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Abstract—In order to design parallel applications that exploit
efficiently modern supercomputers with their complex architec-
ture, it is required to apply a variety of programming models
and techniques. The development of such applications as well as
their tuning to achieve the optimal performance is practically
impossible without performance analysis tools.

In this paper, we present a scalable binary trace library
– Lightweight Trace Library (LiTL). LiTL aims at providing
performance analysis tools with a low-overhead event recording
service. In order to enhance the scalability and the performance
of such tools, we implement various optimization strategies and
techniques in LiTL. The experiments on a suite of synthetic and
standard computation kernels show that the overhead caused by
LiTL in conjunction with EZTrace remains low. Furthermore,
LiTL often performs better than the existing event recording
libraries, saving up to 88% of the CPU time and up to 68%
of the disk space. Finally, LiTL is a generic library that can be
used in conjunction with a wide range of performance analysis
tools.

Keywords—Performance analysis, binary trace library, multi-
threaded applications, hybrid programming models

I. INTRODUCTION

High-performance computing (HPC) is no longer a topic
related only to Computer Science. Scientists from many other
disciplines such as Physics, Geodesy, and Biology rely more
often on parallel computing for their experiments. In general,
HPC clusters permit to run larger simulations and/or obtain
results in a rather short time. However, due to the complexity
in hardware – multi-core processors, NUMA architectures,
GPUs accelerators – as well as the hybrid programming models
that mix MPI, OpenMP, and/or CUDA, the development of a
scalable application that exploits efficiently HPC platforms is
a difficult task.

Performance analysis tools provide a great help during the
development, tuning, and optimization of parallel applications.
The purpose of such tools is to depict the application behavior
in order to find performance bottlenecks and improve the ap-
plications performance. Those tools are usually used to gather
the information about the program execution for immediate
or further performance analysis. One way of gathering such
information is to store time-stamped events in a trace file.
Those events represent the important phases of the application
execution such as calls to MPI communication primitives and
synchronization among threads. Collecting this data requires to
intercept the calls to the corresponding functions and to record
events in a trace file.

In order to depict accurately the behavior of an application,
it is crucial that the performance analysis tool does not disturb

the program execution: the overhead of such tool should be
as small as possible. Previously, we presented a lightweight
mechanism for instrumenting functions [1]. Once functions
have been intercepted, the performance analysis tool needs to
record events in a trace file with the lowest overhead possible.
In this paper, we focus on the second important component of
performance analysis tools: the event recording mechanism.

We present LiTL – a lightweight binary trace library.
LiTL aims at providing performance analysis tools with a
scalable event recording mechanism that utilizes minimum
resources of the CPU and memory. In order to efficiently
analyze modern HPC applications that combine OpenMP (or
Pthread) threads and MPI processes, we design and implement
various mechanisms to ensure the scalability of LiTL for a
large number of both threads and processes. Although LiTL
is a generic library that can be used in conjunction with many
performance analysis tools, here we integrate it in the EZTrace
framework as a replacement for FxT [2] – the current event
recording library. The evaluation shows that LiTL performs
better than FxT for multi-threaded applications. LiTL permits
to analyze larger MPI jobs. Moreover, trace files that are
generated by LiTL are smaller in size than the ones created
by FxT.

The rest of the paper is organized as follows. Section II
provides literature overview of existing performance analysis
tools as well as trace libraries. Section III presents the EZTrace
framework and its core components including the current event
recording library. The main features of the new scalable binary
trace library are introduced in Sections IV to VI. We evaluate
LiTL in conjunction with EZTrace and compare it with FxT
in Section VII. Finally, Section VIII discusses conclusions and
the future work.

II. LITERATURE OVERVIEW

When developing high-performance or parallel applica-
tions, a big concern is put on the communication between
threads/processes/nodes and also the performance optimiza-
tion. In order to create scalable software with the optimal
execution time, software developer often rely on performance
analysis tools. Numerous research has been conducted on this
topic. As a result, many tools were designed for tracing the
execution of parallel applications to better understand their
behavior as well as to find performance bottlenecks. Some
tools are dedicated to a specific programming model or library,
such as MPI Parallel Environment (MPE) [3] that targets
MPI applications; POSIX Thread Trace Toolkit (PTT) [4]
aims at Pthread-based applications; OMPtrace [5] instruments
OpenMP applications. Other performance analysis tools cover



multiple models and can track calls to multiple libraries on
various architectures, for instance VampirTrace [6], TAU [7],
Paraver [8] or Scalasca [9]. These tools can be used for
instrumenting custom libraries or applications through manual
or automatic instrumentation of their code.

The performance analysis tools that generate execution
traces rely on tracing libraries dedicated to a specific trace
format. Some formats are limited to a particular programming
model. For instance, the Open Trace Format (OTF) [10]
focuses on MPI events and function entry/exit. OTF2 [11] is
an extension of OTF that adds support for OpenMP events.
Some other trace formats are self-defining, allowing to depict
any event in a more generic way. For instance, the Pajé
file format [12] and the Pablo self-defining data format. The
concept of the other trace formats is to store data in a raw
format within a trace file. The application that reads the trace
file is then in charge of adding meaning to the recorded events.
The FxT [2] library create traces using the raw format.

Additionally to the optimization applied in file formats,
some libraries – such as OTF or OTF2 – use a compression
mechanism to reduce the file size. This is done by using a
general purpose compression library like zlib. The main draw-
back of file compression is that it causes an additional overhead
when writing the traces to the disk. We do not consider the
trace compression here, however adding the compression phase
before writing traces to the disk is rather straightforward.

III. EZTRACE

EZTrace is a general framework for analyzing high-
performance and parallel applications. EZTrace relies on a
tracing mechanism that aims at executing an application once
in order to record its execution trace. After the execution of the
application, EZTrace analyzes the resulting trace and extracts
various statistics. Furthermore, EZTrace provides a function-
ality to generate trace files in different formats. These files
can be visualized with tools such as Vampir [6], ViTE [13],
or Triva [14].

EZTraceis shipped with modules for the main libraries that
are used in parallel programming, e.g. MPI and OpenMP, and it
allows third-party developers to create modules that instrument
their own functions [15]. For instance, the PLASMA [16]
linear algebra solver integrates an EZTrace module that permits
to visualize the tasks scheduling operated by PLASMA.

For recording trace files, EZTrace modifies the binary
of the application on-the-fly and inserts probes before and
after functions of interest [1]. Then, the program is executed
in the regular way. When the program enters one of the
instrumented functions, e.g. MPI_Send, EZTrace records
an event (MPI_SEND_ENTRY), executes the actual function
(MPI_Send), and records another event that marks the exit
of the function (MPI_SEND_EXIT). Each event consists of
a timestamp, an event code, a thread identifier, and addi-
tional data depending on the event type. In case of the
MPI_SEND_ENTRY event, EZTrace records the destination
process, the message length, and the message tag as the
additional data. At the end of the application execution, events
are written into trace files.

After the recording phase, EZTrace reads the trace files
that were generated and analyzes the events. Depending on the

user choice, during the analysis phase various statistics, e.g.
the time spend in the MPI communication, can be extracted
and Pajé or OTF files can be generated in order to visualize
the application execution.

A. Recording events with FxT

For recording events, EZTrace relies on the FxT library.
FxT is a multi-level trace library [2] that permits to record
events in a binary format from both kernel- and user-space.
Even though FxT is efficient for small-scale applications, it
suffers from several scalability issues.

The first scalability issue is related to the event recording
mechanism: FxT generates one trace file per process during
the execution of the application. Moreover, the recording
mechanism fails to scale when the number of threads per
process grows. For instance, on multi-core architectures each
process may contain dozens of threads that write events into
a single event buffer – increasing both the contention and
the application execution time. Thus, the FxT scalability issue
concerning the large number of threads is a big obstacle on
modern CPUs.

Afterwards, during the post-mortem analysis all the
recorded trace files are read by EZTrace for further analysis.
Due to the constrains imposed by the Linux operating system,
there is a limitation on the number of trace files (it typically
equals 1024 files) that can be opened at once by the process,
which is in charge of the performance analysis. Thus, EZTrace
currently cannot be used for large MPI jobs.

Performance analysis may impact heavily the efficiency
of parallel applications, especially the large scale ones that
generate millions of events producing huge trace files. A major
issue when analyzing such applications is the size of generated
trace files. Reducing the size of traces is critical in order
to make the analysis of large scale applications lightweight
and harmless for their performance. Although compression
techniques can be used, it is also crucial to reduce the size
of data to its maximum before compression.

Finally, the complex multi-level tracing mechanism that
permits to record events from both kernel- and user-space
makes FxT difficult to maintain. Since EZTrace records events
only from user-space, a large portion of the source code as
well as the data structures are redundant. Due to the complex
structures and the functionality behind, adding new features
that would improve the scalability of FxT is an arduous task
that is comparable to the development of a new trace library
with the same functionalities from scratch.

B. Recording events with LiTL

In order to resolve the above-mentioned issues, we propose
to design a new trace binary library that provides similar
functionalities to FxT:

• Records events from user-space with a low overhead;

• Improves the scalability, especially for applications
that rely on a large number of threads or processes.

The new library is named Lighweight Trace Library (LiTL).
LiTL can be used by performance analysis tools such as



EZTrace for recording events in trace files. As in FxT, LiTL
minimizes the usage of the CPU time and memory space in
order to avoid disturbing the application that is being analyzed.
LiTL is also fully thread-safe that allows to record events from
multi-threaded applications. In contrast to FxT, LiTL records
events only from user-space. This permits to apply only the
relevant data structures and functionalities, and thus to simplify
the maintainability of the library.

In the next Sections, we present various techniques that
permit to resolve the scalability issues of FxT. Section IV
describes the LiTL approach for reducing the size of the gen-
erated trace files. Section V depicts the strategy for improving
the scalability of the library when a large number of threads
concurrently record events. Finally, Section VI presents the
solution that allows LiTL to process large MPI jobs. All of
these features are already implemented in LiTL.

IV. UTILIZED RESOURCES

EZTrace gathers the information regarding the program
execution in form of events that are generated before and after
calls to the instrumented routines.

As an example, let us consider a simple MPI ping-pong
program that relies upon MPI_SEND and MPI_RECV routines.
These routines have the following prototypes:

1 int MPI_Send(void *buf, int count, MPI_Datatype datatype,

int dest, int tag, MPI_Comm comm);

2 int MPI_Recv(void *buf, int count, MPI_Datatype datatype,

int source, int tag, MPI_Comm comm, MPI_Status

*status);

We develop an MPI module for EZTrace, where we determine
a list of key functions that are instrumented. For each function,
we also define a list of parameters that are recorded and can
be useful during the post-mortem analysis. For instance, for
MPI_SEND we record two events as follow:

1 EZTRACE_EVENT4(EZTRACE_MPI_START_SEND, size, dest, tag,

comm);

2 EZTRACE_EVENT3(EZTRACE_MPI_STOP_SEND, dest, tag, comm);

EZTRACE_MPI_START_SEND is recorded before the call
to MPI_SEND and EZTRACE_MPI_STOP_SEND afterwards.
Also, in these events we store the information regarding
four parameters, namely a message size, a message tag, a
destination, and an MPI communicator. This procedure is
applied for all intercepted functions.

Each event in the FxT library consists of two parts: the
event core (the event code, the time when the event occurred,
the thread identifier, and the number of parameters) and event
parameters. The number of event parameters recorded by FxT
varies from zero to six. Also, there is an additional event type
in FxT, where parameters are stored in the string format. Its
purpose is to gather either the regular parameters in a string
format or the information about the abnormal behavior of
applications like thrown exceptions.

As it can be seen from the example above, the parameters
passed to each event have different data type. In order to
handle the variety of possible cases, event’s parameters in FxT
are represented by the largest data type, which is uint64_t
on x86_64 architectures. Hence, any parameter – no matter

whether it is a char, an int or a long int – can be
recorded without being truncated. However, the reserved slot
for each parameter is often bigger than its actual size. Thus,
this leads to the non-optimal usage of resources. For instance,
in case of MPI_SEND each parameter requires 4 bytes of the
storage, but it occupies 8 bytes instead.

From the experiments we observe that in many cases
the required space to store an event is smaller than the one
reserved by FxT. Hence, we apply our optimization strategy
to utilize every byte from both the memory and disk space.
Such optimization is crucial, especially for applications that
generate millions of events and produce large trace files.
Moreover, writing a huge amount of data to the disk increases
the overhead of EZTrace. So, our goal is to keep trace files
as small as possible without losing any of the recorded data.
Therefore, we propose to use the compacted event storage that
aims at utilizing every byte from the allocated space.

In our approach, we introduce three different types of
events: regular, raw, and packed. The regular event is similar
to the one in FxT, meaning without any major optimization
being involved. The packed and raw (parameters are stored
in a string format) events represent the optimized versions
of storing events, where each parameter can be saved as a
group of bytes. Accordingly, by using the event type packed
for recording and storing events, we theoretically are capable
to save up to 65 % of the disk space1 compare to both the
regular LiTL and FxT events. Also, we increase the number
of parameters to 10, which covers a wider range of possible
cases.

Fig. 1(a) shows, on an example of three events with differ-
ent number of parameters, the occupied space of events within
the trace file recorded by EZTrace with FxT. We symbolically
partitioned the trace file into bytes and also chunks of bytes,
which store event’s components. The space occupied by each
event with its parameters is highlighted with parentheses.

Fig. 1(b) shows the storage of the recorded events in
the trace file while using EZTrace with LiTL. We consider
one particular scenario when each event’s parameter can be
represented by uint8_t; this requires only one byte for the
storage. To store larger event’s parameters we use arrays of
uint8_t. This scenario corresponds to the optimal perfor-
mance in terms of the memory and disk space usage. Under
this approach, not only the size of the core event’s components
is shrunk, but also the size of event’s parameters is reduced
significantly. The gained performance, e.i. the reduced space,
can be characterized by the gray area that corresponds to the
difference in storage between FxT and LiTL events. The size
of three events recorded by LiTL is smaller than the size of
one event with five parameters recorded by FxT. This figure
confirms our assumption regarding the possibility of reducing
the size of both the recorded events and trace files.

V. SCALABILITY VS. NUMBER OF THREADS

The advent of multi-core processor have led to the increase
in the number of processing units per machine. It becomes

1This scenario represents the situation when each event’s parameter can
be stored using the smallest data type, which is uint8_t on X86_64
architectures.
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Fig. 2: Event recording mechanism on multi-threaded applications.

usual to equip a typical high performance computing plat-
form with 8, 16, or even more cores per node. In order to
exploit efficiently such facilities, developers can use hybrid
programming models that mix OpenMP (or Pthread) threads
and MPI processes within one application. Hence, the number
of threads per node, which executes the same application, can
be quite large – 8, 16, or even more threads. The number of
threads per node is the scalability issue for FxT, because in its
implementation all threads within one process record events
into a single buffer, see Fig. 2(a).

The FxT recording mechanism causes a contention problem
– when multiple threads record events simultaneously, the
pointer to the next available slot in the buffer is changed
concurrently. The modifications of the pointer can be done
atomically in order to preserve the data consistency. However,
the atomic operation does not scale quite well when it is
performed by a large number of threads at the same time.
Thus, analyzing OpenMP applications that run lots of threads
using EZTrace with FxT may result in the high overhead.

This scalability issue can be clearly seen on NUMA
architectures where the buffer in which threads record events
is allocated on one memory bank of the NUMA machine.
When multiple threads gather application’s events from dif-
ferent NUMA nodes, the overhead of the event recording
may increases due to NUMA effects. Therefore, analyzing the
execution of applications on NUMA machines with a decent
amount of cores is potentially harmful for their performance.

A. Recording Events

While designing LiTL, we aim at resolving the above-
mentioned limitation of FxT. Thus, we propose to record
events into separate buffers, meaning to have one buffer per
thread instead of one buffer per process. This approach is
illustrated on Fig. 2(b).

To keep multiple buffers in order within the trace file, we
add a header into the trace file with the information regarding
the number of threads and pairs <tid, offset>; tid stands for
the thread identifier; offset corresponds to the position of the
first chunk of events for a given thread within the trace starting
from its beginning. The last event of each chunk contains either
an offset to the next chunk of events or a symbol specifying
the end of recording for a given thread. While flushing the
current buffer to the trace file, the following two actions are
performed:

1) Setting the offset of the current chunk to specify the
end of the recording;

2) Update the offset from the previous chunk to point
to the current one.

Fig. 3 demonstrates the storage mechanism on an example of
three threads, including the positioning of chunks of events as
well as the way of linking those chunks into one chain of the
corresponding thread using offsets.

During the application execution, it may occur that some
threads start recording events later than others. This sce-
nario requires appropriate modifications and adjustments to
the above approach. According to the previous approach, the
header is the first block of data that is added to the trace file;
it is written before flushing the first chunk of events. Thus,
the header contains the information only regarding the started
threads. In order to add pairs <tid, offset> of the late threads,
we reserve a space for 64 pairs (chunk of pairs) between
chunks of events within the trace file. So, when one among
those late threads wants to flush its buffer to the trace file, we
add its pair <tid, offset> directly to the next free spot in the
chunk of pairs. The chunks of pairs are binded with offset in
the same way as chunks of events. Therefore, EZTrace does
not have limitations on the number of threads per process and
also processes.

B. Post-Mortem Analysis

We develop the functionality for analyzing the generated
traces by capturing the procedure of the event recording
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Fig. 3: Storage of events recorded by EZTrace with LiTL on multi-threaded applications. In the figure, LiTL_v contains information about
LiTL; OS – about OS and architecture; #threads stands for the number of threads; buf_size – the buffer size.

mechanism. At first, LiTL reads the trace header with the
information regarding the buffer size, threads (the number
of threads, tids, and offsets), and also pairs <tid, offset>
that correspond to the late threads. Using this preliminary
information, LiTL allocates memory buffers for reading; the
number of buffers equals the number of threads used during the
recording phase, meaning one buffer per thread. Then, LiTL
loads chunks of events from the trace file into these buffers
using pairs <tid, offset>. After processing the first chunks of
events, LiTL loads the buffers with the next ones using the
information concerning their positions in the trace, which is
given by the offsets. This procedure is recursive and stops
when the symbol specifying the end of recording is reached.

VI. SCALABILITY VS. NUMBER OF TRACES

In FxT, one trace file is generated per process. This means
that for parallel applications with hundreds of MPI processes
the equal amount of trace files is created. This is one side
of the problem. The other side appears while analyzing the
applications execution due to the limitation on the number of
trace files that can be opened and processed at the same time.
Therefore, FxT does not perform well and even crashes when
the number of traces exceeds the Linux OS limit on the number
of simultaneously opened files.

In order to overcome the opened files limitation imposed by
the Linux OS, one may increase the limit to the maximum pos-
sible value. However, this would temporarily solve the prob-
lem. Instead, we propose to create archives of traces during
the post-mortem phase. More precisely, we suggest to merge
multiple traces into a trace archive using the litl_merge

utility from LiTL. Fig. 4 illustrates the structure of the new
combined trace created by litl_merge. The archives of
traces preserve all information concerning each trace: headers,
pairs <tid, offset>, and positioning of events chunks. They
also contain new global headers that store the information
regarding the amount of trace files in the archive and triples
<fid, size, offset>; fid stands for a file identifier; size is a size
of a particular trace file; offset holds the position of a trace
file within the archive of traces. Therefore, archives of traces
not only solve the FxT problem, but also make the further
analysis of the applications performance more convenient. The
archives can be read by litl_read and, therefore, analyzed
by EZTrace.

One more useful feature provided by LiTL, which is the
opposite of litl_merge, is a possibility to extract trace files
from archives with the litl_split utility. This utility can

be applied when there is a need to analyze a particular trace
or a set of traces among the merged ones.

VII. PERFORMANCE RESULTS

When analyzing the execution of high-performance or
parallel applications that generate millions of events, it is
important to keep the overhead of the event recording library as
low as possible. In this Section, we evaluate the performance
and the overhead of both FxT and LiTL in conjunction with
EZTrace on synthetic benchmarks as well as on standard
application kernels.

A. Experimental Setup

We use the RWTH cluster that is composed of 60
nodes connected through DDR InfiniBand [17]. Each node is
equipped with two quad-core Intel Xeon E5450 (Harpertown)
processors and 16GB of RAM. Each of the four cores on
Harpertown operates at 3.0 GHz.

The RWTH cluster’s nodes execute the Scientific Linux
operating system release 6.1 (Carbon) with the 2.6.32 Linux
kernel. There, we installed EZTrace v.0.9 with both FxT and
LiTL, the NAS Parallel Benchmarks (NPB) v.3.3, and Multi-
Zone version of NPB v.3.3 (NPB-MZ). These libraries were
compiled with the gcc v.4.6.1 compiler under the optimization
level three enabled. To run both NPB and NPB-MZ, we use
MPI from the Open MPI v.1.6.4 library.

B. Utilized Resources

To validate our optimization strategy concerning the event
size and the occupied disk space, we created a synthetic
benchmark and conducted a set of tests recording

• Events with various number of parameters;

• Events with a homogeneous type of parameters in
order to have a better picture regarding the size of
each event at the end.

Each test case (an event with fixed number of parameters of
one data type) were executed 10

6 times, meaning that 10
6

events were recorded.

The results of the conducted experiments are reported
in Tab. I. FxT does not make a difference between various data
types and reserves the maximum amount of space for each
parameter. For instance, the FxT traces composed of events
with six parameters of char, int, or double data types are equal
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TABLE I: Information regarding trace files recorded by EZTrace with
both FxT and LiTL on the Harpertown nodes. In the table, type is
the data type of event’s parameters; nb_param stands for the number
of parameters.

Type nb_param FxT (MB) LiTL (MB) Overhead (%)

char 0 22.90 16.21 41.22
char 1 30.53 17.17 77.81
char 2 38.16 18.12 110.57
char 3 45.78 19.07 140.03
char 4 53.41 20.03 166.69
char 5 61.04 20.98 190.94
char 6 68.67 21.94 213.07
int 0 22.90 16.21 41.22
int 1 30.53 20.03 52.41
int 2 38.16 23.84 60.03
int 3 45.78 27.66 65.54
int 4 53.41 31.47 69.72
int 5 61.04 35.29 72.99
int 6 68.67 39.10 75.63
double 0 22.90 16.21 41.22
double 1 30.53 23.84 28.03
double 2 38.16 31.47 21.24
double 3 45.78 39.10 17.09
double 4 53.41 46.73 14.30
double 5 61.04 54.36 12.29
double 6 68.67 61.99 10.78

in terms of size. In contrast, LiTL uses compact storage and
its traces have the following characteristics

• Only the required space for the storage is used.
For example, the difference in size between traces
composed of events without parameters and the ones
with one parameter of type char is exactly 10

6. This
corresponds to the size of 106 chars;

• The occupied storage varies depending on the data
type. For instance, events with one character and
one integer require 18 and 21 bytes of the storage,
accordingly.

C. Scalability vs. Number of Threads

In this subsection, we verify our solution on improving
the scalability of EZTrace and reducing the contention while
analyzing the performance of multi-threaded applications. In
FxT, multiple threads within a process record events into
a single buffer. This causes contention and the performance
overhead, in particular on NUMA architectures. Our solution
for this problem is to use multiple buffers, more precisely
one buffer per thread. To validate this solution, we develop a
synthetic multi-threaded program that calls repeatedly a simple

TABLE II: The average time for recording one event on the
Harpertown nodes. In the table, nb_th and nb_event stand for the
number of threads and events, accordingly; time is in nanoseconds;
VT is a shortcut for VampirTrace.

nb_th FxT VT LiTL nb_event Overhead (%): FxT VT

1 217.40 391.19 218.19 200010 -0.36 79.29
2 488.06 395.25 220.51 400014 121.33 79.24
3 684.71 403.28 304.58 600018 124.80 32.41
4 946.51 417.12 380.10 800022 149.01 9.74
5 1385.14 418.58 397.81 1000026 248.20 5.22
6 1740.97 435.25 417.57 1200030 316.93 4.24
7 2367.40 448.07 415.44 1400034 469.85 7.85
8 3470.53 440.31 411.05 1600038 744.32 7.12

function. This function is intercepted by EZTrace and two
events are recorded: the first is at the entry of the function
and the second at its termination. Thus, when the function
is called for numerous times, the program generates a large
number of events. Since the computation are simple and fast,
and the function is called by multiple threads, this test is a
good model of event-intensive multi-threaded applications.

We evaluate the performance of EZTrace with both FxT
and LiTL running the multi-threaded test program on the
Harpertown nodes. For comparison, we also evaluate the
performance of VampirTrace on the same program. Tab. II
presents the average time that is required to record one event
on the Harpertown nodes. When the number of threads used
at the program execution increases, the time for recording an
event with FxT growth rapidly. This is due to the contention
between the threads that try to record events concurrently.
With LiTL and VampirTrace, the average time increases,
but not as dramatically as with FxT. FxT and LiTL deliver
nearly the same performance for single-threaded applications.
Nevertheless, the scalability of LiTL when the number of
concurrent threads grows is much better, allowing LiTL to
perform up to 8.4 times faster.

D. Scalability vs. Number of Traces

In order to verify the scalability of both event recording
libraries with the number of recorded traces, we created a
simple MPI program that generates few MPI events during
its execution. We ran the program using 256 MPI processes
on the RWTH cluster. As a result, 256 trace files were
created. Afterwards, we extracted the statistic information (the
size of messages, the time spent in the communication, and
the number of events handled) from the generated traces



using the eztrace_stats utility from EZTrace. At first,
eztrace_stats performed well on the 256 traces for both
FxT and LiTL. Then, we decreased the limit on the number
of simultaneously opened files from 1024 to 200 using the
ulimit command and repeated the experiment. At this time,
eztrace_stats was not able to gather the statistic informa-
tion with both event recording libraries. In order to overcome
this limit, we applied litl_merge and combined traces into
two archives; each of them stores equal amount of traces.
Consequently, we succeeded with the performance analysis of
the program using EZTrace with LiTL. The same technique is
applicable for eztrace_convert, which produces traces in
different formats. Moreover, EZTrace supports analysis of both
traces and archives of traces mixed together.

E. NAS Parallel Benchmarks (NPB)

To evaluate the overhead of both FxT and LiTL within
EZTrace on more realistic scenario, we measure their per-
formance for NAS Parallel Benchmarks (NPB). NPB is a
set of computation kernels derived from computational fluid
dynamics applications to evaluate performance of parallel and
high-performance applications. Later, the benchmark suite was
extended including new kernels, e.g. for parallel I/O and
computational grids. The problem sizes of those kernels are
predefined and divided into eight classes; this value depends
upon the kernel [18].

We conducted our experiments using 64 computing pro-
cesses for problems from the class C, which are already
decent to make the CPUs busy with the computations and
also to generate a good amount of events. The MPI functions
of the NPB kernels were instrumented with EZTrace and
recording events was performed with both FxT and LiTL. Each
benchmark was executed at 10 times and then the median time
was selected.

TABLE III: The time measurements of NPB-MPI running for
CLASS C problems with 64 computing processes on the Harpertown
nodes. In the table, the time is in seconds.

Bench NPB FxT LiTL Events / sec Overhead (%): FxT LiTL

BT 53.75 51.29 53.31 65689 -4.58 -0.82
MG 7.23 7.06 7.28 185491 -2.35 0.69
LU 46.07 44.73 47.03 810584 -2.91 2.08
FT 22.78 22.66 22.92 3681 -0.53 0.61
IS 2.04 1.97 2.01 36619 -3.43 -1.47
SP 80.31 77.13 76.98 58756 -3.96 -4.15
CG 29.47 27.29 29.40 223701 -7.40 -0.24
EP 4.99 4.98 5.07 1286 -0.20 1.60

Tab. III presents the time measurements: the median ex-
ecution time and the overhead of both FxT and LiTL from
the raw NPB execution. The raw as well as the instrumented
kernels show the fluctuation in the measurements. This is
an explanation for the negative time overhead. Nevertheless,
the timings show that instrumenting the NPB kernels with
EZTrace using both FxT and LiTL has small or even negligible
impact on the performance: for all experiments EZTrace is
within the raw execution. The variation of the execution time
using LiTL, in most cases, is within 2%. Furthermore, these
experiments demonstrate – especially the MG, LU, and CG
kernels that generate a large number of events per second –

that the instrumentation of the event-intensive applications is
not harmful for their performance.

TABLE IV: The results tracing NPB-MPI running for CLASS C
problems with 64 computing processes on the Harpertown nodes.

Bench Events / sec FxT (MB) LiTL (MB) Size difference (%)

BT 68952 152.66 112.86 35.27
MG 189542 45.68 32.15 42.08
LU 838890 1866.43 1244.55 49.97
FT 3820 0.98 0.36 171.32
IS 35384 0.80 0.24 228.56
SP 60699 369.22 267.87 37.84
CG 236682 283.63 201.40 40.83
EP 1405 0.61 0.11 439.40

The second table, Tab. IV, shows another performance
metric that we used – the size of the generated traces. For
the kernels that produce few events (such as FT, IS or EP),
the size of traces recorded by LiTL is much smaller than of
the FxT traces. The main reason for that is the header size
that is relatively small for the LiTL traces. In case of the
larger traces as the ones produced for LU, BT, SP or CG, the
size of the header is negligible. For these kernels, the trace
produced with FxT are up to 50% larger than the LiTL traces.
LiTL generates smaller traces because of the way it stores
the events parameters: while FxT uses 8 bytes per parameter,
LiTL only allocates the required number of bytes. The amount
of the saved disk space thus depends on the number of events
parameters and their type.

F. NPB-MZ

In addition, we conducted a set of experiments using the
NPB-MZ kernels that combine OpenMP and MPI program-
ming models. The combination of these programming models
often occurs in practice in order to enhance the application per-
formance and efficiently utilize multi-core nodes on standard
clusters.

Tab. V presents the results of NPB-MZ-MPI benchmarks
on the cluster composed of 16 Harpertown nodes. One MPI
process runs on each node and 8 OpenMP threads exploit the
available cores within a node. As for the NPB kernels, the
EZTrace instrumentation in conjunction with both FxT and
LiTL results in small performance overhead. LiTL delivers
nearly the same or sometimes event better, e.g. for the SP-MZ
kernel, performance as FxT. Besides, the traces produced by
LiTL are much smaller in size.

TABLE V: The time measurements of NPB-MZ-MPI running for
CLASS C problems with 16 MPI processes and 8 OpenMP threads
on the Harpertown nodes. In the table, the time is in seconds.

Bench NPB FxT LiTL Events / sec Overhead (%): FxT LiTL

LU-MZ 16.34 16.40 16.14 104836 0.37 -1.22
BT-MZ 19.88 19.50 20.10 1252744 -1.91 1.11
SP-MZ 22.47 22.96 22.85 2807677 2.18 1.69

VIII. CONCLUSIONS AND FUTURE WORK

In order to analyze HPC applications, there is a need for
performance analysis tools with low overhead. The efficiency



of such tools strongly depends on two factors: the instrumenta-
tion of functions applied and the event recording library used.

In this article, we focus on the latter issue and develop
our own library named LiTL – a lightweight library for
recording events – taking into account the advantages and
limitations of FxT. In LiTL, we applied several optimization
strategies: reducing the storage of events and traces; improv-
ing the scalability when a large number of threads record
events concurrently; enabling performance analysis of parallel
applications that produce hundreds or thousands of traces.
These mechanisms are implemented in the LiTL library that is
integrated in the EZTrace framework for performance analysis.

To evaluate the efficiency of LiTL, we conduct a set of
experiments using synthetic and standard benchmarks. We
compare the LiTL performance results with the ones from FxT;
both event recording libraries are used within the EZTrace
framework. For all test cases, LiTL either perform as good as
FxT leading to low overhead or often show better results. For
instance, with LiTL the size of traces is reduced up to 68%
and it also saves up to 88% of the CPU time, especially, on
multi-threaded applications. Our experiments were conducted
using LiTL within EZTrace, however it is a general event
recording library that can be used in conjunction with any
other performance analysis tool.

Our future focus will be on integrating the litl_merge
utility into the event recording process in order to produce
automatically an archive of traces during the execution of the
application. To reduce even more the size of the generated
traces, we plan to add a compression mechanism to LiTL.
Also, we aim at designing EZTrace plugins for programming
models for accelerators such as CUDA and OpenCL. As
new energy efficient architectures appeared, e.g. Intel Phi and
Kalray Multi-Purpose Processor Array (MPPA), we plan to
port both EZTrace and LiTL there.
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