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In this note, we study the consistency of the Finite Volume kinetic scheme with reflections which is well-known to preserve the main physical properties of hyperbolic systems with source term. In particular, we prove that the numerical fluxes are consistent with the exact flux and are asymptotically consistent with the source term.

Introduction

During these last years, a great amount of works was devoted to the Finite Volume numerical approximation of hyperbolic equations with source terms, in particular for the Saint-Venant equations in a presence of a topography source term:

∂ t U + ∂ x F (U ) + B(U )∂ x Z = 0 (1) 
where U (t, x) ∈ R m stands for the unknown vector state, F (U ) ∈ R m is the flux function and B(U )∂ x Z is the source term. Solving Equations [START_REF] Audusse | A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows[END_REF] in presence of source term B(U )∂ x Z is a challenging problem since one has to provide a consistent discretization in order to preserve numerically some of or all the main physical features (stability properties) of the system. For instance, these properties are: non-negativity of the water height, preservation of steady states and the energy (entropy) inequalities for the Saint-Venant equations. One can found several works on this issue, see for instance [START_REF] Greenberg | A well balanced scheme for the numerical processing of source terms in hyperbolic equation[END_REF][START_REF] Levêque | Balancing source terms and flux gradients in high-resolution Godunov methods: the quasi-steady wave-propagation algorithm[END_REF][START_REF] Garcia-Navarro | On numerical treatment of the source terms in the shallow water equations[END_REF][START_REF] Jin | A steady-state capturing method for hyperbolic systems with geometrical source terms[END_REF][START_REF] Gallouët | Some approximate Godunov schemes to compute shallowwater equations with topography[END_REF][START_REF] Perthame | A kinetic scheme for the Saint-Venant system with a source term[END_REF][START_REF] Gallouët | Some approximate Godunov schemes to compute shallowwater equations with topography[END_REF][START_REF] Botchorishvili | Equilibrium schemes for scalar conservation laws with stiff sources[END_REF][START_REF] Audusse | A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows[END_REF][START_REF] Bourdarias | A kinetic scheme for pressurised flows in non uniform closed water pipes[END_REF][START_REF] Ersoy | Modélisation, analyse mathématique et numérique de divers écoulements compressibles ou incompressibles en couche mince[END_REF][START_REF]A kinetic scheme for transient mixed flows in non uniform closed pipes: a global manner to upwind all the source terms[END_REF]), based on the upwind of sources at the interface which is quite flexible. However, none of these methods, except the kinetic scheme with reflections [START_REF] Perthame | A kinetic scheme for the Saint-Venant system with a source term[END_REF], are known to satisfy all of the stability properties.

The method is constructed from a (non physical) kinetic interpretation of the system leading to a Vlasov type kinetic equation including the source term as a potential. This kinetic equation, based on a well-suited density function, is then discretized where the source terms does not appear explicitly. As a matter of fact, the source terms appears in the microscopic interface fluxes which are constructed using an energetic balance. The so-called kinetic scheme with reflections is then obtained by taking the first, second and third moment (mass, momentum and energy) of the discrete kinetic equation as in the usual meaning of the hydrodynamic limit. Whenever the source term is of the form B(U )Z ′ (x) (where Z ′ (x) stands for d dx Z(x)) as in Equation

(1), the kinetic scheme with reflections preserve the physical properties of the system. Moreover, it has the remarkable property to treat naturally vacuum states (corresponding to drying and flooding flows for the Saint-Venant equations) and to remain stable when the numerical solution is close to those state.

1 Nonetheless, whenever the source term is not under the "conservative form" Z ′ (x), we cannot analytically obtain a well-suited density function to recover the exact preservation of still steady states and the discrete entropy inequalities (see for instance, [START_REF] Ersoy | Modélisation, analyse mathématique et numérique de divers écoulements compressibles ou incompressibles en couche mince[END_REF][START_REF]A kinetic scheme for transient mixed flows in non uniform closed pipes: a global manner to upwind all the source terms[END_REF][START_REF]A model for unsteady mixed flows in non uniform closed water pipes: a Full Kinetic Approach[END_REF]). However, one can prove that the domain invariant property is still satisfied while the equilibrium states are approximately obtained. In this case, even if we do not know how to prove that the scheme is entropy satisfying, numerical comparisons with exact solutions and experimental data show a perfect agreement as done by Bourdarias et al [START_REF]A model for unsteady mixed flows in non uniform closed water pipes: a Full Kinetic Approach[END_REF].

For both cases, the main difficult question concerns the consistency of the numerical fluxes with the exact fluxes and the asymptotic consistency with the source term (as defined by Bouchut [START_REF] Bouchut | Nonlinear stability of finite volume methods for hyperbolic conservation laws and wellbalanced schemes for sources[END_REF]) that we prove in this paper. This results lead to the consistency of the kinetic scheme with reflections with System (1). The paper is organized as follows. In Section 2, for the sake of clarity and completeness, we recall the full construction of the kinetic scheme for the Saint-Venant Equations. In Section 3, we establish and prove the main result of this paper. Finally, we end with Section 4. Interested reader can also find in Appendix A, the full construction of the microscopic fluxes of the kinetic scheme.

The kinetic scheme for the Saint-Venant equations

Besides the fact that the shallow water equations are well-suited for the simulation of free surface flows (and widely used for engineering applications), it is used as a generic example of hyperbolic system for which one can easily add source terms to deal with storm sewers, waste, supply pipes in hydroelectric installations, sedimentation, rivers, coastal domains, oceans as well as avalanches problems.

These equations were originally written by A.J.C. de Saint-Venant in [START_REF] Barré De Saint-Venant | Théorie du mouvement non permanent des eaux, avec application aux crues des rivières et à l'introduction des marées dans leurs lits[END_REF] and studied by several authors. For instance, Gerbeau and Perthame [START_REF] Gerbeau | Derivation of viscous Saint-Venant system for laminar shallow water; numerical validation[END_REF] study the full derivation of the one dimensional viscous and inviscid shallow water equations from the 2D Navier-Stokes equations including a small friction term on a flat bottom. In the same spirit, Marche [START_REF] Marche | Derivation of a new two-dimensional viscous shallow water model with varying topography, bottom friction and capillary effects[END_REF] propose a new two dimensional viscous and non viscous shallow water equations in a rotating framework with varying topography including Coriolis force, friction (linear and quadratic), and capillary effects. Recently, Ersoy [START_REF]A free surface model for incompressible pipe and open channel flow[END_REF][START_REF]A pressurized model for compressible pipe flow[END_REF] study the derivation of a new 1D shallow water like equations for incompressible and compressible pipe flows.

The one-dimensional Saint-Venant equations with a topography source term Z(x) is well-adapted for rectangular rivers or channel. The hyperbolic system:

   ∂ t h + ∂ x q = 0, ∂ t q + ∂ x q 2 h + g h 2 2 = -gh∂ x Z, (2) 
describes the unidirectional flow through the water height h(t, x) 0 and its discharge q(t, x) = h(t, x) u(t, x) ∈ R at time t 0 and at point x ∈ R where u(t, x) stands for the velocity. Here g is the gravity constant and Z(x) is the topography elevation from the surface z = 0 (see figure 1). In the sequel, we note U = h q the unknown vector state, The Saint-Venant system has the following physical and mathematical properties:

F (U) =   q q 2 h + g h 2 2 
Theorem 2.1.
1. System (2) is strictly hyperbolic on the set {h(t, x) > 0} .

2. For smooth solutions, the velocity u = q/h satisfies:

∂ t u + ∂ x u 2 2 + gh + gZ = 0
where the quantity u 2 2 + gh + gZ is called the total head.

3. The still water steady state, for u = 0, reads:

h + Z = h 0 , (3) 
for some constant h 0 > 0.

System

(2) admits a mathematical entropy:

E(h, q) = q 2 2h + g h 2 2 + gZh ,
which satisfies the entropy inequality

∂ t E + ∂ x (E + g h 2 2 )u 0. ( 4 
)

The mathematical kinetic interpretation

Starting with a given real function χ : R → R satisfying the properties:

χ(ω) = χ(-ω) 0, R χ(ω)dω = 1, R ω 2 χ(ω)dω = g 2 , (5) 
we define the density of particles

M(t, x, ξ) = h(t, x)χ ξ -u(t, x) h(t, x)
which allows to provide a (non physical) kinetic interpretation of System (2) through the macro-microscopic kinetic relations:

h = R M(t, x, ξ) dξ , q = R ξM(t, x, ξ) dξ , q 2 h + g h 2 2 = R ξ 2 M(t, x, ξ) dξ . (6) 
Thus, one has Theorem 2.2 (Kinetic interpretation). (h, q) is a strong solution of System (2) if and only if M satisfies the kinetic equation:

∂ t M + ξ • ∂ x M -g∂ x Z ∂ ξ M = K(t, x, ξ), (7) 
for a collision term K(t, x, ξ) which satisfies for (t, x) a.e.

R 1 ξ K(t, x, ξ) dξ = 0 , Remark 2.1.
As done by Ersoy et al [START_REF] Ersoy | Modélisation, analyse mathématique et numérique de divers écoulements compressibles ou incompressibles en couche mince[END_REF][START_REF]A kinetic scheme for transient mixed flows in non uniform closed pipes: a global manner to upwind all the source terms[END_REF][START_REF]A model for unsteady mixed flows in non uniform closed water pipes: a Full Kinetic Approach[END_REF], one can easily adapt the kinetic interpretation for a general source term

ϕ = ∂ x Z + f ∂ x g + F .

Construction of the kinetic scheme

Let us consider the following mesh on R. Cells are denoted for every i ∈ Z, by m i = (x i-1/2 , x i+1/2 ), with We also consider a time discretization t n defined by t n+1 = t n + ∆t n with ∆t n the time step.

x i = x i-1/2 + x i+1/2 2 and ∆x i = x i+1/2 -x i-1/2 the space step (see figure 2).
We denote

U n i = (h n i , q n i ), u n i = q n i h n i , M n i the cell-centered approximation of U = (h, q)
, u and M on the cell m i at time t n .

On a time interval [t n , t n+1 ] and on the cell m i , the kinetic equation ( 7) writes:

∂ t M + ξ • ∂ x M -g∂ x Z ∂ ξ M = K(t, x, ξ) for x ∈ m i , t ∈ (t n , t n+1 ) , ξ ∈ R, M(t n , x, ξ) = M n i (ξ) for x ∈ m i , ξ ∈ R . (8) 
We define the piecewise constant representation of Z

Z(x) = Z i 1 mi (x) (9) 
where

Z i = 1 ∆x i mi Z(x) dx for instance.
Neglecting the collision kernel, the kinetic equation ( 8) simply reads:

   ∂ ∂t f + ξ • ∂ ∂x f = 0 for x ∈ m i , t ∈ (t n , t n+1 ) , ξ ∈ R, f (t n , x, ξ) = M n i (ξ) for x ∈ m i , ξ ∈ R . ( 10 
)
This equation is a linear transport equation whose explicit discretisation may be done directly by the following way. A finite volume discretisation of Equation ( 10) leads to:

∀ξ ∈ R , ∀x ∈ m i , f (t n+1 , x, ξ) = f n+1 i (ξ) = M n i (ξ) + ∆t ∆x i ξ M - i+ 1 2 (ξ) -M + i-1 2 (ξ) . (11) 
The microscopic fluxes are defined (see Appendix A) by

M - i+1/2 (ξ) = 1 {ξ>0} M n i (ξ) + 1 {ξ<0,|ξ| 2 -2g∆Z i+1/2 <0} M n i (-ξ) + 1 {ξ<0,|ξ| 2 -2g∆Z i+1/2 >0} M n i+1 -|ξ| 2 -2g∆Z i+1/2 M + i+1/2 (ξ) = 1 {ξ<0} M n i+1 (ξ) + 1 {ξ>0,|ξ| 2 +2g∆Z i+1/2 <0} M n i+1 (-ξ) + 1 {ξ>0,|ξ| 2 +2g∆Z i+1/2 >0} M n i |ξ| 2 + 2g∆Z i+1/2 (12) 
and take into account the discontinuity of the source term Z at the cell interface x i+1/2 through the term

∆Z i+1/2 = Z i+1 -Z i .
This is the principle of interfacial source upwind. Keeping in mind Identities (6), we integrate the discretised kinetic equation ( 11) against 1 and ξ to obtain the kinetic scheme:

U n+1 i = U n i + ∆t n h i F - i+ 1 2 -F + i-1 2 . ( 13 
)
where the numerical fluxes are thus defined by the kinetic fluxes as follows:

F ± i+ 1 2 def = R ξ 1 ξ M ± i+ 1 2 (ξ) dξ . (14) 
Remark 2.2. Let us emphasize that, one has an explicit dependency on the jump of Z through the interface x i+1/2 . Thus, we should write fluxes as follows:

F ± i+ 1 2 (U i , U i+1 ) = F ± i+ 1 2 (U i , U i+1 , ∆Z i+1/2 ) with M ± i+1/2 (ξ) = M ± i+1/2 (ξ; U i , U i+1 , ∆Z i+1/2 )
At this stage of the construction of the scheme, the choice of the function χ is crucial to satisfy some physical (stability) properties of Equations [START_REF] Barré De Saint-Venant | Théorie du mouvement non permanent des eaux, avec application aux crues des rivières et à l'introduction des marées dans leurs lits[END_REF]. There exists essentially two type of χ-function. The first one

χ(w) = √ 2 π √ g 1 - w 2 2g 1/2 + . ( 15 
)
is motivated by the fact to construct a numerical scheme which preserves non-negativity of the water height, still water steady states (see Equation ( 3)) and in-cell entropy inequality (see Equation ( 4)). The second one

χ(w) = 1 2 √ 3 1 [- √ 3, √ 3] (w) (16) 
is motivated to compute explicitly and easily the numerical fluxes [START_REF] Gerbeau | Derivation of viscous Saint-Venant system for laminar shallow water; numerical validation[END_REF]. For more details on this issue, we refer to [START_REF] Perthame | A kinetic scheme for the Saint-Venant system with a source term[END_REF] and [START_REF] Ersoy | Modélisation, analyse mathématique et numérique de divers écoulements compressibles ou incompressibles en couche mince[END_REF][START_REF]A model for unsteady mixed flows in non uniform closed water pipes: a Full Kinetic Approach[END_REF]. However, for a general compactly supported χ-function, one has Proposition 2.1. Let χ be a compactly supported function verifying (5) and denote [-M, M ] its support. The kinetic scheme (13)-( 14) has the following properties:

1. The kinetic scheme is h-conservative scheme, 2. Assume the following CFL condition

∆t n max i |u n i | + M h n i max i ∆x i
holds. Then the kinetic scheme keeps the water height h positive i.e:

if, for every i ∈ Z , h 0 i 0 then, for every i ∈ Z , h n i 0.

3. The kinetic scheme treats "naturally" flooding zones.

Proof. We refer to [START_REF] Ersoy | Modélisation, analyse mathématique et numérique de divers écoulements compressibles ou incompressibles en couche mince[END_REF][START_REF]A model for unsteady mixed flows in non uniform closed water pipes: a Full Kinetic Approach[END_REF] for the details of the proof.

Main result

In this section, we present the main result of this paper. It concerns the consistency with the exact flux and the asymptotic consistency of the source term. In particular, it means that the kinetic scheme ( 13) with ( 14)-( 12) is consistent with Equation (2). We assume in the rest of the paper that δx = ∆x i . Following [START_REF] Bouchut | Nonlinear stability of finite volume methods for hyperbolic conservation laws and wellbalanced schemes for sources[END_REF] and Remark 2.2, we set

F l (U i , U i+1 , ∆Z i+1/2 ) = F - i+1/2 (U i , U i+1 , ∆Z i+1/2 ) = R 1 ξ M - i+1/2 (ξ; U i , U i+1 , ∆Z i+1/2 ) dξ , F r (U i , U i+1 , ∆Z i+1/2 ) = F + i+1/2 (U i , U i+1 , ∆Z i+1/2 ) = R 1 ξ M + i+1/2 (ξ; U i , U i+1 , ∆Z i+1/2 ) dξ .
Let us consider the χ-function given by ( 15) and let us note ∆Z l,r = Z r -Z l for any given (Z l , Z r ) ∈ R 2 . Then, Theorem 3.1. The first order three-point kinetic scheme (13)-( 14) with the χ-function (15) is consistent with Equations (2), i.e. the numerical fluxes satisfy the consistency with the exact flux

F r (U, U, 0) = F l (U, U, 0) = F (U) for any U ∈ R 2
and the asymptotic consistency with the source term

F r (U l , U r , ∆Z l,r ) -F l (U l , U r , ∆Z l,r ) = -B(U)∆Z l,r + O(∆Z p l,r ) , p 3 2 (17) 
as (U l , U r , ∆Z l,r ) → (U, U, 0) .

Before to prove this consistency theorem, let us make the following useful remarks:

Remark 3.1. Noting (∆Z i+1/2 ) + and (∆Z i+1/2 ) -the positive and negative part of the real number ∆Z i+1/2 , one has

• ξ < 0 and |ξ| 2 -2g∆Z i+1/2 < 0 if and only if ξ ∈ -2g(∆Z i+1/2 ) + , 0 ,
• ξ < 0 and |ξ| 2 -2g∆Z i+1/2 > 0 if and only if ξ < -2g(∆Z i+1/2 ) + ,

• ξ > 0 and |ξ| 2 + 2g∆Z i+1/2 < 0 if and only if ξ ∈ 0, 2g(∆Z i+1/2 ) -,

• ξ > 0 and |ξ| 2 + 2g∆Z i+1/2 > 0 if and only if ξ > 2g(∆Z i+1/2 ) -.

Thus, one can write fluxes [START_REF] Gallouët | Some approximate Godunov schemes to compute shallowwater equations with topography[END_REF] as

M - i+1/2 (ξ) = 1 {ξ>0} (ξ)M n i (ξ) + 1 {- √ 2g(∆Z i+1/2 )+<ξ<0} (ξ)M n i (-ξ) + 1 {ξ<- √ 2g(∆Z i+1/2 )+} (ξ)M n i+1 -|ξ| 2 -2g∆Z i+1/2 M + i+1/2 (ξ) = 1 {ξ<0} (ξ)M n i+1 (ξ) + 1 {0<ξ< √ 2g(∆Z i+1/2 )-} (ξ)M n i+1 (-ξ) + 1 {ξ> √ 2g(∆Z i+1/2 )-} (ξ)M n i |ξ| 2 + 2g∆Z i+1/2 (18) Remark 3.2. Let x ∈ (x i , x i+1/2 ), ξ such that |ξ| 2 + 2g(Z(x) -Z(x i )) > 0. Assuming Z i = Z(x i ) + O(δx), one has M(x + δx, ϕ(x + δx, ξ)) = M(x, ξ) + ∂ x M(x, ξ)δx + gZ ′ (x) ξ ∂ ξ M(x, ξ)δx + ∂ 2 xx M δx 2 2 + O(δx 3 ) (19) 
where

ϕ(x, ξ) = |ξ| 2 + 2g(Z(x) -Z(x i )) . Indeed, setting ϕ(x, ξ) = |ξ| 2 + 2gZ ′ (x i )(x -x i ) + O((x -x i ) 2 )
we deduce

∂ x ϕ(x, ξ) = gZ ′ (x i ) + O(x -x i ) ϕ(x, ξ) and ∂ x ϕ(x i , ξ) = gZ ′ (x i ) ξ , ξ = 0 .
Moreover, expanding M with respect to x, we get:

M(x + δx, ϕ(x + δx, ξ)) = M(x, ξ) + ∂ x M(x, ϕ(x, ξ))δx + ∂ 2 xx M δx 2 2 + O(δx 3 )
where

∂ x M(x, ϕ(x, ξ)) = (∂ x M)(x, ξ) + ∂ x ϕ(x, ξ)(∂ ξ M)(x, ξ) .
Gathering these simple computations, we obtain the expression [START_REF] Perthame | A kinetic scheme for the Saint-Venant system with a source term[END_REF].

Proof. Let us set W = (U l , U r , ∆Z l,r ) and assume ∆Z l,r = 0. Then, the identity

F r (W ) = F l (W ) = F (U)
holds for any U ∈ R 2 since the kinetic scheme is conservative in that case. It suffices to replace in the expression of the numerical fluxes ( 14) ∆Z l,r by 0. Now, let us assume ∆Z l,r = 0. The kinetic scheme being h-conservative (see Proposition 2.1 1.), the first component of the relation [START_REF] Levêque | Balancing source terms and flux gradients in high-resolution Godunov methods: the quasi-steady wave-propagation algorithm[END_REF] always holds. Indeed, an easy computation, using the change of variable µ = |ξ| 2 -2g(Z r -Z l ) , allows us to show that:

F h r (W ) -F h l (W ) = 0 .
To show the asymptotic consistency with the source for the second component of Equation ( 17), we proceed at the microscopic scale using the fluxes [START_REF] Marche | Derivation of a new two-dimensional viscous shallow water model with varying topography, bottom friction and capillary effects[END_REF] (see Remark 3.1). As done before, let us first set

M l (ξ, U i , U i+1 , ∆Z i+1/2 ) = M + i+1/2 (ξ) := M + i+1/2 (ξ; U i , U i+1 , ∆Z i+1/2 ) , M r (ξ, U i , U i+1 , ∆Z i+1/2 ) = M + i+1/2 (ξ) := M - i+1/2 (ξ; U i , U i+1 , ∆Z i+1/2
) and let us note the flux difference

δM(ξ) = M r (ξ) -M l (ξ)
omitting the dependency on U and ∆Z.

Assume ξ > 0.

Noting ∆Z = Z r -Z l , the flux difference reduces to

δM(ξ) = 1 0<ξ< √ 2g(∆Z)-(ξ) (M n r (-ξ) -M n l (ξ)) +1 ξ> √ 2g(∆Z)-(ξ) M n l |ξ| 2 + 2g∆Z -M n l (ξ)
Keeping in mind Remark 3.2, one can expand the first and the second term with respect to x in the above equation. We get

M n r (-ξ) -M n l (ξ) = M n l (-ξ) -M n l (ξ) + ∂ x M l (-ξ)δx + O(δx 2
) and

M n l |ξ| 2 + 2g∆Z -M n l (ξ) = M(x l , ϕ(x l + δx, ξ)) -M(x l , ξ) = gZ ′ (x l ) ξ ∂ ξ M l (ξ)δx + O(δx 2 ) .
Thus, we deduce that

δM(ξ) = 1 0<ξ< √ 2g(∆Z)-(ξ) (M n l (-ξ) -M n l (ξ) + ∂ x M l (-ξ)δx) +1 ξ> √ 2g(∆Z)-(ξ) gZ ′ (x l ) ξ ∂ ξ M l (ξ)δx + O(δx 2 ). ( 20 
)
Assume ξ < 0. Proceeding as done before, we get

δM(ξ) = 1 - √ 2g(∆Z)+ <ξ<0 (ξ) (M n l (ξ) -M n l (-ξ) + ∂ x M l (ξ)δx) +1 ξ<- √ 2g(∆Z)+ (ξ) gZ ′ (x l ) ξ ∂ ξ M l (ξ)δx + O(δx 2 ). ( 21 
)
Gathering results (20) and (21), the difference δM is, for any ξ ∈ R :

δM(ξ) = 1 - √ 2g(∆Z)+<ξ< √ 2g(∆Z)-(ξ) ((M n l (sξ) -M n l (-sξ)) + ∂ x M l (sξ)δx) +1 ξ> √ 2g(∆Z)-(ξ) gZ ′ (x l ) ξ ∂ ξ M l (ξ)δx +1 ξ<- √ 2g(∆Z)+ (ξ) gZ ′ (x l ) ξ ∂ ξ M l (ξ)δx + O(δx 2 ). (22) 
where

s = sgn(∆Z) = 1 if ∆Z > 0 , -1 if ∆Z < 0 .
In order to show the asymptotic consistency with the source term, it remains to compute the integral

R ξ 2 δM(ξ) dξ which is, by construction, R ξ 2 δM(ξ) dξ = F q r (W ) -F q l (W )
where F q stands for the second component of the flux of Equation (2). Assuming ∆Z < 0 (the case ∆Z > 0 being similar, it will be not treated), the flux difference ( 22) is now

δM(ξ) = gZ ′ (x l ) ξ ∂ ξ M l (ξ)δx -1 -∞<ξ< √ 2g(∆Z)-(ξ) gZ ′ (x l ) ξ ∂ ξ M l (ξ)δx +1 0<ξ< √ 2g(∆Z)-(ξ) (M n l (ξ) -M n l (-ξ) + ∂ x M l (ξ)δx) + O(δx 2 ). (23) 
Then, integrating Equation (23) against ξ 2 , we get:

F q r (W ) -F q l (W ) := -gh l Z ′ (x l )δx + O(δx p )
where p 3/2. Indeed, choosing a lower and upper bound for the χ-function [START_REF] Greenberg | A well balanced scheme for the numerical processing of source terms in hyperbolic equation[END_REF], for instance,

1 2 1 {-1 2 <ξ< 1 2 } (w) χ(w) 1 {-1<ξ<1} (w) , an easy computation show that R ξ 2 -1 {-∞<ξ< √ 2g(∆Z)-} (ξ) gZ ′ (x l ) ξ ∂ ξ M l (ξ)δx dξ + R ξ 2 1 {0<ξ< √ 2g(∆Z)-} (ξ) (M n l (ξ) -M n l (-ξ) + ∂ x M l (ξ)δx) dξ O(δx 3/2 )
which ends the proof.

Corollary 3.1. The first order three-point kinetic scheme (13)-( 14) with the χ-function ( 16) is also consistent with Equations (2).

Proof. Integrating Equation (23) against ξ 2 , all derivatives on x or ξ can be reported by integration by part or using the Leibniz theorem. As a consequence, the result still holds for any compactly supported χ-function satisfying relations [START_REF] Bourdarias | A kinetic scheme for pressurised flows in non uniform closed water pipes[END_REF].

Noting δF := F q r (W ) -F q l (W ) -gh l Z ′ (x l )
, we look for p at the numerical level to illustrate the fact that the estimate leading to p 3 2 is rather sharp in the proof. To this end, we compute 1 -δF = O(δx p-1 ) .

We display on figure 3 the numerical asymptotic behavior of log(1 -δF ) as a function of log(δx). We found that at the numerical level the order of 1 -δF is p -1 ≈ 1, i.e. p > 3 2 as predicted in the proof.

- 

Concluding remark and further extensions

In this paper, we have shown that the kinetic scheme with reflections introduced by Perthame and Simeoni [START_REF] Perthame | A kinetic scheme for the Saint-Venant system with a source term[END_REF] is consistent with the exact fluxes and is asymptotically consistent with the source term. We have also establish that this consistency result is still true in the case of the indicator χ-function [START_REF] Jin | A steady-state capturing method for hyperbolic systems with geometrical source terms[END_REF]. Moreover, let us also add that replacing Z by a more general source term the consistency still holds. In particular, it justify the generalized kinetic scheme with reflections introduced by Ersoy et al [START_REF] Bourdarias | A kinetic scheme for pressurised flows in non uniform closed water pipes[END_REF][START_REF]A kinetic scheme for transient mixed flows in non uniform closed pipes: a global manner to upwind all the source terms[END_REF][START_REF]A model for unsteady mixed flows in non uniform closed water pipes: a Full Kinetic Approach[END_REF] in the context of unsteady mixed flows in closed water pipes (see also [START_REF]A free surface model for incompressible pipe and open channel flow[END_REF][START_REF]A pressurized model for compressible pipe flow[END_REF]) and in the framework of a two-layer approach for air entrainment in closed water pipes [START_REF]Air entrainment in transient flows in closed water pipes: a two-layer approach[END_REF].

Besides the consistency property, the kinetic scheme using the χ-function (15) satisfy all the stability properties of Equation ( 2): water-height remains non-negative, the energy inequality is satisfied and still water steady states are exactly preserved. Therefore, this scheme is well-adapted to the numerical integration of hyperbolic system with a conservative source term.

A Computation of the numerical microscopic fluxes

For the sake of completeness, following [START_REF] Bourdarias | A kinetic scheme for pressurised flows in non uniform closed water pipes[END_REF][START_REF] Ersoy | Modélisation, analyse mathématique et numérique de divers écoulements compressibles ou incompressibles en couche mince[END_REF], we detail here the way to compute the microscopic fluxes M ± i+ 1 2 at the interface. It is justified through the characteristic of the scalar two-dimensional transport Equation (7) (neglecting the collision kernel). One can found a more general approach in [9, Chapter 2].

Let s ∈ (t n , t n+1 ) a time variable and i the index of a cell m i . The characteristic curves Ξ(s) et X(s) of Equations ( 7) write:

d Ξ ds = -g∂ x Z(X(s)) , (24) d 
X ds = Ξ(s) (25) 
with the final data

Ξ(t n+1 ) = ξ, X(t n+1 ) = x i+1/2
for some constant ξ.

Multiplying Equation (24) by Ξ, using Equation (25), we obtain the conservation of the kinetic enrgy Ξ(s) 2 2 and the potential energy gZ(X(s))

d ds Ξ(s) 2 2 + gZ(X(s) = 0 . It yields to |ξ n | 2 2 - |ξ n+1 | 2 2 = g∆Z i+1/2 (26) 
where we make use of the notations

ξ n = Ξ(t n ), ξ n+1 = Ξ(t n+1 ) and ∆Z i+1/2 = Z(X(t n+1 )) -Z(X(t n ))
which corresponds to the trajectory of a particle initially located at X(t n ) with a velocity ξ n and arriving at a point X(t n+1 ) with a velocity ξ n+1 . Since Z is assumed to be constant per cell [START_REF] Ersoy | Modélisation, analyse mathématique et numérique de divers écoulements compressibles ou incompressibles en couche mince[END_REF], the trajectory are given by Ξ(s) = ξ n+1 and X(s

) = ξ n+1 (s -t n+1 ) + x i+1/2 (27) 
with the data Ξ(t n+1 ) = ξ n+1 , X(t n+1 ) = x i+1/2 .

Thus, trajectories are discontinuous in the (X, Ξ)-plane and composed of segments which are parallels to the x-axis. As a consequence, one has only three possible case as displayed on figure 4.

Figure 4: The potential barrier: transmission and reflection of particle Top: the physical configuration Middle: the characteristic solution in (X, Ξ)-plane Bottom: the characteristic solution in (X, t)-plane Remark A.1. Discontinuous trajectories can be also seen as the formal limit of the following problem as ε vanishes

d Ξ ds = -g∂ x Z ε (X(s)) d X ds = Ξ(s)
where Z ε is a smooth function which satisfies lim ε→0 Z ε = Z.

On figure 5, we represent the contour plot of Ξ 2 + 2gZ ε (X) as ε decreases where To compute the microscopic flux M - i+1/2 (12) (the second one being computed in a same way, it will be not treated), we proceed as follows.

Z ε (x) =      0 if x < 0 , x ε if 0 < x < ε , 1 otherwise . -4 -2 0 2 4 -2 -1. 5 -1 -0. 5 0 0. 5 1 1. 5 2 (a) ε = 1 -4 -2 0 2 4 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 (b) ε = 0.5
• Assume that ξ n+1 > 0. Then we deduce from Equation ( 27) and under well-suited CFL stability condition (see [19, Proof of Theorem 3]), that X(t n ) ∈ (x i-1/2 , x i+1/2 ) and ξ n = ξ n+1 . It means that the particle comes from the left hand side of the interface x i+1/2 . Thus the microscopic flux is given by M - i+1/2 (ξ) = M i (ξ)1 ξ>0 (28) which corresponds to the so-called "positive transmission".

• Assume that ξ n+1 < 0 and |ξ n | 2 -2g∆Z i+1/2 < 0. Then, we deduce from Equation (27) that X(t n ) ∈ (x i-1/2 , x i+1/2 ). As a consequence, in view of Equation ( 26), ∆Z i+1/2 ≡ 0 and ξ n = -ξ n+1 with ξ n > 0. From an energetic consideration, it means that the particle has not enough kinetic energy ξ 2 n 2 to pass the potential barrier ∆Z i+1/2 = Z i+1 -Z i and thus it is reflected. Consequently, one has

M - i+1/2 (ξ) = M i (-ξ)1 ξ<0,|ξ| 2 -2g∆Z i+1/2 <0 (ξ) . (29) 
• Finally, assume that ξ n+1 < 0 and |ξ n+1 | 2 = |ξ n | 2 -2g∆Z i+1/2 > 0. We deduce that X(t n ) ∈ (x i+1/2 , x i+3/2 ) and ξ n+1 = -|ξ n | 2 -2g∆Z i+1/2 . It means that the particle comes from the right hand side of the interface x i+1/2 with enough kinetic energy to pass the potential barrier. In this case, the flux is

M - i+1/2 (ξ) = M i+1 -|ξ|2 -2g∆Z i+1/2 1 ξ<0,|ξ| 2 -2g∆Z i+1/2 >0 (ξ) . (30) 
This is the so-called "negative transmission".

Finally, gathering results (28)-(30), we obtain the microscopic fluxes [START_REF] Gallouët | Some approximate Godunov schemes to compute shallowwater equations with topography[END_REF].

Remark A.2. Finally, let us outline that in the initial work by Perthame and Simeoni [START_REF] Perthame | A kinetic scheme for the Saint-Venant system with a source term[END_REF], the quantities ∆Z i+1/2 and ∆Z i-1/2 are not defined. These quantities are precisely defined as follows

∆Z i+1/2 = Z i+1 -Z i and ∆Z i-1/2 = Z i -Z i-1 .
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