Local Energy Decay for the Damped Wave Equation - Archive ouverte HAL
Article Dans Une Revue Journal of Functional Analysis Année : 2014

Local Energy Decay for the Damped Wave Equation

Résumé

We prove local energy decay for the damped wave equation on R^d. The problem which we consider is given by a long range metric perturbation of the Euclidean Laplacian with a short range absorption index. Under a geometric control assumption on the dissipation we obtain an almost optimal polynomial decay for the energy in suitable weighted spaces. The proof relies on uniform estimates for the corresponding "resolvent'', both for low and high frequencies. These estimates are given by an improved dissipative version of Mourre's commutators method.
Fichier principal
Vignette du fichier
damp-loc-decay.pdf (698.76 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00918736 , version 1 (14-12-2013)

Identifiants

Citer

Jean-Marc Bouclet, Julien Royer. Local Energy Decay for the Damped Wave Equation. Journal of Functional Analysis, 2014, 266 (7), pp.Pages 4538-4615. ⟨10.1016/j.jfa.2014.01.028⟩. ⟨hal-00918736⟩
311 Consultations
250 Téléchargements

Altmetric

Partager

More