂+(x, z) = 〈z, e i
~
〈p,x〉A(u)〉, (2.26)

which are completely determined by the functions A already introduced; let us recall that

p = pu in (2.26), where u is given by (2.11) in terms of z.

4The term “polarization” makes, here, reference to a maximal isotropic distribution of a given symplectic

manifold; it should not be confused with what is called polarization in wave optics!
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Notice that geometric quantization of (P, α−), for the opposite helicity, should lead,

mutatis mutandis, to wave-functions of the form

Ψ−(q, ζ) = 〈ζ,A(u)〉, (2.27)

with the same constraint (2.25) as before. We have, similarly,

Ψ̂−(x, z) = 〈z, e i
~
〈p,x〉A(u)〉. (2.28)

It should be pointed out that the wave functions Ψ±, associated with each helicity, help

us recover the vector potential through the following decomposition in terms of right and

left-handed modes, viz.,

e
i
~
〈p,x〉A(u) = z Ψ̂+(x, z) + z Ψ̂−(x, z) (2.29)

The last step consists in singling out from (2.29) the (partial) Fourier transform

Ã(x) =

∫

S 2

e
i
~
〈p,x〉A(u) surfu. (2.30)

This C3-valued function of Euclidean space trivially satisfies the Helmholtz equation,

and the Lorentz gauge condition (see (2.25)), namely

(∆ + k2)Ã = 0 & DivÃ = 0. (2.31)

Let us posit now E = ikÃ, and B = rot Ã. The system (2.31) can be recast into the following

system of PDE, viz.,

rot E − ikB = 0, (2.32)

rot B + ikE = 0, (2.33)

known as the stationary Maxwell equations for a given wave-number k, already introduced

in (2.22). These PDE represent the equations of a first-quantized theory of spinoptics in

vacuum.

The general solution (2.30) of (2.31) is, hence, a wave-packet of monochromatic plane

waves, given by (2.29), whose amplitudes A(u) , 0 are orthogonal to u (see (2.25)); each

elementary plane wave carries a (unitary) complex polarization vector

e =
A(u)

‖A(u)‖ , (2.34)

where ‖A(u)‖2 = 〈A(u),A(u)〉. The mapping u 7→ e can be thought of as a section of the

unitary complexified tangent bundle of the (real) 2-sphere.
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Let us recall [13, 23] that circular polarization corresponds to the extra constraint

〈e, e〉 = 0, (2.35)

(see Equation (2.7)), while linear polarization is described by the condition

e × e = 0. (2.36)

Elliptic polarization is the generic case. At last, the helicity (or handedness) of the polariza-

tion state e (mod U(1)) is

χ = sign
〈u, e × e〉

i
, (2.37)

and clearly coincides with the above definition of helicity for photonic states, i.e., χ = +1

if e = z (mod U(1)), whilst χ = −1 if e = z (mod U(1)).

This administers the proof that the polarization of light admits a clear-cut interpretation

in terms of geometric quantization of the classical “circularly polarized” states of geometrical

spinoptics. This remark constitutes the cornerstone of our theory of polarized geometrical

spinoptics.

3 Symplectic description of free polarized light

The main goal of this section is to extend the symplectic model for photons, reviewed in

Section 2.1, to the case of light rays endowed with an internal structure, i.e., with an arbitrary

polarization. Our Ansatz is, hence, spelled out in the next section.

3.1 A new evolution space

As polarization of light obviously departs from the geometric objects of known element-

ary classical systems, and borrows some quantum features from Maxwell’s equations (see

Section 2.3), we will resort to a natural “Hermitian extension” of the previous formalism for

classical spinning Euclidean particles. This will help us enlarge the group to start with, so as

to gain the right number of extra degrees of freedom to account polarization of light.

We will, hence, introduce the polarization via a unitary vector, e, in the complexified

“wave plane”, TCu S 2, considering Equation (2.34) as a hint.
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So, let us start with the overgroup SU(3) ⋉ C3 of SE(3) = SO(3) ⋉ R3. Recall that any

element of SU(3) retains the form g = (u e ū × e) where (u e) form an orthonormal system

of vectors in C3, namely such that 〈ū, u〉 − 1 = 〈e, e〉 − 1 = 〈ū, e〉 = 0. Here × is the cross-

product C-linearly extended to C3. Introduce the surjection pr1× Id : SU(3)⋉C3 → S 5×C3 :

((u e), x) 7→ (u, x) as well as the natural embedding ℜ : S 2 × R3 ֒→ S 5 × C3, where S 2

(resp. R3) consists of those u ∈ C3 such that ū = u (resp. of those x ∈ C3 such that x̄ = x).

Define the pulled-back bundle Ṽ ≔ ℜ∗(SU(3) ⋉ C3) overV = S 2 ×R3; being given by

Ṽ = {(u, e, x) ∈ R3 × C3 × R3
∣∣∣〈u, u〉 = 1, 〈e, e〉 = 1, 〈u, e〉 = 0}, (3.1)

it will serve as our new evolution space. We will denote by ℜ̃ : Ṽ ֒→ SU(3) ⋉ C3 the

associated embedding. Let us show that Ṽ is nothing but than an associated bundle over the

spinoptics evolution spaceV (see Equation (2.13), and Figure 2). This constitutes our prime

justification for Definition (3.1).

˜SE(3) Ṽ M̃

SU(3)⋉C3

pr1× Id

��

UTCS 2×R3?
_ℜ̃oo

S 3

��

ker(σ̃)
// PTCS 2×S 2TS 2

CP1

��

S 5×C3 S 2×R3?
_ℜoo

ker(σ)
// TS 2

V M � Oµ0

Figure 2: Evolution space (Ṽ, σ̃) & space of polarized light states (M̃, ω̃)

The evolution space is, actually, Ṽ = R3 × UTCS 2. The latter factor is related to

the original principal SO(2)-bundle SO(3) → S 2 as we shall explain. Now, in view of

Equations (3.7)–(3.9), the typical fibre of unitary bundle UTCS 2 → S 2 consists of unitary

complex 2-vectors e ∈ (u⊥)C; it is thus diffeomorphic to S 3 ⊂ C2. We can also think of

this bundle in a way that makes closer contact with the Euclidean group and the quantization

procedure outlined in Section 2.3. Indeed, start with the product SO(3) × S 3, described by

the pairs (z, ψ), where z ∈ C3 is such that (2.7) and (2.8) hold, and

ψ =

(
ψ+
ψ−

)
∈ C2 (3.2)

satisfies 〈ψ, ψ〉 = |ψ+|2 + |ψ+|2 = 1, that is ψ ∈ S 3.
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Consider the U(1)-action on this direct product, viz., (z, ψ+, ψ−) 7→ (e−iθz, eiθψ+, e
−iθψ−),

for all eiθ ∈ U(1). This action being free, the orbit space is the 5-dimensional manifold5

SO(3)×SO(2)S
3 � UTCS 2, the projection SO(3)×S 3 → UTCS 2 being given by (z, ψ) 7→ (u, e)

with

u =
z × z

i
& e =

(
z z

)
ψ. (3.3)

Equations (3.3) are the straightforward generalization to elliptic polarization of Equa-

tions (2.11) and (2.14) associated with the photonic case. We, furthermore, check that all

constraints (3.7)–(3.9) are duly satisfied by u, and e, as given by (3.3).

We have just proved that the new evolution space Ṽ is an associated S 3-bundle over the

original spinoptics evolution spaceV = S 2 × R3, namely

Ṽ � (
SO(3) ×SO(2) S 3) × R3 (3.4)

Let us emphasize, at this point, that the Jones vector, ψ, introduced in (3.2), is conceptual-

ly related to the (normalized) two-component wave-function, Ψ, given by (2.24) and (2.27).

Equations (3.3) express the well-known relationship between the polarization vector, e, for

a given direction, u, of propagation, and the Jones vector, ψ, via the above decomposition of

the polarization vector on the basis (z z) of circular polarization state vectors [7].

3.2 A presymplectic model of polarized light in vacuum

Let us show that our new evolution space, Ṽ, can be endowed with a canonical presymplectic

structure. To this end, we choose to consider the same photonic origin (2.2) as before, namely

µ0 = (s0, p0) ∈ so(3) × R3 ⊂ su(3) × C3, where

s0 = s


0

i

−i

 & p0 =


p

0

0



with s = ~ & p > 0. This natural choice prompts us to define a distinguished 1-form on Ṽ
as follows. If Θ is the left-invariant Maurer-Cartan 1-form of SU(3) ⋉ C3, let us posit

˜̟ = ℜ̃∗(µ0 · Θ). (3.5)

5The S 3-bundle SO(3) ×SO(2) S 3 over S 2 is associated to the principal SO(2)-bundle SO(3)→ S 2.
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The evolution space of polarized light rays, with color p, is therefore defined as the pair

(Ṽ, σ̃ = d ˜̟), where some calculation using (3.5) shows that

˜̟ = p〈u, dx〉 − ~
i
〈e, de〉 (3.6)

The dynamics of polarized light rays takes place on the 8-dimensional manifold, Ṽ,

described by the triples y = (x, u, e) where x, u ∈ R3, and e ∈ C3 satisfy

〈u, u〉 = 1, (3.7)

〈e, e〉 = 1, (3.8)

〈u, e〉 = 0. (3.9)

This new evolution space, Ṽ, according to the terminology of [35], is therefore endowed

with the “natural” 1-form (3.6) that clearly restores the original 1-forms ̟χ, given by (2.15),

once induced on the submanifold SE(3) ֒→ Ṽ defined by e = eχ (see (2.14)).

Call now V̂ = SE(3) × S 3 the extended evolution space. Straightforward calculation

shows that the pull-back ̟̂ = (V̂ → Ṽ)∗ ˜̟ of the 1-form ˜̟ on Ṽ, introduced in (3.6),

features the remarkable expression

̟̂ = p 〈u, dx〉 − s̃

i
〈z, dz〉 − ~

i
〈ψ, dψ〉 (3.10)

where

s̃ = ~
(
|ψ+|2 − |ψ−|2

)
(3.11)

is the “third component” of the Stokes vector, s = ~σ−1 (2ψψ∗ − 1C2), that encodes the

polarization state of the system which is thereby interpreted as a point on the Poincaré

sphere S 2 � CP1 = {ψψ∗ |ψ ∈ S 3 ⊂ C2}.6

We record, for future usage, that the new quantity s̃, defined by (3.11), and which shows

6From now on, and wherever necessary, we use the notation ψ∗ = 〈ψ, · 〉 for the adjoint of ψ, say. As usual,

we will also denote by σ = (σ1, σ2, σ3) the Pauli matrices; with this notation, we have s̃ = ~ψ∗σ3ψ.
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up in (3.10), actually descends to the evolution space, Ṽ, as the spin function7

s̃ =
~

i
〈u, e × e〉 (3.12)

that enjoys the following property, viz.,

s̃ ∈ [−~,+~]. (3.13)

The novel spin observable, s̃, given in (3.12), whose sign, χ, is the helicity (2.37) clearly

replaces, in our approach the the spin SE(3)-invariant, s = χ~, appearing in spinoptics (com-

pare Equations (3.10) and (2.12)). It naturally shows up, in this formalism, in the wake of

the Ansatz (3.5); see also (3.6).

Most interestingly, the equation (2.16) relating the direction of propagation, u, to the

circular polarization vector, eχ, of light admits, in the present case, the quite similar form

s̃ u =
~

i
e × e, (3.14)

where the spin s̃ is, this time, given by (3.12).

It is worth noticing, at this point, that our 1-form (3.6) quite remarkably unifies, in a

single geometrical expression, namely (3.10),

• the Fermat contact 1-form: ̟̂F = 〈u, dx〉 on the photonic evolution spaceV = R3×S 2,

• the Berry connection form: ̟̂B =
1

i
〈z, dz〉 on the circle-bundle SO(3)→ S 2,

• the Pancharatnam connection form: ̟̂P =
1

i
〈ψ, dψ〉 on the Hopf bundle S 3 → CP1.

We refer to [4, 32, 5, 34] for the relevant original publications, and to [7, 11] for a detailed re-

view of the semi-classical Lagrangian description of wave optics, where the Berry correction

term, and the polarization dynamics are introduced in a somewhat independent fashion.

7Definition (3.11) readily authorizes the following interpretation (see Section 2.3), namely

• s̃ = ±~: right/left-handed circular polarization,

• s̃ = 0: rectilinear polarization,

• s̃ ∈ (−~, 0) ∪ (0,+~): generic elliptic polarization.
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3.3 The states of polarized light as a symplectic manifold

The equations of motion of polarized light are governed, as in (2.17) by the characteristic

foliation of σ̃ = d ˜̟; the latter is given by a simple calculation, namely

δ(x, u, e) ∈ ker(σ̃)⇐⇒



δx = α u,

δu = 0,

δe = iβ e,

(3.15)

where α, β ∈ R are Lagrange multipliers associated with the constraints (3.7)–(3.9).

This entails that the 6-dimensional symplectic manifold M̃ = Ṽ/ ker(σ̃) is described

by the triples (q, u, π) where q = x − u〈u, x〉 ∈ u⊥ denotes, as for photons, the location of

the light ray whose direction is u ∈ S 2, and π = e e∗ ∈ PTCu S 2 stands for the Hermitian,

rank-one, projector defining its polarization state.8

Some more effort is needed to reveal the expression of the symplectic 2-form, ω̃, of M̃,

such that σ̃ = (Ṽ → M̃)∗ω̃; one finds

ω̃ = −p d〈q, du〉 − ~
2i

Tr (π [dπ, dπ]) (3.16)

The symplectic manifold (M̃, ω̃) represents the space of motions of (free) polarized light

rays of fixed color p. One then readily shows that M̃ = {(q, u, π) ∈ R3 × R3 × L(C3) |
〈q, u〉 = 0, 〈u, u〉 = 1, π2 = π = π∗,Tr(π) = 1, π(u) = 0} is indeed diffeomorphic to the

6-dimensional fibered-product

M̃ = TS 2 ×S 2 PTCS 2 (3.17)

above S 2; the first factor represents the manifold of photonic states (see Section 2.1), whereas

the novel second factor describes the polarization states of light in vacuum.

Let us emphasize, at this point, that the construct outlined in Section 3.2 does not hint

at an obvious structure of G-homogenous symplectic manifold structure for (M̃, ω̃), with G

some natural overgroup of SE(3). The question as to whether the classical states of polarized

light rays might be symplectomorphic to an elementary system of some finite-dimensional

kin overgroup of the Euclidean group remains a compelling issue.

8We denote by PTCS 2 the projectivization of the complexified tangent bundle, TCS 2 = TS 2 ⊗ C, of the

2-sphere, S 2; it is a CP1-bundle over S 2.
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3.4 The Euclidean momentum mapping

It is worth mentioning that the 1-form ˜̟ , given by (3.6) on the presymplectic manifold Ṽ,

is SE(3)-invariant. This can be checked using the canonical lift to Ṽ of the SE(3)-action

on Euclidean space, namely hṼ : (x, u, e) 7→ (Ax + b, Au, Ae) where h = (A, b) ∈ SE(3);

see (2.1). One trivially has h∗
Ṽ
˜̟ = ˜̟ , for all h ∈ SE(3).

A classical result states that this action canonically defines a “momentum mapping”

J : Ṽ → se(3)∗, given by the simple expression ˜̟(δZ(y)) = J(y) · Z, where δZ stands for the

fundamental vector field on Ṽ associated with Z ∈ se(3). This mapping, J, is moreover an

integral invariant of the foliation ker(σ̃) — a fact which constitutes Souriau’s presymplectic

formulation of Noether’s theorem [35].

Let us look for the explicit form of the momentum mapping J = (ℓ, p), using the natural

pairing formula J · Z = 〈ℓ,ω〉 + 〈p, β〉, for all Z = (ω, β) ∈ R3
⋉ R

3 � se(3). We readily find

δZ(x, u, e) = (ω × x + β,ω × u,ω × e), so that we get ̟(δZ(x, u, e)) = J(x, u, e) · Z, where

ℓ = x × p + s̃ u, (3.18)

p = p u, (3.19)

are the components of the SE(3)-momentum mapping which represent, respectively, the an-

gular momentum and the linear momentum of the model, the spin s̃ being as in (3.12). These

quantities descend as bona fide functions on the space of motions, M̃.

As a consequence, the observable s̃, appearing in (3.18), inherits (along with the color

p = ‖p‖ > 0) the status of an SE(3)-invariant of the extended model via its expression

s̃ = ‖p‖−1〈ℓ, p〉; it is also, again via the Noether theorem, a constant of the motion.

3.5 The spin as a U(1)-momentum mapping

There exists still another noteworthy group of automorphisms of (Ṽ, σ̃), of the model of

polarized light we have introduced. It is the group U(1) whose action on evolution space

reads (eiθ)Ṽ : (x, u, e) 7→ (x, u, cos θ e + sin θ u × e). This group action on Ṽ stems from the

following U(1)-action on V̂, viz., (x, z, ψ) 7→ (x, e−iθz, ψ), for all eiθ ∈ U(1).

We easily check that this U(1)-action commutes with that of SE(3) on Ṽ; it furthermore

preserves the 1-form ˜̟ given by (3.6), namely (eiθ)∗
Ṽ
˜̟ ≡ ˜̟ . The arguments of the preced-

ing section apply just as well, insuring the existence of a U(1)-momentum mapping we are

going to work out explicitly. The infinitesimal action of this symmetry group is given by

δα(x, u, e) = (0, 0, α u × e), where α ∈ R.
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Straightforward calculation then leaves us with ˜̟(δα(x, u, e)) = S(x, u, e) · α, for all

α ∈ R, where the U(1)-momentum mapping

S(x, u, e) =
~

i
〈u, e × e〉 (3.20)

= ~Tr(i π · j(u)) (3.21)

is nothing but the new spin observable, s̃, introduced in (3.12); it conspicuously passes to the

quotient M̃ = Ṽ/ ker(σ̃) dealt with in Section 3.3.

We then notice that the space of polarized free light rays admits a double fibration,

given respectively (with a slight abuse of notation) by J : M̃ → J(M̃) ⊂ se(3)∗ and S :

M̃ → [−~,+~] ⊂ R, viz., above unions of coadjoint orbits of, respectively, SE(3) and U(1).

M̃
J
��

S

&&▼
▼

▼

▼

▼

▼

▼

▼

▼

▼

▼

▼

J(M̃)
π // S(M̃)

⋃

s∈S(M)

Op,s [−~,+~]

Figure 3: Double fibration of space M̃ of polarized light rays

The image of the Euclidean momentum mapping hence gives rise to a fibre bundle

π : J(M̃) → S(M̃) : (ℓ, p) 7→ s̃, whose fibres are SE(3)-coadjoint orbits of color p and spin

s̃ ∈ [−~,+~] given by (3.20) or (3.21); see also (3.13), and Figure 3.

4 Polarized spinoptics in inhomogeneous media

Geometrical optics in inhomogeneous/anisotropic dielectric media has long proved crucial in

theoretical and experimental optics; its basic principles mainly rely on Riemann/Finsler, as

well as symplectic geometry [2, 35, 1]. For example, the Fermat principle amounts to con-

sidering light rays as unparametrized geodesics of a Riemannian manifold (M, g), where M

is a smooth open submanifold of R3, and

g = n(x)2δi j dxi ⊗ dx j (4.1)
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the so-called “Fermat metric” associated with the “refractive index” n ∈ C∞(M,R∗+) of the

inhomogeneous and isotropic optical medium under consideration. (Einstein’s summation

convention is used in Equation (4.1), and throughout this article.)

This viewpoint has then been extended to geometrical spinoptics in an effort to deal with

spinning photons in arbitrary isotropic [18, 19], and anisotropic [16] media. It has first been

suggested, in these references, to resort to the procedure of minimal coupling (borrowed from

general relativity) to a Riemannian metric, in order to axiomatize the (pre)symplectic formu-

lation of the dynamics of light rays in a background Riemannian metric, e.g., the “Fermat

metric” (4.1).

4.1 Polarized spinoptics in a Riemannian manifold

Let us, hence, start with an arbitrary connected, orientable, smooth 3-dimensional Rieman-

nian manifold (M, g), whose metric is denoted by

g = gi j(X) dXi ⊗ dX j. (4.2)

in a local coordinate system (X1, X2, X3). Let us call ∇ the Levi-Civita connection of (M, g),

and Vol =
√

det(gi j(X)) dX1 ∧ dX2 ∧ dX3 its canonical Riemannian volume form.

Then, the 8-dimensional evolution space we will introduce, in the very spirit of Sec-

tion 3, is defined by

Ṽ = {(X,U, E) ∈ T M ×M TCM | g(U,U) = 1, g(U, E) = 0, g(E, E) = 1} (4.3)

in terms of constraints that faithfully reproduce those given in (3.7)–(3.9).

We must invoke, at this stage, the procedure of minimal coupling which dictates that the

Euclidean metric, 〈 ·, , · 〉, be replaced by the Riemannian metric, g, and the differential, d, be

supplanted by the covariant differential, d∇, of tensor fields when passing from flat Euclidean

space to a curved (pseudo-)Riemannian manifold.9

The 1-form of Ṽ to consider in place of (3.6), for polarized light of color p, reads then10

˜̟ = p g(U, dX) − ~
i
g(E, d∇E) (4.4)

with the (local) expression of the covariant differential, viz., d∇Eℓ = dEℓ + Γℓ
jk

E jdXk, for all

ℓ = 1, 2, 3; the Γℓ
jk

denote, here, the Christoffel symbols of ∇ in the chosen coordinate patch.

9See, e.g., [16] for another approach using the bundle of oriented, orthonormal frames of (M, g).
10We systematically employ a useful and shorthand notation such as g(U, dX) = gi j(X)U idX j.
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Just as before, we claim that the dynamics of the system is governed by the characteristic

foliation of the 2-form σ̃ = d ˜̟ of Ṽ. Call y = (X,U, E), so that easy calculation yields

σ̃(δy, δ′y) = p
[
g(δ∇U, δ′X) − g(δ′∇U, δX)

]
− ~

i
g(E,R(δX, δ′X)E)

−~
i

[
g(δ∇E, δ′∇E) − g(δ′∇E, δ∇E)

]
(4.5)

for all δy, δ′y ∈ TyṼ. We note in (4.5) the appearance of the Riemann curvature tensor, R,

via its defining relationship R(δX, δ′X)E ≡ δ∇δ′∇E − δ′∇δ∇E − [δ, δ′]∇E.

Let us now determine the characteristic foliation of the 2-form σ̃ as given by (4.5)

on Ṽ (see (4.3)). We thus have to reveal the form of all δy ∈ TyṼ such that σ̃(δy, δ′y) +

δ′
[
αg(U,U) + βg(E, E) + γg(U, E) + γg(U, E)

]
= 0 for all δ′y ∈ TyṼ, where α, β ∈ R, and

γ ∈ C. One gets immediately

p δX = αU + γE + γE, (4.6)

p δ∇U =
~

i
R(E, E)δX, (4.7)

~

i
δ∇E = −βE − γU. (4.8)

We must then impose that these equations be actually compatible with the above constraints.

One has, indeed, δ(g(U,U)) = 0 whenever Im(γR(E, E,U, E)) = 0, i.e., γ = ̺R(E, E,U, E)

for some ̺ ∈ R.11 The second constraint is trivially satisfied, δ(g(E, E)) = 0. As for the third

one, δ(g(U, E)) = 0, one readily finds γ/~+(~/p)R(E, E, δX, E) = 0; this, together with Equa-

tion (4.6), entails that the new parameter is given by ̺ = α(~/p)2
[
1 − (~/p)2R(E, E, E, E)

]−1
,

and that γ is therefore expressed in terms of the (real) Lagrange multiplier α.

We can now claim that

δ(X,U, E) ∈ ker(σ̃)

m


δX = α

[
U +
Ż

2

∆

(
E R(E, E,U, E) − E R(E, E,U, E)

)]
,

δ∇U =
Ż

i
R(E, E)δX,

δ∇E = iβE − α Ż
i∆

U R(E, E,U, E),

(4.9)

for some (redefined) α, β ∈ R, and where ∆ = 1 − Ż2R(E, E, E, E) is generically nonzero.

11We have put R(E, E,U, E) ≡ g(E,R(E, E)U).
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Notice, in (4.9), the polarization-induced anomalous velocity of order O(Ż2) where Ż

stands for the reduced wavelength (2.23). Of course, the general foliation (4.9) helps us

recover, in the flat case, the characteristic foliation (3.15) of the “free” system.

The definition (3.12) prompts the following intrinsic definition12

s̃ =
~

i
Vol(U, E, E) (4.10)

of the spin, which readily turns out to be a conserved quantity, i.e., an integral invariant of

the foliation (4.9), namely

δs̃ = 0. (4.11)

The (formal) quotient M̃ = Ṽ/ ker(σ̃) thus inherits a structure of 6-dimensional symplectic

manifold, interpreted as the space of motions, or the space of polarized optical states, of

color p, in the Riemannian manifold (M, g).

4.2 Polarized spinoptics in a Fermat manifold

Let us now specialize, in the above calculation, the Riemannian metric (4.2) to the Fermat

metric (4.1) on M ⊂ E3.

The definition (4.3) of evolution space, Ṽ, prompts us to define the quantities x, u,

and e via x j = X j, u j = nU j, and e j = nE j for all j = 1, 2, 3; those turn out to satisfy

(3.7)–(3.9), as required. From the familiar expression of the Christoffel symbols, namely

Γk
i j
= n−1(δk

i
∂ jn + δ

k
j
∂in − δkℓδi j∂ℓn), for all i, j, k = 1, 2, 3, one straightforwardly gets the

covariant differential d∇Ek = n−1(dek+n−1(e j∂ jn)dxk−n−1(δkℓ∂ℓn)δi je
idx j), for all k = 1, 2, 3.

With these preparations, our 1-form (4.4) can easily be rewritten in the following guise,

viz., ̟ = n〈pu, dx〉−~/(in)
[
n−1〈e, de〉 + n−2〈e, dx〉 e(n) − n−2〈e, dx〉 e(n)〉

]
, with the notation

e(n) = e j∂ jn.

Defining, for convenience, g = grad(n−1), some more calculation leads us to the 1-form

̟ = 〈p, dx〉 − ~
i
〈e, de〉 (4.12)

where

p = n
(
pu +

~

i
g × (e × e)

)
(4.13)

is the brand-new canonical “momentum” of the theory.

12Note that S : Ṽ → R defined by S(X,U, E) = s̃, as given by Equation (4.10), is nothing but the U(1)-

momentum mapping of Section 3.5, which still exists in the general Riemannian case; its range is, again,

S(Ṽ) = [−~,+~].
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The evolution space (Ṽ, ˜̟) is best defined in terms of the triples (x, p, e) ∈ M ×R3 ×C3

subject to the constraints

‖p‖2 = n2(p2 + ~2‖g × (e × e)‖2), (4.14)

〈e, e〉 = 1, (4.15)

〈p, e〉 = in~〈g, e × (e × e)〉. (4.16)

The explicit determination of the characteristic foliation of the 2-form σ̃ = d ˜̟ of Ṽ,

using the above constraints, would need a somewhat involved calculation yielding, ultimate-

ly, the exact equations of polarized light rays in an isotropic, inhomogeneous, dielectric

medium. In order to allow comparison with other approaches [9, 31], we will, instead,

confine considerations to the case of a slowly varying refractive index, n, dealt with in those

references. We will thus determine the sought characteristic foliation up to terms of order

O(‖g‖2) and O(‖∂g/∂x‖). Hence, suffice it to replace Equation (4.14) by

‖p‖2 ≈ n2 p2, (4.17)

keeping the other constraints (4.15) and (4.16) unchanged.

Much in the same way than in Section 4.1, we find that δ(x, p, e) ∈ ker(σ) if

δx ≈ αp + γe + γe, (4.18)

δp ≈ −αp2n3g, (4.19)

δe ≈ iβe − i

~
γp, (4.20)

where α, β ∈ R, and γ ∈ C are Lagrange multipliers associated to the constraints (4.17),

(4.15), and (4.16) respectively.

Compatibility of the distribution (4.18)–(4.20) with these constraints henceforth yields

γ = iαn~〈e, g〉, implying γ = O(‖g‖). At last, we get

δ(x, p, e) ∈ ker(σ̃)⇐⇒



δx ≈ α
[
p +
~

i
n(e × e) × g

]
,

δp ≈ −αp2n3g,

δe ≈ iβe + αnp〈e, g〉,

(4.21)

where α, β ∈ R.
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The equation for the velocity in (4.21) can be easily recast in the following form

δx ≈ α
[
p +

s̃

p
p × g

]
(4.22)

which, again, highlights the presence of an anomalous velocity, transverse to the gradient of

the (slowly) varying refractive index, and proportional to the spin (3.12) of the polarization.

Let us stress that Equation (4.22) exactly matches Equation (5) in [11]; see also [9, 31]. We

refer to [18, 19] for the case of photonic spinoptics.

Easy calculation shows, moreover, that the spin (3.12) is, indeed, an integral invariant

of the foliation (4.21), i.e.,

δs̃ ≈ 0 (4.23)

in full agreement with the with the general result (4.11), and notably with those of [7, 11]

(precession of the Stokes vector) obtained using a different approach based on a semi-

classical approximation of stationary wave optics.

4.3 The Spin Hall Effect of Light

Let us finish with the geometric derivation of the spin-induced modification of the Snel-

Descartes laws [15, 13] of reflection/refraction of light rays through a sharp dielectric in-

terface; this goes under the names of “Optical Hall Effect”, or “Spin Hall Effect of Light”

(SHEL) in the optics literature. We contend that the SHEL, although pertaining to Maxwell’s

wave optics theory, may nevertheless be understood within the theory of polarized spinoptics.

Consider a plane in Euclidean space, E3, separating two half-spaces M1 and M2 which

are endowed with a Fermat metric (4.1) associated with constant refractive indices n1 and n2

respectively.13 Let us call n the unit normal to the interface pointing towards M2, say. Since

the ordinary differential equations (4.21) governing light “propagation” in a smooth refrac-

tive index are clearly inapplicable in this situation, we need to resort to a scattering theory

adapted to such a classical set-up. To this end, we choose Souriau’s principle of “symplectic

scattering” [35], for which we now provide a brief account.

Start with two symplectic manifolds (M1, ω1) of “in” and (M2, ω2) of “out” classical

free states of a given system. Consider that the correspondence between these spaces of

asymptotic states is governed by a scattering process which needs not be explicitly described.

13Our approach may account for negative indices characterizing the newly discovered metamaterials [33];

we refer to [18] for a plausible explanation of the perfectness of metamaterial lenses in terms of spinoptics.
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Souriau’s fundamental assumption lies in the fact that the scattering is given by a local diffeo-

morphism S : M1 → M2 such that ω1 = S∗ω2. We will from now on consider the case

where the asymptotic free states are (open subsets of) some Hamiltonian G-spaces. To take

account of the symmetries of the scattering device through the subgroup H ⊂ G they are

assumed to define, we will consistently look at those local scattering diffeomorphisms, S ,

intertwining the H-action, namely such that S ◦ hM1
= hM2

◦ S for all h ∈ H. Call g (resp. h)

the Lie algebra of G (resp. H). If Ja : Ma → g denote, for a = 1, 2, the corresponding

momentum mapping, it is a trivial matter to check that there holds

J1|h = S ∗(J2|h) (4.24)

provided M1 and M2 are connected [35, 18]. The “conservation law” (4.24) will play a

central rôle in the sequel.

Let us apply this to the case whereMa is the open submanifold of M̃ (see (3.17)) consis-

ting of those rays, in Ma, crossing the optical interface, viz., of the ya = (qa, ua, πa) ∈ M̃
such that 〈ua, n〉 , 0, for each a = 1, 2. In view of Equations (4.12) and (4.13), the color in

the half-space Ma is pa = p na, for a = 1, 2, where p is the original color Casimir in vacuum.

Now, the symmetry group of the considered plane interface is clearly H = SE(2), i.e., the

subgroup of G = SE(3) generated by rotations around the normal n, and translations in n⊥.

Taking advantage of the results of Section 3.4, we claim that the H-momentum mappings

read Ja = (La,Pa) where La = 〈n, ℓa〉, and Pa = n × pa for a = 1, 2, together with Equa-

tions (3.18) and (3.19). Positing (q2, u2, π2) = S(q1, u1, π1), we can read off the conservation

law (4.24) as follows, viz.,

〈n, q1 × p1 + s̃1u1〉 = 〈n, q2 × p2 + s̃2u2〉 (4.25)

n × p1 = n × p2 (4.26)

where pa = paua, and s̃a = ~Tr(i πa · j(ua)), see (3.21), for a = 1, 2.

Equation (4.26), i.e., p2 = p1 + λn, where λ is an explicit function of p1, precisely

corresponds to the familiar Snel-Descartes laws [13], either for reflection or for refraction.

As to Equation (4.25), it easily yields 〈n, (q2 − q1) × p1〉 = s̃1〈n, u1〉 − s̃2〈n, u2〉; now,

positing quite generically q2 = q1 + µp1 + νn + ̺n × p1, for some functions µ, ν, ̺, we end

up with 〈n, (q2 − q1) × p1〉 = −̺‖n × p1‖2 = s̃1〈n, u1〉 − s̃2〈n, u2〉.
Let us single out the shift ∆q = ̺n × p1 between the location, q2 of the outgoing light

ray relatively to that, q1, of the incoming one; this shift is thus transversal to the plane of
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incidence spanned by p1 and n. In view of the preceding calculation we immediately obtain

the expression of the transverse shift, namely14

∆q =
[s̃2〈n, u2〉 − s̃1〈n, u1〉]

‖n × p1‖
n × p1

‖n × p1‖
(4.27)

in accordance with the formula of the SHEL originally found in [9] and [31]. There remains,

however, to achieve the daunting computation of the sought scattering symplectomorphisms,

S, to obtain explicitly the spin observable s̃2 in terms of the incoming data y1 = (q1, u1, π1).

Let us finally recall that the uniqueness of the above-mentioned symplectomorphism

intertwining the SE(2)-action has been established [18] for reflection/refraction in photonic

spinoptics. We defer to subsequent work the proof of the (still conjectured) uniqueness of

the reflection/refraction symplectomorphism in the more elaborate framework of polarized

spinoptics.
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