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Abstract

The constitutive thermo-hydro-mechanical equations of fractured media are embodied in the theory of mix-
tures applied to three-phase poroelastic media. The solid skeleton contains two distinct cavities filled with
the same fluid. Each of the three phases is endowed with its own temperature. The thermo-mechanical con-
stitutive equations, and the constitutive relations governing generalized diffusion and transfer are structured
by, and satisfy, the dissipation inequality. The cavities exchange both mass and energy. Mass exchanges
are driven by the jump in scaled chemical potential, and energy exchanges by the jump in coldness. The
finite element approximation of the governing equations uses the displacement vector, the two fluid pres-
sures and the three temperatures as primary variables. It is applied to the analysis of a generic hot dry rock
(HDR) geothermal reservoir. Three parameters of the model are calibrated from the thermal outputs of
the Fenton Hill and Rosemanowes HDR reservoirs. The solid-to-fracture fluid heat transfer coefficient κsf ,
which controls the rate of heat exchange between the porous blocks and the fracture fluid, is found in the
range 35 to 120mW/m3.K. The calibrated model is next applied to simulate circulation tests at the Fenton
Hill HDR reservoir. The finer thermo-hydro-mechanical response provided by the dual porosity model with
respect to a single porosity model is highlighted in a parameter analysis. Emphasis is put on the influence
of the fracture spacing on the effective stress response and on the permeation of the fluid into the porous
blocks. The dual porosity model yields a thermally induced effective stress that is less tensile compared with
the single porosity response, reflecting distinct pore pressure contributions. This effect becomes significant
for large fracture spacings. In agreement with field data, fluid loss is observed to be high initially and to
decrease with time.

Keywords: enhanced geothermal system, thermo-hydro-mechanical couplings, dual porosity, mass
exchange, heat exchange, fluid loss

1. Introduction

Geothermal energy resources initially tested at Los Alamos National Laboratory, Murphy et al. [1981],
continue to attract a significant amount of attention in present-day commercial prototypes, Tenzer [2001].
The development of constitutive models for energy extraction from artificially fractured hot dry rock (HDR)
reservoirs requires three main ingredients: (1) a proper thermo-hydro-mechanical coupled model developed
from a rational thermodynamics framework; (2) a theory of mixtures for a solid skeleton and one (or several)
fluid(s), and (3) local thermal non-equilibrium (LTNE).

The purpose of this work is to contribute to a framework of understanding of the thermo-hydro-mechanical
response of fractured media, where, at each geometrical point, the solid skeleton displays two fluid cavities and
the temperatures of the solid and fluids are independent. Field observations of pressure buildup and depletion
history of reservoirs have demonstrated that standard poro-elasticity may be too crude for modelling purpose.
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A more elaborate formulation, such as the dual porosity concept, is needed to provide a reliable description of
the effective stress and of the fluid pressures in fractured reservoirs, Warren and Root [1963], Kazemi [1969],
Zhang and Roegiers [2005].

As for geothermal energy applications, focus so far has been on partially coupled systems in an effort
to implement a network of discrete discontinuities, DuTeaux et al. [1996], Bruel [2002], to couple free and
forced convection, Bataillé et al. [2006], or to characterize joint closure with a stress dependent law, Kohl et
al. [1995]. The closed form solutions by Ghassemi et al. [2005] of the thermally induced stress, in geothermal
reservoirs where heat transport is dominated by convection in the fluid phase and by conduction in the
solid phase, are worth notice. Still, the influence of a second porosity, which is not participating to forced
convection owing to its low permeability, has been systematically disregarded.

Indeed, in spite of their importance in the fields of petroleum engineering, reservoir engineering and
geothermal energy extraction, as stressed by e.g. Hayashi et al. [1999], thermo-hydro-mechanical coupling
effects in media with double porosity have rarely been investigated, Bai and Roegiers [1994], Bower and
Zyvoloski [1997], Masters et al. [2000], Khalili [2003], Nair et al. [2004]. Crucially, the extension of the
effective stress concept to media with multiple porosity, and cavities saturated either by fluids or gases,
has been an open question for a while. Two propositions remain today: (1) the double effective stress
concept, Elsworth and Bai [1992], and (2) the extension of Biot’s relationship to dual porosity, Khalili and
Valliappan [1996]. Hydro-mechanical dual porosity models, based on the double effective stress concept, have
been extended to account for thermal effects, Bai and Roegiers [1994], Bower and Zyvoloski [1997], Masters
et al. [2000], Nair et al. [2004]. On the other hand, Khalili and Selvadurai [2003] presented a thermo-hydro-
mechanical model for elastic media with double porosity, using a systematic macroscopic approach based on
a single effective stress concept. This model, assuming local thermal equilibrium (LTE), has been applied to
wellbore stability in the context of enhanced heavy-oil recovery by hot water injection, Gelet et al. [2011]. The
importance of an appropriate definition of the effective stress is illustrated in the thermo-hydro-mechanical
formulations developed for unsaturated porous media, Loret and Khalili [2000]ab, Khalili and Loret [2001].

A key factor in geothermal energy recovery is the difference in the characteristic times between diffusion
of heat in the porous blocks and forced convection in the fracture network, a feature that motivates an
analysis that allows for local thermal non-equilibrium. In fact, Gelet et al. [2011] show that continuum
models displaying a single porosity can adequately predict the thermal depletion of hot dry rock reservoirs
if LTNE between the solid skeleton and the fluid is accounted for. Still, to the exception of the above work,
none of the constitutive models accounting for LTNE in mixtures including a solid and a fluid, namely
Bowen and Garcia [1970], Pecker and Deresiewicz [1973], Aifantis [1980]ab, De La Cruz and Spanos [1989],
Hsu [1999], has targeted geothermal reservoirs. Mechanical engineering applications have addressed packed
beds, Minkowycz et al. [1999], Nield et al. [2002]. Quantifying the inter-phase heat transfer coefficient is
essentially an open question in the domain of deformable saturated dual porosity media.

Of crucial importance to the economical viability of enhanced geothermal systems is the knowledge of the
induced thermal stresses and of the permeation losses into the porous matrix, Armstead and Tester [1987].
Provided that the injection and production wells are appropriately connected, water loss is mainly attributed
to the uncontrolled thermal contraction of the rock. According to Richards et al. [1994], water loss may
occur according to three mechanisms: steady state diffusive loss, transient loss into storage and loss due to
reservoir growth (propagation of the fracture network). To the exceptions of Zyvoloski et al. [1981], Tenma
et al. [2008], Ghassemi et al. [2008], few studies really address fluid losses into the matrix, permeation being
usually imposed by a continuous leak-off into the formation. In contrast, the present approach quantifies the
contributions of the two fluid pressures on the thermally induced effective stress and identifies a mechanism
of fluid loss.

A fully coupled finite element formulation for a thermo-elastic fractured medium in local thermal non-
equilibrium is exposed here. The fractured medium is described as a dual porosity mixture composed of a
solid phase and two fluid phases. While Gelet et al. [2011] consider a single porosity model with one pore
pressure and two temperatures, the dual porosity model displays two pore pressures and three temperatures.
The solid phase has a special role as it provides the matrix skeleton and encloses the fluid phases in the
porous blocks and the fracture network. The three phase model is embedded within a rational thermodynamic
framework. The balance equations and the Clausius-Duhem inequality are presented in Sect. 2. Even if the
mixture is in LTNE, a single Clausius-Duhem inequality is required for the whole mixture. Three types
of contributions, each with its own physical interpretation, are identified in the dissipation (Sect. 3). The
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resulting three inequalities motivate the form and structure of the constitutive equations, namely (1) the
thermo-mechanical equations linking generalized stresses to generalized strains; (2) the constitutive equations
for mass and energy transfers (exchanges) and (3) the constitutive equations for generalized diffusion. The
weak form of the field equations, the spatial discretization and time integration procedures to solve the
coupled equations through a finite element procedure are summarized in Sect. 5. The primary variables are
the displacements, the two pressures of the fluids, the three temperatures of the solid and of the fluid phases.
The resulting system of equations is used to address a generic HDR reservoir subjected to the injection
of a cool fluid and tested for various fracture spacings (Sect. 6). Comparisons between field data and the
simulated response are used to calibrate three parameters of the model so as to match the thermal output
(Sect. 7). Particular attention is laid on the magnitude of the specific solid-to-fracture fluid heat transfer
coefficient. Once calibrated, the model is used to simulate circulation tests, and the reservoir response is
examined in terms of the effective stress and of the permeation of fluid through the porous blocks (Sect.
8). A parametric analysis is performed to explore the response of the model, with special emphasis on the
fracture spacing.

Compact or index tensor notation is used throughout. Vector and tensor quantities are identified by
bold face letters, e.g. the total stress is denoted σ, and I represents the second order identity tensor. tr (·)
denotes the trace of a second order tensor, ∇(·) the gradient operator and div (·) the divergence operator.
The subscripts s, p, f refer to the solid skeleton, the pore fluid and the fracture fluid, respectively. Unless
stated otherwise, the convention of summation over repeated indices is not used.

2. Balance equations for the three phase mixture

Each of the three phases is endowed with its own kinematics, mass and energy content. Accordingly,
the thermo-hydro-mechanical response of the mixture requires the partial differential equations in space and
time expressing the balances of momentum, the balances of mass and the balances of energy to be satisfied
pointwise.

2.1. Basic definitions

Dual porous media are made of three phases, a solid, a fluid in the pores and a fluid in the fractures.
Although the fluids are identical, typically water, the two fluid phases are segregated by their spatial loca-
tion and are therefore viewed as separate constituents endowed with their own independent pressures and
temperatures. In the context of the theory of mixtures, the three phases are viewed as three independent
overlapping continua. Furthermore, the solid phase, also referred to as the solid skeleton, has a special role
as it serves as a reference, Biot [1977]. Each phase contains a single constituent, or species, and therefore
the two terms could be used interchangeably. However, the term constituent will be used to refer to the
individual properties of a species while the term phase refers to its contribution to the mixture.

At each point of each phase are defined intrinsic quantities, labeled by subscripts, and apparent or partial
quantities, labeled by superscripts. At each point of the fractured porous medium of volume V , the phase k
is introduced along with its intrinsic properties of mass Mk and volume Vk. The volumes Vk of the phases
sum up to the total volume V = Vs + Vp + Vf of the mixture. The set of all phases is noted by K = {s, p, f}
while K∗ = {p, f} refers to the set of species which diffuse through the solid skeleton. Each phase k is
endowed with a volume fraction nk, an intrinsic density ρk, a partial density ρk,

nk =
Vk

V
; ρk =

Mk

Vk

; ρk =
Mk

V
= nkρk, k ∈ K, (1)

and an absolute velocity vk. The volume fractions sum up to one, ns +np +nf = 1. The total mass density
of the mixture ρ is the sum of the apparent contributions,

ρ =
∑

k∈K

ρk . (2)

At the reference time t = 0, the total volume V is denoted V 0. The volume content and the mass content
of the fluid phase k per unit reference volume of porous medium are denoted by vk and mk, respectively,

vk =
Vk

V 0
= nk V

V 0
, mk =

Mk

V 0
= ρk v

k = ρk
V

V 0
, k ∈ K . (3)
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The reference and current volumes, V 0 and V respectively, are related by the determinant of the deformation
gradient F, which linearizes to 1 + tr ǫ for small strains,

V

V 0
= detF ∼ 1 + tr ǫ . (4)

The mass flux Mk and the volume flux Jk per unit current area of the mixture measure the relative velocity
of the fluid phase k with respect to the solid,

Mk = ρk Jk = ρk (vk − vs) , k ∈ K∗ . (5)

The solid phase is endowed with its own (infinitesimal) strain tensor ǫ = 1
2

(

∇u+ (∇u)T
)

, which is de-
fined from the macroscopic displacement vector u and which is constitutively decomposed into an elastic
contribution ǫ

el and a thermal contribution ǫ
θ,

ǫ = ǫ
el + ǫ

θ . (6)

The partial stress and pressures of the three phases, σs and pressures pk, which are linked to the intrinsic
stress σs and pressures pk of the associated phases through the volume fractions,

σ
s = ns

σs, σ
k = −nkpk I, k ∈ K∗ , (7)

sum up to the total stress,

σ = σ
s + σ

p + σ
f . (8)

The total stress σ and the effective stress σ̄ may be decomposed into a spherical part and a deviatoric part
s, by use of the mean stresses p = − 1

3 trσ and p̄ = − 1
3 tr σ̄,

σ = −p I+ s, σ̄ = −p̄ I+ s. (9)

The stress components are positive in tension so that the mean stresses p and p̄ are counted positive in
compression. The elastic strain ǫ

el = CDS
σ̄ is by definition linked by a one-to-one relationship with the

effective stress σ̄ through the drained compliance tensor CDS. In an isotropic context,

tr ǫel = −cDS p̄, eel =
s

2µDS
, (10)

in which cDS is the drained compressibility of the solid skeleton and µDS its shear modulus. eel denotes the
deviatoric part of the elastic strain ǫ

el = 1
3 tr ǫ

el I+ eel. In this isotropic context, the deviatoric parts of the
elastic and total strains, eel and e respectively, are equal.

Furthermore, the thermodynamical state of each fluid constituent is measured by its pressure pk, its
temperature Tk, its entropy Sk and thermodynamic potentials per unit current mass of the constituent such
as the internal energy Uk, the free energy Ek, the enthalpy Hk, and the chemical potential Gk, also called
free enthalpy,

Ek = Uk − Tk Sk, Hk = Uk +
pk
ρk

, Gk = Hk − Tk Sk, k ∈ K∗ . (11)

Thermodynamic potentials per unit current volume are denoted by a lower letter, e.g. ek = ρkEk for the
free energy and sk = ρkSk for the entropy.

2.2. Balances of momentum, mass and energy

A single balance of momentum is required for the mixture as a whole,

divσ + ρb = 0 , (12)

the body force ρb =
∑

k∈K ρk bk being contributed additively by the constituents. Since the mass of the
solid constituent is constant, a balance of mass is required for the fluid phases only,

div Jk + fk = 0, fk ≡ nk 1

ρk

dρk
dt

+
1

V

dVk

dt
−

ρ̂k

ρk
, k ∈ K∗ . (13)
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Mass conservation implies the rates of mass change ρ̂k to sum up to zero,
∑

k∈K∗

ρ̂k = 0, ρ̂f = −ρ̂p . (14)

This study aims to describe the transient period, referred to as local thermal non-equilibrium (LTNE),
before the system reaches local thermal equilibrium (LTE). Hence, a balance of energy is required for each
phase. Besides terms which are standard for single phases, the energy equations display terms that embody
the rates of energy exchanges êk, k ∈ K. The balance of energy for the solid phase accounts for the flux of
thermal energy due to conduction qs, the rate of solid entropy and the rate of energy exchange between the
solid phase and the other phases,

div qs + Ls = 0, Ls ≡ Ts

dss

dt
+ ês . (15)

The balance of energy for the fluid phase k accounts for the flux of thermal energy due to conduction qk, the
rate of fluid entropy, the rates in free energy due to mass transfer and forced convection, and the transfer of
energy between the fluid phase k and the other phases,

div qk + Lk = 0, Lk ≡ Tk

dsk

dt
+ ρ̂kHk +Mk · ∇Hk + êk, k ∈ K∗ . (16)

Energy conservation implies the rates of energy transfer êk to sum up to zero,
∑

k∈K

êk = 0, ês = −êp − êf . (17)

2.3. The Clausius-Duhem inequality

A single dissipation inequality is required at the mixture level. The dissipation associated with each
phase is obtained by inserting the balance of energy into the balance of entropy of each species. The
entropy productions of the phases are next summed without multiplying by the phase temperatures. The
resulting inequality, referred to as Clausius-Duhem inequality, proves a useful guide to restrict the form
of the constitutive couplings, Eringen and Ingram [1965], Bowen and Garcia [1970]. The Clausius-Duhem
inequality may be advantageously rewritten in a form that highlights the thermo-mechanical, transfer and
diffusion contributions, dD = dD1 + dD2 + dD3 ≥ 0, namely,

dD1

dt
=

∑

k∈K

1

Tk

(

−
dek

dt
+
(

σ
k − ek I

)

: ∇vs − sk
dTk

dt

)

+
∑

k∈K∗

1

detF

Gk

Tk

dmk

dt
≥ 0,

dD2

dt
= −

∑

k∈K∗

(

Gk +
1

2
(vk − vs)

2
−

1

2
v2
s

)

1

Tk

ρ̂k −
∑

k∈K

êkS +
∑

k∈K

1

Tk

êk ≥ 0,

dD3

dt
= −

∑

k∈K∗

Jk ·
1

Tk

(

∇pk + ρk
(dkvk

dt
− bk

)

)

−
∑

k∈K

qk ·
∇Tk

T 2
k

≥ 0 ,

(18)

which are required to be positive individually, Loret [2008], Gelet [2011]. Note that the rate of entropy
exchange between phase k and the other phases of the mixture êkS appears to have no work conjugate
variable. The mixture has been assumed to be closed with respect to momentum, eq (12), to mass, eq (14),
and to energy, eq (17). Similarly, it is assumed to be closed with respect to entropy, so that the sum of the
rates of entropy transfer vanish,

∑

k∈K

êkS = 0 . (19)

Therefore the constitutive equations of individual rates of entropy transfer are not needed here. On the
other hand, constitutive equations need to be developed for the rates of mass transfer ρ̂k and the rates of
energy transfer êk. Although not made explicit here, the momentum transfer of individual phases could also
be retrieved from Darcy’s law.
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The set of independent variables used so far has tacitly included the strain, the pressures and the tem-
peratures. Alternatively, the total stress might be substituted to the strain as an independent variable. The
modification is realized by performing a partial Legendre transform of the elastic potential of the mixture
Ψ(ǫ, pp, pf , Ts, Tp, Tf ) = ms Es −

∑

k∈K∗ vkpk that yields the complementary potential Ψc,

Ψc(σ, pp, pf , Ts, Tp, Tf) = Ψ(ǫ, pp, pf , Ts, Tp, Tf)− detFσ : ǫ . (20)

A reference configuration is identified, in which the temperatures of the three phases are equal. Departure
from this reference state is denoted by the symbol ∆(·).

The Clausius-Duhem inequality is linearized by (1) neglecting the inertial terms in the transfer contri-
butions dD2 and in the diffusion contributions dD3; (2) identifying the current and reference configurations
so that detF may be set to 1. Within an updated Lagrangian analysis, the volume content vk and the
volume fraction nk are equal at each time, but their rates differ, namely dvk = dnk + nk tr ǫ. The same
remark applies to the mass content mk and apparent mass density ρk. The thermo-mechanical contribution
to the Clausius-Duhem inequality dD1, eqn (18)1, is modified by multiplying by the temperature of the solid
constituent Ts,

Ts

dD1

dt
= −

dΨc

dt
−

dσ

dt
: ǫ− ss

dTs

dt
−

∑

k∈K∗

vk
dpk
dt

≥ 0,

dD2

dt
= −

∑

k∈K∗

Gk

Tk

ρ̂k +
∑

k∈K

1

Tk

êk ≥ 0,

dD3

dt
= −

∑

k∈K∗

Jk ·
∇pk
Tk

−
∑

k∈K

qk ·
∇Tk

T 2
k

≥ 0 .

(21)

Thermo-mechanical constitutive assumptions and simplifications are motivated in the next section.

3. Constitutive equations

The Clausius-Duhem inequalities (21) serve as guidelines to develop the constitutive equations:

(1) the thermo-mechanical behavior is constructed in order the thermo-mechanical term dD1 to exactly
vanish, Sect. 3.1. The thermo-mechanical behavior of a single fluid k is introduced separately from the
thermo-mechanical elastic equations, Sect. 3.2;

(2) the energy dissipation is due exclusively to the transfers of mass and energy between phases, to
diffusion of fluids through the solid skeleton and to conduction and convection of heat;

(3) the constitutive equations of mass and energy exchanges are expressed in a format that ensures the
second term dD2 to be positive, Sect. 3.3;

(4) the constitutive equations of thermal and hydraulic diffusions enforce the third term dD3 to be
positive as well, Sect. 3.4.

3.1. Thermo-mechanical elastic equations

At constant total stress and pore pressures, the sole change of solid temperature leads to a volume
change of the solid skeleton, the strain is uniform over the phases, and the volume change of each of the
three phases is proportional to its volume fraction, Loret and Khalili [2000]a. Therefore the complementary
energy depends on the restricted set of variables {σ, pp, pf , Ts}. Then, the vanishing of dD1 implies that
the complementary energy Ψc(σ, pp, pf , Ts) can be used as a thermo-elastic potential, that delivers the work
conjugate variables {ǫ, vp, vf , ss},

ǫ = −
∂Ψc

∂σ
; −vk =

∂Ψc

∂pk
, k ∈ K∗; −ss =

∂Ψc

∂Ts

. (22)
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The complementary energy is assumed to be an isotropic quadratic function of the stress, and the sum of a
quadratic function and of an affine function of the pressures and solid temperature,

Ψc(σ, pp, pf , Ts) = −
1

2

(

css p
2 + cpp p

2
p + cff p2f + 2 csp p pp + 2 csf p pf + 2 cpfpp pf

)

−
|s|2

4µDS

−
1

2
cTT ∆T 2

s −∆Ts (cTs p+ cTp pp + cTf pf )

−
∑

k∈K∗

(vk)0pk − (ss)0Ts .

(23)

Therefore the deviatoric stress and strain are proportional, and the scalar work conjugate variables (−p, tr ǫ),
(pp, v

p), (pf , v
f ), and (ss, Ts) are related by a symmetric and constant matrix,





















−tr ǫ

∆vp

∆vf

∆ss





















=





















css csp csf csT

cps cpp cpf cpT

cfs cfp cff cfT

cTs cTp cTf cTT









































p

pp

pf

∆Ts





















, e =
s

2µDS
. (24)

The identification of the constitutive coefficients is best addressed via the equivalent mixed format,




















p

∆vp

∆vf

∆ss





















=





















−1/c ξp ξf cT /c
DS

ξp c22 c23 (np − ξp) cT

ξf c32 c33
(

nf − ξf
)

cT

cT /c
DS (np − ξp) cT

(

nf − ξf
)

cT ρs C
(v)
s /Ts









































tr ǫ

pp

pf

∆Ts





















. (25)

The thermo-mechanical constitutive relations extend the concept of effective stress, Biot [1941], to dual
porosity,

trσ

3
+ ξppp + ξfpf =

1

cDS

(

tr ǫ− cT∆Ts

)

. (26)

The effective stress coefficients ξp and ξf and the other mechanical coefficients have been identified via a
loading decomposition, Khalili and Valliappan [1996],

ξp = (cp − cs)/c
DS,

ξf = 1− cp/c
DS,

c22 =
(

ξf − nf
)

(cp − cs) + cs (ξp − np) ,

c33 =
(

ξf − nf
)

(cp − cs) + cs
(

ξf − nf
)

,

c23 = c32 = −
(

ξf − nf
)

(cp − cs) .

(27)

The relations (25) and (27) use the drained compressibility of the solid skeleton cDS [1/Pa], the compressibility
of the porous blocks cp, the compressibility of the solid grains cs, the volumetric thermal expansion coefficient

of the solid phase cT [1/K], and the heat capacity of the solid C
(v)
s per unit mass of solid, at constant strain

and fluid pressures [J/kg.K].
The constitutive equations for the apparent entropies of the fluids are expressed separately from the

thermo-mechanical relations (25) in Sect. 3.2.
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3.2. Thermo-mechanical properties of the single fluid k

The entropy Sk, the chemical potential Gk and the enthalpy Hk of the fluids enter the balance of energy
(16). The variation of the specific volume vk = 1/ρk for a compressible and dilatable fluid k,

dvk
vk

= ckT dTk − ckH dpk, (28)

introduces the compressibility ckH [1/Pa] and the thermal expansion coefficient ckT [1/K],

ckH = −
1

vk

(∂vk
∂pk

)

|Tk

=
1

ρk

(∂ρk
∂pk

)

|Tk

, ckT =
1

vk

( ∂vk
∂Tk

)

|pk

= −
1

ρk

(∂ρk
∂Tk

)

|pk

. (29)

For constant coefficients ckT and ckH , the specific volume results as a non-linear function of the departures
of pressure and temperature from the reference state labeled by a zero superscript,

vk = v0k exp
(

−ckH
(

pk − p0k
)

+ ckT
(

Tk − T 0
k

))

. (30)

Moreover, as (∂Sk/∂vk)|Tk
= ckT /ckH , the differential of the entropy dSk,

Tk dSk = Tk

ckT
ckH

dvk + C
(v)
k dTk , (31)

integrates to,

Sk − S0
k =

ckT
ckH

(vk − v0k) + C
(v)
k Ln

Tk

T 0
k

, (32)

the heat capacity at constant volume C
(v)
k = Tk

(

∂Sk/∂Tk

)

|vk
[J/kg.K] being assumed constant.

The incremental variations of the chemical potential Gk and of the enthalpy Hk express in terms of the
specific volume vk and of the entropy Sk,

dGk = vkdpk − SkdTk, dHk = vkdpk + TkdSk , (33)

and integrate to,

Gk −G0
k = −

vk − v0k
ckH

+

(

C
(v)
k +

ckT
ρkckH

− S0
k

)

(

Tk − T 0
k

)

− C
(v)
k Tk Ln

Tk

T 0
k

,

Hk −H0
k = −

vk − v0k
ckH

(1− Tk ckT ) +

(

C
(v)
k +

ckT
ρkckH

)

(Tk − T 0
k ) .

(34)

In spite of the third law of thermodynamics, Kestin [1966], the reference potentials G0
k, H

0
k and S0

k are
conventional, and need to be assigned.

The enthalpy may alternatively be expressed as a function of pressure and temperature,

dHk = vk(1 − TkckT ) dpk + C
(p)
k dTk , (35)

through the heat capacity at constant pressure C
(p)
k [J/kg.K],

C
(p)
k = C

(v)
k +

Tkc
2
kT

ρkckH
. (36)

Note that the differential operator d appearing in the relations above is arbitrary, i.e. it may refer to time
or space.
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3.3. Constitutive equations for mass and heat transfers

The constitutive equations of mass and energy exchanges are defined by enforcing the second term of
the Clausius-Duhem inequality dD2 to be positive, eqn (21). For that purpose, the rate of mass exchange
ρ̂k and the rate of energy exchange êk are viewed as work-conjugated respectively to the chemical potential
scaled by the temperature −Gk/Tk and to the coldness (inverse temperature) 1/Tk. Due to a lack of in
situ measurements and as a first approximation, no coupling is assumed between mass transfer and energy
transfer. In other words, the transfer counterparts of the thermo-osmosis and of the isothermal heat transfer
in the diffusion constitutive equations developed in Section 3.4 are not introduced.

The transfers satisfy the closure relations (14) and (17) so that a single mass rate, e.g. the rate ρ̂p of the
pore fluid, and two rates of energy exchange, e.g. the rates êp and êf associated with the fluids, are needed.
Consequently, equation (21) may be rearranged to highlight the driving forces of the transfer mechanisms,
namely the jumps in scaled chemical potential −Gk/Tk across the fluid phases and in coldness 1/Tk across
the three phases,

mass transfer : −ρ̂p
(

Gp

Tp

−
Gf

Tf

)

≥ 0 ;

heat transfer : −êp
(

1

Tp

−
1

Ts

)

− êf
(

1

Tf

−
1

Ts

)

≥ 0 .

(37)

The first inequality is satisfied by setting

ρ̂p = −η ρ2p T
0
p

(

Gp

Tp

−
Gf

Tf

)

= −ρ̂f . (38)

This constitutive equation for mass transfer extends the existing isothermal formulation where the mass
transfer is controlled by the difference of pressures between the cavities. The actual leakage parameter η is
defined in Sect. 6.3. The dissipation inequality (37)1 is clearly satisfied for η ≥ 0.

The constitutive relations of energy transfer assume the simple linear format,

ês = κsp(Ts − Tp) + κsf (Ts − Tf ),

êp = κsp(Tp − Ts) + κpf (Tp − Tf ),

êf = κsf (Tf − Ts) + κpf (Tf − Tp) .

(39)

These relations retrieve the proposition of Bowen and Chen [1975] for porous media with a single porosity.
The coefficients κab, ab = sp, sf, pf , are the volumetric or specific inter-phase heat transfer coefficients
[W/m3.K]. The second inequality, in eqn (37), can be written as a sum of terms κab(Ta − Tb)

2/(TaTb) over
ab = sp, sf, pf , so that the inequality is satisfied if the three specific inter-phase heat transfer coefficients
are positive, namely κsp ≥ 0, κsf ≥ 0 and κpf ≥ 0.

3.4. Constitutive equations for hydraulic and heat diffusions

The diffusion constitutive equations are similarly defined by enforcing the third term of the Clausius-
Duhem inequality dD3 to be positive. The volume flux Jk is seen as work-conjugated to the hydraulic
gradient −∇pk/Tk and the heat flux qk is conjugated to the thermal gradient ∇(1/Tk). Since the fluids
are segregated by their spatial location, no coupling between the pore fluid diffusion and the fracture fluid
diffusion is physically appropriate. For each fluid k, the extended Darcy’s law equation describing hydraulic
diffusion under combined hydraulic and thermal gradients assumes the coupled format,

Jk = −Tk

kk
µk

·

(

∇pk
Tk

)

− nk T 2
k Θk

(

∇Tk

T 2
k

)

, k ∈ K∗ , (40)

where kk is the intrinsic permeability [m2], µk is the dynamic viscosity of the fluid [Pa.s] and Θk the thermo-
osmosis coupling coefficient

[

m2/s.K
]

.
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Similarly, the extended Fourier’s law defining the heat fluxes qk, k ∈ K, under combined hydraulic and
thermal gradients displays no coupling over phases, but a priori it includes an internal thermo-hydraulic
coupling,

qs = −ns T 2
s Λs

(

∇Ts

T 2
s

)

,

qk = −nk T 2
k Φk

(

∇pk
Tk

)

− nk T 2
k Λk

(

∇Tk

T 2
k

)

, k ∈ K∗ .

(41)

The Φk’s are called the isothermal heat flow coefficients
[

m2/s.K
]

, and the Λk’s are the thermal conductivities
[W/m.K]. Along Onsager’s reciprocity principle, the generalized diffusion matrix linking the vector of fluxes
{Jp, Jf , qs, qp, qf} to the driving gradients {−∇pp/Tp, −∇pf/Tf , −∇Ts/T

2
s , −∇Tp/T

2
p , −∇Tf/T

2
f } is

assumed symmetric so that the thermo-osmosis coefficients are equal to the isothermal heat flux coefficients:
Θk = Φk, k ∈ K∗. The Clausius-Duhem inequality (21)3 is satisfied if the generalized diffusion matrix is
positive semi-definite, which is ensured by the inequalities,

Λk ≥ 0, k ∈ K;
kk
µk

≥ 0, k ∈ K∗; Λk

kk
µk

− nkTkΘ
2
k ≥ 0, k ∈ K∗ . (42)

4. The coupled field equations

Inserting the thermo-mechanical constitutive equations (6) and (25)1 into the balance of momentum (12)
yields three coupled partial differential equations for the displacement vector, the pressures and the solid
temperature,

µDS ∇2u+ (λDS + µDS)∇(div u)− ξp ∇pp − ξf ∇pf −
cT
cDS

∇Ts − ρb = 0 . (43)

The drained compressibility of the solid skeleton cDS and the Lamé’s constants of the drained solid λDS

and µDS are deduced from the drained Young’s modulus E and Poisson’s ratio ν through the standard
relationships,

cDS =
3(1− 2ν)

E
, λDS =

Eν

(1 + ν)(1 − 2ν)
, µDS =

E

2(1 + ν)
. (44)

A field equation describing seepage is obtained by inserting the constitutive relations (25)2, (25)3, (28)
and (40) into the balance of mass (13), yielding in turn for the pores and for the fractures,

div

(

kp
µp

∇pp + npΘp ∇Tp

)

= app
∂pp
∂t

+ apf
∂pf
∂t

+ ξp div
∂u

∂t
+ apTs

∂Ts

∂t
+ apTp

∂Tp

∂t
−

ρ̂p

ρp
, (45)

div

(

kf
µf

∇pf + nfΘf ∇Tf

)

= aff
∂pf
∂t

+ apf
∂pp
∂t

+ ξf div
∂u

∂t
+ afTs

∂Ts

∂t
+ afTf

∂Tf

∂t
−

ρ̂f

ρf
, (46)

the rates of mass transfer being defined by the non-linear constitutive laws (34)1 and (38).
Heat flow, forced convection and heat transfer in presence of local thermal non-equilibrium are obtained

by inserting the constitutive equations (25)4, (35), (31), (41) into the equations of balance of energy (15)
and (16), resulting in turn for the solid, pore fluid and fracture fluid to,

div (nsΛs ∇Ts) = aTsTs

∂Ts

∂t
+ Ts

cT
cDS

div
∂u

∂t
+ Ts apTs

∂pp
∂t

+ Ts afTs

∂pf
∂t

+ κsp (Ts − Tp) + κsf (Ts − Tf) ,

(47)

div (npΛp ∇Tp + Tpn
pΘp ∇pp) = aTpTp

∂Tp

∂t
+ Tp apTp

∂pp
∂t

+ Mp ·
(

vp(1− TpcpT )∇pp + C(p)
p ∇Tp

)

+ ρ̂p Hp

+ κsp (Tp − Ts) + κpf (Tp − Tf ) ,

(48)
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div
(

nfΛf ∇Tf + Tfn
fΘf ∇pf

)

= aTfTf

∂Tf

∂t
+ Tf afTf

∂pf
∂t

+ Mf ·
(

vf (1− TfcfT )∇pf + C
(p)
f ∇Tf

)

+ ρ̂f Hf

+ κsf (Tf − Ts) + κpf (Tf − Tp) .

(49)

The enthalpies of the fluids Hp and Hf are defined by eqns (34)2. Note that the term ρ̂p (Hp −Hf ) cancels
out when the fracture spacing B tends to zero, i.e. when hydraulic and thermal equilibria are recovered.
The coefficients appearing in equations (45) to (49) are identified in terms of known properties,

akk = nk cH,k + (ξk − nk) cs − apf , k = p, f ; apf = −(ξf − nf )(cp − cs),

akTs
= (nk − ξk) cT , k = p, f ; akTk

= −nk cT,k, k = p, f ;

aTsTs
= nsρs C

(v)
s ; aTkTk

= nkρk C
(p)
k , k = p, f .

(50)

In a HDR reservoir context, if the fractured medium is described with a single porosity model, the fluid
in the porous blocks is motionless with respect to the solid. In other words, the pores introduce a residual
porosity, isolated from the fracture network. On the other hand, the pores contribute to the diffusion of heat.
A comparison with a single porosity model serves to highlight the influence of the dual porosity concept on
the overall reservoir response.

The single porosity model is recovered by setting the pore volume fraction np to zero, which implies
cp = cs. Consequently, ξp = 0 and ξf = 1−cs/c

DS, and Biot’s effective stress is recovered. Details pertaining
to the single porosity model are postponed to Appendix A.

5. Finite element discretization

The finite element formulation is developed for the following primary unknowns: displacement vector
u, pressure of the pore fluid pp, pressure of the fracture fluid pf , temperature of the solid skeleton Ts,
temperatures of the pore fluid Tp and of the fracture fluid Tf . These primary unknowns are interpolated
within the generic element e, in terms of nodal values through the interpolation functions Nu, Np, NT ,
respectively,

u = Nuu
e, pp = Np p

e
p, pf = Np p

e
f , Tk = NT Te

k, k ∈ K. (51)

Multiplying equations (12)-(16) by the virtual fields δu, δp, and δT , and integrating by parts over the body
V , provides the weak form of the problem,

∫

V

∇(δu) : σ − δu ·F dV =

∫

∂V

δu · σ · n̂ dS, (52)

∫

V

∇(δp) · Jk − δp fk dV =

∫

∂V

δp Jk · n̂ dS, k ∈ K∗ (53)

∫

V

∇(δT ) · qk − δT Lk dV =

∫

∂V

δTqk · n̂ dS, k ∈ K, (54)

where n̂ is the unit outward vector normal to the boundary ∂V . A standard Galerkin procedure is adopted
for the whole system of equations (52)-(54). Specific stabilization ad hoc for forced convection, such as
the Streamline Upwind / Petrov-Galerkin method, is required only if a hard outflow boundary condition is
applied on the temperature field. The resulting non-linear first-order semi-discrete equations for the unknown
vector X,

X = [u pp pf Ts Tp Tf ]
T

(55)

with maximum nodal length = dimension of space + 5, imply the residual R to vanish:

R = F
surf (S,X)− F

int+conv

(

X,
dX

dt

)

= O, (56)
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Here Fint+conv is the vector that contains the internal forces together with the convective contributions
appearing on the left-hand-side of eqn (52)-(54), and Fsurf is the vector of surface loadings denoted collectively
S. The semi-discrete equations are integrated through a generalized trapezoidal rule defined by a scalar
α ∈ ]0, 1]. At step n+1, the equations are enforced at time tn+α = tn +α∆t, with ∆t = tn+1 − tn, namely,

Rn+α = F
surf (Sn+α,Xn+α)− F

int+conv (Xn+α,Vn+α) = O . (57)

In the above relation, Z = S,X,V are defined as Zn+α = (1 − α) Zn + α Zn+1, and Xn+1 and Vn+1 are
approximations of X(tn+1) and (dX/dt)(tn+1), respectively. The system (57) is solved iteratively by an
explicit-implicit operator split, Hughes [1987], namely at step n, iteration i+ 1,

R
i+1
n+α = F

surf
E (Sn+α,X

i
n+α)− F

int+conv
I (Xi+1

n+α,V
i+1
n+α) = O. (58)

The partition shown in equation (58) is motivated by two observations: (1) the dependence of the vector of
external forces on the solution is weak; (2) the vector of internal forces depends non-linearly on the solution
X through the non-linear field equations (43)-(49). The global iteration process uses a full Newton-Raphson
procedure. The Newton direction ∆V is sought by setting the residual eqn (58) to zero,

R
i+1
n+α = Ri

n+α − C (α∆V) = O . (59)

R
i
n+α represents the exact non-linear contributions of the comprehensive model, whereas the effective diffu-

sion matrix C is expressed in terms of the global diffusion matrix D = D(X,V) and of the global stiffness-
convection matrix K = K(X,V),

C = D+K α∆t. (60)

The global diffusion and stiffness-convection matrices are obtained by assembling the element contributions
which have the following block structure,

D
e =



























0 0 0 0 0 0

De
pp u

De
pp pp

De
pp pf

De
pp Ts

De
pp Tp

0

De
pf u

De
pf pp

De
pf pf

De
pf Ts

0 De
pf Tf

De
Tsu

De
Tspp

De
Tspf

De
TsTs

0 0

0 De
Tppp

0 0 De
TpTp

0

0 0 De
Tfpf

0 0 De
TfTf



























, (61)

K
e =



























Ke
uu

Ke
upp

Ke
upf

Ke
uTs

0 0

0 Ke
pp pp

Ke
pp pf

0 Ke
pp Tp

Ke
pp Tf

0 Ke
pf pp

Ke
pf pf

0 Ke
pf Tp

Ke
pf Tf

0 0 0 Ke
TsTs

Ke
TsTp

Ke
TsTf

0 Ke
Tppp

Ke
Tppf

Ke
TpTs

Ke
TpTp

Ke
TpTf

0 Ke
Tfpp

Ke
Tfpf

Ke
TfTs

Ke
TfTp

Ke
TfTf



























. (62)

The detailed expression of these matrices is provided in Appendix B. The finite element code has been
developed as part of this work. The four-node element (QUAD4) is used to interpolate all unknowns. The
number of integration points is equal to two (in each spatial dimension), for all matrices and all residuals
including the convective contributions. Iterations are stopped when the tolerances below involving both the
overall scaled residual and unknowns are satisfied:

tol1:
∣

∣Ri
∣

∣ /
∣

∣R1
∣

∣ < 0.001

tol2:
∣

∣xi − xi−1
∣

∣ /
∣

∣xi
∣

∣ < 0.001, for x = uj , pp, pf , Ts, Tp, Tf .
Each component of the residual vector is scaled by a representative value for the problem at hand as detailed
in Gelet et al. [2012].
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The time integration parameter α is taken equal to 2/3. Conditional stability characterizes non-linear
transient convective-diffusive problems discretized with a full Newton-Raphson scheme, Belytschko and
Hughes [1983]. The time step ∆t is increased by fits and starts in the range [∆tmin, ∆tmax] in order to
keep the computation time within acceptable limits. The average number of Newton-Raphson iterations
per time step has been observed to remain around 5. The lower bound ∆tmin is associated with the fastest
diffusion time and is maintained constant until hydraulic steady state is reached, whereas ∆tmax is associated
with the slowest remaining diffusion process.

To increase the accuracy of the solution in the vicinity of the injection well, the mesh is graded along the
vertical direction according to a logarithmic rule.

6. HDR reservoir analysis

The thermo-hydro-mechanical constitutive equations are now used to investigate generic HDR reservoirs
with various fracture spacings B subjected to temperature gradients.

6.1. Geometry of the HDR reservoir

An artificially fractured reservoir with horizontal injection and production wells is considered (Figure 1).
The injection and the production wells are located at the bottom and at the top of the reservoir, respectively,
and they penetrate the entire horizontal extent of the problem domain xR. The problem definition requires
information on the horizontal and vertical extents of the reservoir xR and zR respectively, on the average
fracture spacing B, on the average fracture aperture 2 b and on the average permeability of the porous blocks
kp, also referred to as the second porosity. The simulations assume a plane strain analysis, and the finite
element mesh includes only half of the reservoir.

-

Production well

Injection well xR

z

x0
0

2b

Porous 
block 

Fracture fluid 

B

kp

zR

kf

Figure 1: Representation of a generic HDR reservoir. The exact convective flow path is unknown and only the average fracture
spacing B and nf the porosity of the fracture network are required to obtain the average fracture aperture 2 b, eqn (65). kp and
kf denote the permeabilities of the porous blocks and of the fracture network, respectively. The simulations assume a plane
strain analysis, in the x− z plane. Symmetry with respect to z-axis is assumed.

6.2. Initial and boundary conditions

Prior to the circulation test, the reservoir is assumed to be in local thermal equilibrium, and the solid
and the fluids have identical temperatures T 0 = T 0

s = T 0
p = T 0

f . Geothermal gradient is neglected. The

initial pressures of the fluids p0p = p0f = ρfgzav are assumed to be in hydrostatic equilibrium, proportional
to the depth zav, with the fluid densities ρp = ρf . The initial stress state is due to the overburden stress
σ0
z = σv and to the lateral earth stress σ0

x = σH . Since, the fluids are initially in local thermal and hydraulic
equilibria, the reference thermodynamic potentials of the fluids are equal: S0 = S0

p = S0
f , G

0 = G0
p = G0

f ,

and H0 = H0
p = H0

f .
The thermal, hydraulic and mechanical boundary conditions (BC) are shown in Figure 2.
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(1) Thermal boundary conditions:

The injection temperature is applied to all the phases along the injection well (x ∈ [0, xR], z = 0). The
remaining boundaries (x = 0, z ∈]0, zR]), (x ∈ [0, xR], z = zR) and (x = xR, z ∈]0, zR]) are insulated
from the surroundings, that is qs · n̂ = qp · n̂ = qf · n̂ = 0, n̂ being the unit outward normal to the
reservoir.

(2) Hydraulic boundary conditions:

The injection and production pressures, denoted pinj and pout, are specified along the injection and
the production wells, respectively, for the two fluid phases so that pp(x ∈ [0, xR], z = 0) = pf (x ∈
[0, xR], z = 0) = pinj and pp(x ∈ [0, xR], z = zR) = pf(x ∈ [0, xR], z = zR) = pout. The remaining
boundaries (x = 0, z ∈]0, zR[) and (x = xR, z ∈]0, zR[) are impermeable, i.e. Jp · n̂ = Jf · n̂ = 0.

(3) Mechanical boundary conditions:

The vertical stress σz = σ0
z remains constant along the top boundary (x ∈ [0, xR], z = zR) and

similarly for the horizontal stress σx = σ0
x along the lateral boundary (x = xR, z ∈ [0, zR]), while

the displacements on the other boundaries are specified as ux(x = 0, z ∈ [0, zR]) = 0 and uz(x ∈
[0, xR], z = 0) = 0.

The influences of the spatial uniformity of the flow path and of the external heat supply on the thermal
depletion of the reservoir have been addressed in Gelet [2011]. They are disregarded herein so as to focus on
the specific influence of the dual porosity model.
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Figure 2: Thermal, hydraulic and mechanical boundary conditions (BC). Symmetry with respect to z-axis is assumed.

6.3. Parameters related to the fracture spacing B

The fracture spacing B influences three material parameters used in the model, namely (1) the leakage
parameter η [1/Pa.s], (2) the specific solid-to-fracture fluid heat transfer coefficient κsf [W/m3.K] and (3)
the specific pore fluid-to-fracture fluid heat transfer coefficient κpf [W/m3.K].

(1) The leakage parameter η = ᾱ kp/µp ≥ 0 that controls the flow between the porous blocks and the
fracture network draws from Barenblatt et al. [1960]. In this double porosity context, the leakage parameter
does not treat the two cavities symmetrically, and puts emphasis on the permeability of the porous blocks
kp which is lower than the permeability of the fracture network. The aperture factor ᾱ [1/m2] corresponding
to the lowest permeable phase has been introduced by Warren and Root [1963],

η = ᾱ
kp
µp

, with ᾱ =
4n(n+ 2)

B2
, (63)

in which n represents the space dimension.
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(2) The specific solid-to-fracture fluid heat transfer coefficient κsf is usually defined as the product of the
solid-to-fracture fluid specific surface Ss

sf [m2/m3] with the coefficient of solid-to-fracture fluid heat transfer

hsf [W/m2.K],

κsf = hsf × Ss
sf , with Ss

sf =
4ns

B
for 2 b ≪ B . (64)

where the specific surface Ss
sf is obtained by considering a porous block square of size B bordered by a

fracture fluid of width b. The specific surface Ss
sf represents the ratio of the wetted solid surfaces over the

total volume, de Marsily [1981]. The volume fraction nf of the fracture fluid is then equal to

nf =
2× 2 b

B
for 2 b ≪ B , (65)

so that, for a given fracture porosity nf , the average fracture aperture 2b increases with the fracture spacing
B. By assuming that the effect of convection in the fracture fluid phase (perpendicular to the solid-fracture
fluid interface) is negligible, the coefficient of solid-to-fracture fluid heat transfer hsf may be quantitatively
characterized by the sum of the thermal resistances of the two phases in series, Bejan [1993],

1

hsf

=
2 b

2nfΛf

+
B

2nsΛs

, (66)

By inserting eqs (65) and (66) in eqn (64), the specific coefficient of heat transfer between the solid and the
fracture fluid κsf is, in turn, linearly related to B−2,

κsf =
8ns

B2

nsΛs × 2Λf

nsΛs + 2Λf

. (67)

It is worth noting that if nsΛs ≪ 2Λf , the above relation reduces to κsf = 8 (ns)2Λs/B
2 where the formu-

lation does not treat the two phases symmetrically, à la Warren and Root [1963], and puts emphasis on the
most insulating phase.

(3) Similarly, the specific pore fluid-to-fracture fluid heat transfer coefficient κpf is defined as the product
of the pore fluid-to-fracture fluid specific surface Ss

pf [m2/m3] with the coefficient of pore fluid-to-fracture

fluid heat transfer hpf [W/m2.K],

κpf = hpf × Ss
pf =

8 (np)2Λp

B2
, with Ss

pf =
np

ns
× Ss

sf and hpf ≈
2npΛp

B
, (68)

for Λp = Λf , 2b ≪ B and np ≪ 1.
Consequently, the three coefficients η, κsf and κpf scale with the inverse of the square of the fracture

spacing B−2, as illustrated in Table 1.

Parameter Unit Eqn Fracture spacing B [m]
0.01 1 10 13 20

η [1/Pa.s] (63) 3.2 10−12 3.2 10−16 3.2 10−18 1.88 10−18 8.0 10−19

κsf [W/m3.K] (67) 6.18 104 6.18 6.18 10−2 3.50 10−2 1.54 10−2

κpf [W/m3.K] (68) 1.2 102 1.2 10−2 1.2 10−4 7.07 10−5 3.0 10−5

Table 1: Sensitivity of the leakage parameter η, the specific solid-to-fracture fluid heat transfer coefficient κsf and the specific
pore fluid-to-fracture fluid heat transfer coefficient κpf to the fracture spacing B for a two-dimensional fracture network n = 2

endowed with a pore permeability kp = 10−20 m2, a fracture porosity nf = 0.005 and a pore porosity np = 0.05. The other
material parameters are taken from Table 4.

Correlations of the solid-to-fracture fluid heat transfer coefficient hsf have been proposed in the liter-
ature, with the Nusselt number, Wakao and Kaguei [1982], and with a capillary tube model, Zanotti and
Carbonell [1984]. Few experimental works have investigated the magnitude of this coefficient, Pecker and
Deresiewicz [1973], Jiang et al. [2006]. Instead, here, a calibration of the model with help of data provided
from the two HDR reservoirs of Fenton Hill and Rosemanowes is proposed (Section 7). A sensitivity analysis
is performed in Subsection 8.2 to determine the influence of the fracture spacing B on the results.
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Boundary conditions Value Unit Reference

Injection temperature Tinj 70 ◦C Fig. 6-1, Zyvoloski et al. [1981]
Initial in-situ temperature T 0

s = T 0
p = T 0

f 178 ◦C Fig. 6-3, Zyvoloski et al. [1981]

Production pressure pout = ρfgz at z = 2.673km 26.19 MPa -
Injection pressure pinj = ρfgz at z = 2.903km 28.44 MPa -
Overburden compressive stress σv −75.0 MPa Murphy et al. [1977]
Earth compressive stress σH −37.5 MPa Murphy et al. [1977]

Table 2: Initial and loading boundary conditions representative of Fenton Hill HDR reservoir, run segment 5.

Boundary conditions Value Unit Reference

Injection temperature Tinj 23 ◦C Hicks et al. [1996]
Initial in-situ temperature T 0

s = T 0
p = T 0

f 83.5 ◦C Richards et al. [1994]

Production pressure pout = ρfgz at z = 2.160km 21.12 MPa -
Injection pressure pinj = ρfgz at z = 2.490km 24.35 MPa -
Overburden compressive stress σv at zav = 2.325km −60.4 MPa Bruel [1995]
Earth compressive stress σH at zav = 2.325km −65.11 MPa Bruel [1995]

Table 3: Initial and loading boundary conditions representative of Rosemanowes HDR reservoir, RH12/RH15 system.

Material parameter Value Unit Reference

Drained Young’s modulus E 38.9 GPa Murphy et al. [1977]
Drained Poisson’s ratio ν 0.3 - Murphy et al. [1977]
Volumetric thermal expansion cT 3.3× 10−6 1/K Zyvoloski et al. [1981]
Compressibility ratio cp/c

DS 0.9 - Wilson and Aifantis [1982]
Fracture network porosity nf < 0.01 - Murphy et al. [1977]
Porosity of the porous blocks np 10× nf - 1
Fracture network permeability kf < 10−13 m2 Murphy et al. [1977]
Permeability of the porous blocks kp ≥ 10−20 m2 Murphy et al. [1977]

≤ 10−18 m2 Murphy et al. [1977]

Solid grains compressibility cs 2.7× 10−11 1/Pa Murphy et al. [1977]
Solid thermal diffusivity αT,s 1.1× 10−6 m2/s Elsworth [1989]
Solid thermal conductivity Λs 2.71 W/m.K Elsworth [1989]

Solid specific heat capacity C
(v)
s 948.55 J/kg.K 2

Solid density ρs 2600 kg/m3 2

Fluid compressibilities cpH = cfH 4.54× 10−10 1/Pa 2
Fluid thermal expansion cpT = cfT 10−3 1/K 2
Fluid dynamic viscosities µp = µf 3× 10−4 Pa.s 2
Fluid thermal conductivities Λp = Λf 0.6 W/m.K 2
Thermo-osmosis coefficients Θp = Θf 0 m2/s.K 2

Fluid specific heat capacities C
(p)
p = C

(p)
f 4275 J/kg.K Elsworth [1989]

Fluid densities ρp = ρf 980.0 kg/m3 2
Fluid thermal diffusivities αT,p = αT,f 1.58× 10−7 m2/s -

Solid-to-pore fluid heat transfer coef. κsp 104 W/m3.K 3

Table 4: Input parameters representative of Fenton Hill HDR reservoir, run segment 5. 1. First estimation owing to the rather
high pressure of the overburden rock. 2: Estimated parameters for water. 3. Local thermal equilibrium is enforced between the
pore fluid phase and the solid phase owing to the absence of convection, to their similar thermal diffusivities αT,s ≈ αT,p × 10,
and to the large specific surface Ss

sp.

Unless the fracture spacing tends to zero, the dual porosity model will not recover the response of the
single porosity model since it accounts for the presence of the pore fluid in the balance of momentum and in
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Material parameter Value Unit Reference

Drained Young’s modulus E 40.0 GPa Bruel [1995]
Drained Poisson’s ratio ν 0.25 - Armstead and Tester [1987]
Volumetric thermal expansion cT 3.3× 10−6 1/K 1
Compressibility ratio cp/c

DS 0.9 - Wilson and Aifantis [1982]
Fracture network porosity nf < 0.01 - Richards et al. [1994]
Porosity of the porous block np 10× nf - 2
Fracture network permeability kf ≤ 10−13 m2 Bruel [1995]
Permeability of the porous block kp 10−18 m2 Richards et al. [1994]

Solid grains compressibility cs 2.0× 10−11 1/Pa 1
Solid thermal diffusivity αT,s 1.29× 10−6 m2/s -
Solid thermal conductivity Λs 2.8 W/m.K Bruel [1995]

Solid specific heat capacity C
(v)
s 822.1 J/kg.K Kolditz and Clauser [1998]

Solid density ρs 2642 kg/m3 Kolditz and Clauser [1998]

Fluid hydraulic compressibilities cpH = cfH 4.54× 10−10 1/Pa 1
Fluid thermal compressibilities cpT = cfT 0.65× 10−3 1/K 1
Fluid dynamic viscosities µp = µf 6× 10−4 Pa.s Richards et al. [1994]
Fluid thermal conductivities Λp = Λf 0.68 W/m.K Kolditz and Clauser [1998]
Thermo-osmosis coefficients Θp = Θf 0 m2/s.K 1

Fluid specific heat capacities C
(p)
p = C

(p)
f 4219.8 J/kg.K Kolditz and Clauser [1998]

Fluid densities ρp = ρf 978.0 kg/m3 Kolditz and Clauser [1998]
Fluid thermal diffusivities αT,p = αT,f 1.67× 10−7 m2/s -

Solid-to-pore fluid heat transfer coefficient κsp 104 W/m3.K 3

Table 5: Input parameters representative of Rosemanowes HDR reservoir. 1: Estimated parameters for water or granite. 2.
First estimation owing to the rather high pressure of the overburden rock. 3. Local thermal equilibrium is enforced between the
pore fluid phase and the solid phase owing to the absence of convection, to their similar thermal diffusivities αT,s ≈ αT,p × 10,
and to the large specific surface Ss

sp.

the balance of energy equations, while the single porosity model does not recognize the pore fluid.

7. Calibration with field data

The thermal response obtained from the thermo-hydro-mechanical model may be compared with field
results from the literature. Two hot dry rock reservoirs are investigated: (1) Fenton Hill, New Mexico, USA,
and (2) Rosemanowes, Cornwall, UK. The time profiles of the fracture fluid temperature (at the production
well) are scrutinized alone in Figure 3, although the numerical results presented in this section describe a
complete thermo-hydro-mechanical problem. The response in terms of fluid pressures and effective stress
will be studied in Section 8 for Fenton Hill HDR reservoir only. The reservoirs are described with a dual
porosity model in LTNE and the simulations assume a plane strain analysis. Furthermore, the triple point
of water is used as a reference, Kestin [1966], p. 513, so that the reference entropy and chemical potential
are set to S0 = 2.101kJ/K.kg and G0 = −187.6kJ/kg, respectively.

For a LTNE analysis, the time profile of the temperature depletion is characterized by three stages: (a)
the first stage represents the abrupt propagation of the injection temperature dominated by convection;
(b) the second stage characterizes the heat transfer between the fracture fluid phase and the porous blocks
and (c) the third stage represents the final thermal depletion of the porous medium. The least well-defined
of the material parameters required for a thermo-hydro-mechanical simulation in LTNE are the fracture
permeability kf , the fracture porosity nf and the solid-to-fracture fluid specific heat transfer coefficient κsf .
These coefficients are calibrated so that the numerical response matches the field response based on the
following procedure: (i) the fracture network permeability kf is obtained so that the end of the first stage
matches the field data; (ii) the fracture network porosity nf is adjusted so that the duration of the second
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Figure 3: Relative temperature outlet TD = (T 0 − Tf (z = zR))/(T 0 − Tinj) versus time in days. LTE stands for local thermal
equilibrium and is obtained for κsf = 100W/m3.K. Colors are available on the electronic version. (left) Fenton Hill hot

dry rock reservoir with kf = 10−14 m2 and nf = 0.005. Field data pertain to ◦ 2703m, ⋄ 2673m, × 2626m and ✷ in the
casing 2660m, Zyvoloski et al. [1981]. The optimum specific solid-to-fracture fluid heat transfer coefficient κsf is equal to

35mW/m3.K. (right) Rosemanowes hot dry rock reservoir with kf = 10−13 m2, nf = 0.005. Field data pertain to ◦ the casing
shoe of the production well (≈ 2125m in true vertical depth), Kolditz and Clauser [1998]. The optimum specific solid-to-fracture
fluid heat transfer coefficient κsf lies in the range 60 to 120mW/m3.K. The late overshooting oscillations for the LTE solution
are due to an imperfect damping of the convective contribution, Gelet et al. [2012].

stage matches the rest of the response and (iii) the optimum solid-to-fracture fluid heat transfer coefficient
κsf is obtained so that the magnitude of the second stage best fits the field data.

7.1. Fenton Hill reservoir

The circulation test was induced between the depths 2903m and 2667m with an average reservoir height
of zR = 230m. Experimental results for the test ‘segment-5’ are reported in Zyvoloski et al. [1981]. The
horizontal half-width of the permeable reservoir is arbitrarily chosen equal to xR = 200m. Appropriate
loading boundary conditions and material parameters are documented in Tables 2 and 4, in which the
hydrostatic pressure gradient between the injection and the production wells is imposed.

The thermo-hydro-mechanical model for this LTNE analysis recovers well the field response for the
combination of fracture permeability kf = 10−14m2, fracture porosity nf = 0.005 and specific solid-to-
fracture fluid heat transfer coefficient κsf = 35mW/m3.K. This set of calibrated parameters is the same as
for a single porosity model if the thermal diffusivity of the solid phase is replaced by the thermal diffusivity
of the porous blocks (the ‘equivalent’ solid phase).

If the calibrated material parameters are considered suitable, the fracture spacing can be calculated with
eqn (67), B = 13m which matches well the 10m magnitude proposed in Figure 3.2 of Zyvoloski et al. [1981].
Furthermore, the solid-to-fracture fluid heat transfer coefficient hsf can be estimated to hsf = 0.12W/m2.K.

It is worth noting that the field data for Fenton Hill reservoir display spatially heterogeneous initial rock
temperatures, Zyvoloski et al. [1981]. This situation is attributed to circulation in the hot dry rock reservoir
before the circulation tests. The initial temperature T 0 used to calculate the relative temperature TD and to
perform the calibrations in Figure 3, left, represents the temperature at the lowest outlet point z = 2703m.
If the initial temperature T 0 is chosen at a higher outlet point z > 2703m, the calibrations hold for higher
values of the solid-to-fracture fluid heat transfer κsf .

7.2. Rosemanowes reservoir

This second circulation test was performed between the depths 2490m and 2160m with an average
reservoir height of zR = 330m. The horizontal half-width of the permeable reservoir is arbitrarily chosen
equal to xR = 200m. Appropriate loading boundary conditions and material parameters are documented in
Tables 3 and 5. The setup and the boundary conditions are similar to the Fenton Hill simulation so as to
simplify the implementation. The experimental results for the RH12/RH15 system reported in Kolditz and
Clauser [1998], their Figure 5, provide the data for the calibration.
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The thermo-hydro-mechanical LTNE model recovers well the field response for the combination of fracture
permeability kf = 10−13m2, fracture porosity nf = 0.005 and specific solid-to-fracture fluid heat transfer
coefficient κsf in the range 60 to 120mW/m3.K. The lack of accuracy of the calibration is most probably due
to the simplified setup assumed for the numerical simulations: in the field, the wells are not horizontal and
the fracture permeability is not uniform within the reservoir. Furthermore, significant water loss (45%) was
generated owing to the unconfined nature of the reservoir, Brown et al. [1999], and to its lack of stability,
Bruel [2002], leading to the development of short-circuit flow paths.

The calibration of the specific solid-to-fracture fluid heat transfer coefficient κsf yields the same order
of magnitude for both hot dry rock reservoirs, which indicates that the order of magnitude is reliable. The
comparisons between the field results and the model simulations demonstrate responses in local thermal
non-equilibrium, characterized by three stages, which provides confidence in the LTNE model.

8. Thermo-hydro-mechanical response

The calibration of the thermo-hydro-mechanical model is now used to perform coupled simulations on the
Fenton Hill HDR reservoir. Emphasis is laid on delineating the differences in the response of the geothermal
system in terms of temperatures, fluid pressures and effective stress, as inferred by the single and dual porosity
models. Special attention is devoted to the fracture spacing B. Some details of the constitutive model are
also addressed, including the influence of the thermodynamic potentials S0 and G0 and the unconnected
porosity limit.

For the material parameters associated with Fenton Hill reservoir, we hypothesize that the dual porosity
concept will provide a response in the range of a single porosity model and of a dual porosity model endowed
with a low pore permeability (lower than the expected value presented in Table 4). Furthermore, the dual
porosity model is endowed with a mass transfer law which allows the permeation of fluid from the fractures
towards the pores. It is expected that large fracture spacings reduce the thermally induced tensile stress and
fluid loss: this phenomenon highlights a key feature of sparsely fractured reservoirs with respect to densely
fractured reservoirs.

For the circulation tests simulated, the energy exchanges due to mass transfer ρ̂pHp and ρ̂fHf appearing
in the energy equations of the fluids (48) and (49) have been checked to have virtually no influence on the
overall response.

Results are presented in Figures 4 to 12. The sign convention of continuummechanics is used, compressive
stresses being negative.

8.1. Dual porosity model versus single porosity model

The thermo-hydro-mechanical response of fractured media in a LTNE analysis can be sought with two
types of models: (2P) models developed for dual porous media involving two pressures and three temperatures
or (1P) models developed for single porous media as summarized in Appendix A and involving one pressure
and two temperatures. Both types are used to predict the thermo-hydro-mechanical behavior of the Fenton
Hill HDR reservoir in Figures 4 and 5. As a simplification here, the (2P) model assumes the temperatures
of the solid and of the pore fluid to be identical. Still, two sub-options are considered: (i) the pores are
connected to each other with a large permeability kp = 10−18m2 and (ii) the pores are connected to each
other with a low permeability kp = 10−21m2 so that both the diffusive flow in the pores and the mass
transfer are small.

The dual porosity response with a large pore permeability (and hence large mass transfer) is expected to
range between the response of the single porosity model (1P), since no pore pressure counterbalance effect
is accounted for in the effective stress, and the dual porosity response with a low pore permeability, since
the induced pore pressure will dissipate slowly due to the small mass transfer.

The material parameters matching field data for the Fenton Hill HDR reservoir are used, that is, perme-
ability of the fracture network kf = 10−14m2, volume fraction of the fracture fluid nf = 0.005 and specific
solid-to-fracture fluid heat transfer coefficient κsf = 35mW/m3.K. The triple point of water is used as a
reference. The initial and loading boundary conditions are detailed in Sect. 6.2. The leakage parameter η is
estimated from (63) for the material parameters presented in Table 4 and for the average fracture spacing
B = 13m (Sect. 7.1). The vertical profiles at time t = 3.17years of the temperatures, fluid pressures and
stress changes from the initial state ∆σ̄ = σ̄ − σ̄

0 plotted in Figures 4 and 5 illustrate the late time of the
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Figure 4: Fenton Hill reservoir, late time (t = 3.17 years) vertical profiles of the temperatures of solid and pore fluid (top-
left), the temperature of fracture fluid (top-right), the pressure of pore fluid (bottom-left), and the pressure of fracture fluid
(bottom-right) for kf = 10−14 m2, nf = 0.005, κsf = 35mW/m3.K and B = 13m (Sect. 7.1). I.W. stands for injection
well and P.W. for production well. The responses of the various models match for the temperatures and for the fracture fluid
pressure. On the other hand, the pore pressure response of the dual porosity model displays a pressure drop near the injection
point. The magnitude of the pressure drop is controlled by the diffusivity ratio Rp and is larger for smaller pore permeability
(kp = 10−21 m2). The single porosity model leaves out of account the pore pressure response. Regarding the pore pressure, the
dual porosity response for kp = 10−18 m2 is bounded by the dual porosity response for smaller pore permeabilities and by the
fracture fluid pressure (1P), close to the injection well z/zR < 0.3.

numerical test. The coupled thermo-hydro-mechanical response at early time t = 34.72days is presented
next in Figure 6.

The coupled behavior of fractured media in thermal and hydraulic non-equilibria is governed by the dif-
ference in characteristic times between the thermal depletion of the fracture fluid phase and of the solid/pore
fluid phases (Figure 4, top). The significant difference in temperature between the fracture fluid and the
porous blocks correlates with their highly distinct masses and volumes. Indeed, heat diffuses by conduction
in the porous blocks which are endowed with a large volume ns + np = 0.995. On the other hand, the
temperature of the fracture fluid propagates by convection and thermal depletion is much faster than in the
porous blocks.

The solid temperature responses provided by the single porosity model (1P), the dual porosity model
(2P) with a large pore permeability (kp = 10−18m2) and with a small pore permeability (kp = 10−21m2)
almost match and are not influenced by the pressure and the strain fields. Hence, the calibration proposed
in Sect. 7 remains valid for all models.

As expected from the large fracture permeability kf = 10−14m2, the response of the fracture fluid
pressure varies little from one model to the other as opposed to that of the pore fluid pressure. The single
porosity model disregards the pore fluid pressure. The dual porosity model displays a decrease in pore
pressure induced by the thermal contraction of the solid phase. Indeed, since (1) the pore fluid is embedded
into the solid phase which controls fully the magnitude of the thermal contraction and (2) the coefficient of
thermal expansion of the fluid cpT is approximatively 300 times greater than that of the solid phase cT , the
pore pressure decrease is governed by the thermal depletion of the solid phase.

On the other hand, the magnitude of the pore pressure peak is controlled by the hydraulic to thermal
diffusivity ratio Rp =

√

αH,p/αT,p. The lower Rp, the greater the pore fluid pressure response. Hence,
for the dual porosity model with kp = 10−21 m2, Rp is small and the pore pressure drop is large compared
with the dual porosity model with kp = 10−18m2 in which the pore pressure drop dissipates through the
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Figure 5: Fenton Hill reservoir, late time (t = 3.17 years) vertical profiles of the changes in vertical effective stress (left),
lateral effective stress (middle) and out-of-plane effective stress (right). Tensile stresses are counted positive. Owing to the
pore pressure contribution, the stress responses described by the single porosity model (1P) are not equivalent to the responses
described by the dual porosity model. The single porosity model predicts a thermally induced tensile stress in the vicinity of the
injection well, whereas the dual porosity model predicts a smaller tensile stress (∆σ̄x and ∆σ̄y) and an increase of compressive
stress (∆σ̄z). The pore pressure drop counterbalances the contraction induced by the solid temperature. As expected, the
dual porosity response with kp = 10−18 m2 is bounded by the single porosity and by the dual porosity with kp = 10−21 m2

responses, close to the injection well z/zR < 0.3.

connected pores and through mass transfer with the fracture network.
While the thermal depletion of the various phases is the same for all the proposed models, the vertical

effective stress is significantly influenced by the pore pressure contribution which tends to damp (kp =
10−18m2) or to suppress (kp = 10−21m2) the thermally induced tensile stress (1P) (Figure 5). Interestingly,
the effective stress response predicted by the dual porosity model for a large pore permeability is bounded
by the single porosity response and by the dual porosity response for a small pore permeability, close to the
injection well z/zR < 0.3.

The response of the dual porosity model is fully recovered by the single porosity model in the particular
case of small fracture spacings B → 0 as presented in the next subsection in Figure 7. This phenomenon
is consistent with the fact that, for very small fracture spacings B, fractured media lose their spatial and
time scale separation characteristics, which are the two main hypotheses of the dual porosity concept. Once
local thermal and hydraulic equilibria are reached, the dual porosity model is indeed expected to reduce
to a single porosity model in LTE with porosity equal to the sum of the fracture and pore porosities and
permeability equal to the sum of the fracture and pore permeabilities.

Moreover, the early mechanism of fluid loss is a consequence of the law of mass transfer induced by the
jump in scaled chemical potentials between the two fluids. During the early time t = 34.72days, the thermal
front propagates in the fracture fluid only, while the porous blocks is almost thermally undisturbed as shown
in Figure 6 for kp = 10−21m2. Consequently, the thermally induced contraction of the pore fluid is small and
restricted to the vicinity of the injection well. On the other hand, the temperature difference between the
pore fluid and the fracture fluid leads to a large mass transfer from the fractures towards the porous blocks.
This large mass transfer is characterized by a large pore pressure drop, to which the thermal contraction
contributes a little, and by an increase in compressive effective stress. This model response matches with
typical field observations: Murphy et al. [1981] report that the permeation of fluid to the porous blocks is
large during the early time and decreases with time.

In summary, the dual porosity model allows a more accurate description of the coupled thermo-hydro-
mechanical behavior of fractured reservoirs compared with a single porosity model. In particular, the distinct
responses between early time and late time provide information on the permeation mechanism and on the
stress path history, which is a key element in view of damage prediction.

8.2. Influence of the fracture spacing B

In Subsection 6.3, the leakage parameter η ∝ B−2, the specific solid-to-fracture fluid heat transfer
coefficient κsf ∝ B−2 and the specific pore fluid-to-fracture fluid heat transfer coefficient κpf ∝ B−2 have
been estimated based on the fracture spacing B. The latter controls simultaneously the mass transfer and
the heat transfer. The influence of the fracture spacing B is considered in the range from 0 to 20m, so that
the lower bound recovers the single porosity response and the upper bound represents a realistic large value
(Table 1).
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Figure 6: Fenton Hill reservoir, early time (t = 34.72 days) vertical profiles of fluid temperatures (left), and fluid pressures (right),
and jump in scaled chemical potential at early and late times (middle). At early time, the temperature of the fracture fluid
decreases, whereas the temperature of the pore fluid remains high. This large difference associated with a negative difference in
scaled chemical potentials Gp/Tp −Gf/Tf < 0 induces a large transfer of mass from the fracture network towards the porous
blocks, which is characterized by a significant pore pressure drop, while the fracture fluid pressure remains undisturbed as in
Figure 4. This behavior matches the observations of field experiments, Murphy et al. [1981].

The material parameters matching field data for the Fenton Hill HDR reservoir are used, that is kf =
10−14m2 and nf = 0.005. Again, the triple point of water is used as reference. The boundary conditions
are detailed in Section 6.2. The vertical profiles of the temperatures and of the fluid pressures are plotted
in Figure 7 for the late time t = 3.17 years. The effective stress and the strain responses are presented in
Figures 8 and 9, respectively.

For small values of B, LTE between the solid phase and the fluid phases is enforced. Indeed, a small B
represents a dense fracture network and reduces the spatial scale and the time scale separation between the
porous blocks and the fracture network. Conversely, a large fracture spacing B = 10m reduces the specific
surface area between the solid phase and the fracture fluid phase so that a LTNE model is required.

The fracture spacing B influences greatly the pore pressure response for the reasons explained earlier,
whereas, the fracture fluid pressure remains undisturbed owing to its large permeability. It is worth noting
that hydraulic equilibrium is not recovered unless thermal equilibrium is attained which only takes place for
B → 0 or at large times. This situation is due to the fact that the force driving mass transfer is a non-linear
contribution in the form of a difference in scaled chemical potentials, Gp/Tp−Gf/Tf , between the pore fluid
and the fracture fluid.

The change in effective stress results from the deformation and the solid temperature contributions. When
both hydraulic and thermal equilibria are reached (B → 0), the effective stress components become more
tensile close to the injection area z/zR < 0.3, the final state being more tensile than the initial state. An
increase of fracture spacing B induces simultaneously (1) a departure from thermal equilibrium and thus a
slower thermal depletion of the solid phase, and (2) a departure from hydraulic equilibrium and consequently
a larger drop in pore pressure. These two contributions entail the change in effective stress by reducing (1)
the rate of thermally induced stress and (2) the thermally induced tensile effective stress near the injection
point.

The thermally induced contraction of the rock may have two adverse effects, a beneficial effect by in-
creasing the aperture of fractures and a negative effect by increasing the aperture of the micro-fractures or
pores. The first effect may favor the growth of the reservoir, whereas the second effect may favor fluid loss.
The dual porosity model reveals that large fracture spacings B reduce significantly the thermally induced
contraction of the rock in the vicinity of the injection well (Figure 9) and thereby the aforementioned effects,
in particular the second negative effect. This observation advices against fracture clouds composed of many
fractures with small spacings and argues in favor of multiple fracture systems with large fracture spacings,
Tenzer [2001], Figure 2.

8.3. Influence of the reference thermodynamic potentials S0 and G0

The chemical potential (34) controls the rate of mass transfer (38). It is defined in terms of the ref-
erence thermodynamic potentials S0 and G0. A sensitivity analysis is proposed for two sets of reference
thermodynamic potentials:
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Figure 7: Fenton Hill reservoir, late time (t = 3.17 years) vertical profiles of solid and pore fluid temperatures (top-left), fracture
fluid temperature (top-right), pore fluid pressure (bottom-left) and fracture fluid pressure (bottom-right) for kf = 10−14 m2,

kp = 10−20 m2 and nf = 0.005. A small fracture spacing B represents a dense fracture network that overlaps the response
of the single porosity model, whereas a large B represents a sparsely fractured reservoir. The fracture spacing B controls the
departure from both hydraulic and thermal equilibria. Hydraulic equilibrium is not recovered unless thermal equilibrium is
attained, which takes place only for B → 0. Solely, the fracture fluid pressure is not influenced by the fracture spacing B.

(1) for the first set, the injection state of the circulation test is used as reference: Sinj = 0.0 and
Ginj = 0.0 for Tinj = 70 ◦C, pinj = 27.44MPa ;

(2) for the second set, the triple point of water is used as reference: STPW = 0.0 and GTPW = 0.0 for
TTPW = 0.01 ◦C, pTPW = 611.2Pa.

reference state S0 (kJ/K.kg) G0 (kJ/kg)

injection of the circulation test 1.136 -79.3

triple point of water 2.101 -187.6

Table 6: Two possible definitions of the reference thermodynamic potentials.

The ensuing thermodynamic potentials are listed in Table 6. The contours of the scaled chemical potential
displayed in Figure 10 show a quantitative, rather than qualitative, influence of the reference potentials S0

and G0.
The tests of the previous subsection have been re-run, with the same material parameters, boundary

conditions and initial conditions as detailed in Table 2. If the injection state of the circulation test is used
as reference, mass transfer reduces in magnitude. However, the consequences on the various elements of the
reservoir response, temperatures, pressures and stresses, are quite small at the late time t = 3.17years as
shown in Figure 11. Hence, the conclusions provided in subsections 8.1 and 8.2 are not affected.

8.4. Unconnected porosity

If the pore permeability tends to zero kp → 0, the response obtained with a single porosity model detailed
in Appendix A should be recovered. This is the case if the porous block compressibility cp is adequately
estimated. cp characterizes the intermediate stress-state of a loading decomposition problem, Khalili et
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Figure 8: Fenton Hill reservoir, late time (t = 3.17 years) vertical profiles of the changes in vertical effective stress (left), in
lateral effective stress (middle) and in out-of-plane effective stress (right) for kf = 10−14 m2, kp = 10−20 m2 and nf = 0.005.
For small fracture spacings B → 0, hydraulic and thermal equilibria are reached and the changes in effective stress are tensile
close to the injection area z/zR < 0.3. In addition, the single porosity response is well recovered. The dual porosity model
reveals that large fracture spacings B reduce the pore pressure and therefore the effective stress σ̄ = σ+ξp pp I+ξf pfI is more
compressive.
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Figure 9: Fenton Hill reservoir, late time (t = 3.17 years) vertical profiles of the changes in vertical strain (left) and in lateral
strain (right) with the same parameters as in Figure 8. For small fracture spacings B → 0, hydraulic and thermal equilibria
are reached and negative strains close to the injection area z/zR < 0.3 characterize a sharp thermally induced contraction.
In addition, the single porosity response is well recovered. The dual porosity model reveals that large fracture spacings B
reduce the thermally induced contraction of the rock in the vicinity of the injection well and thereby the potential for aperture
enlargement of the micro-fractures or pores.
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Figure 10: Scaled chemical potential [J/kg.K.103] as a function of temperature and pressure in a range appropriate to the
present analysis. The material data are issued from Tables 2 and 4. (left): the injection state of the circulation test is taken as
reference; (right): the triple point of water is taken as a reference.

al. [1996], which can be represented by the hydraulic characteristic time needed for the pore fluid to exit the
porous block,

tH =
B2

4αH

, αH =
kp
µp

2µDS(1− ν)

1− 2ν

[

A2(1 + νu)
2(1 − 2ν)

9(1− νu)(νu − ν)

]

, (69)
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Figure 11: Fenton Hill reservoir, late time (t = 3.17 years) vertical profiles of jump in scaled chemical potentials (left), pore
fluid pressure (middle), and change in vertical effective stress (right) for kf = 10−14 m2, kp = 10−20 m2 and nf = 0.005.
I.S. : the injection state of the circulation test is used as a reference. T.P.W. : the triple point of water is used as a reference.
Mass transfer is larger for T.P.W. Although the pore pressure drop dissipates more effectively for larger mass transfer, the
consequences on the reservoir response are quite small. For the pore fluid pressure and the change in vertical effective stress,
the T.P.W. and the I.S. responses superpose.

in which αH is the hydraulic diffusivity of the porous blocks, A is the Skempton coefficient and νu is the
undrained Poisson’s ratio,

1

A
= 1 + nf cp,H − cs

cDS − cs
, νu =

3ν +A(1 − 2ν)(1− cs/c
DS)

3−A(1 − 2ν)(1− cs/cDS)
. (70)

For geothermal reservoirs, the maximum time scale of the problem would be approximatively tmax ≈ 30 years,
so that during the time span of interest, the porous block will remain undrained if tH > tmax and cp = cs
should be enforced. The latter time constraint provides a bound to the permeability,

kp <
B2

4

µp

tmax

1− 2ν

2µDS(1− ν)

[

9(1− νu)(νu − ν)

A2(1 + νu)2(1 − 2ν)

]

≈ 2.3× 10−23m2 (71)

below which a single porosity model can be safely used, i.e. the pore pressure influence can be disregarded.
For higher permeabilities, the dual porosity model should be used to capture the correct stress evolution.
It should be noted that for t ≈ tH , the pore pressure (induced by both early mass transfer and by thermal
contraction) remains large and negative (Figure 12) which means that further fracturing cannot occur in
the porous blocks and that any opening will be confined to the existing fractures. These aspects cannot be
predicted using a single porosity model which will predict tensile stresses irrespective of the situation in the
blocks.
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Figure 12: Fenton Hill reservoir close to the injection well z/zR ≤ 0.1, vertical profiles of pore pressure (left) and change in
vertical effective stress (right) for kf = 10−14 m2, kp = 10−21 m2, B = 13m and nf = 0.005. The hydraulic characteristic time
is tH ≈ 50 days. For times close to tH , the pore pressure remains high and negative. However, for t > tH the excessive pore
pressure can dissipate in the fracture network.
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9. Conclusions

The main concern here has been to develop thermo-hydro-mechanical constitutive equations that ex-
hibit key features of fractured media in local thermal non-equilibrium. A model describing the behavior
of poro-elastic dual porous media has been extended to account for thermal contributions within a ratio-
nal thermodynamics framework. The constitutive equations have been motivated and restricted by the
Clausius-Duhem inequality to characterize the thermo-mechanical transfer and diffusion constitutive rela-
tions. Earlier poro-mechanical analyses, starting from Barenblatt et al. [1960], have considered the fluid
transfer between the two cavities to be driven by the pressure jump. The extension to a mixture in local
thermal non-equilibrium indicates that the driving engine for this mass transfer is the jump of the scaled
chemical potential.

A finite element approximation has been developed that accounts for these constitutive features, and
the thermo-hydro-mechanical couplings. The primary variables are the displacements, the pressures in the
two cavities and the temperatures of the three phases. The non-linear field equations are solved using a full
Newton-Raphson procedure. This finite element analysis has been employed to investigate the mechanisms
of deformation, diffusion, forced convection and transfer in the context of heat extraction from a fractured
hot dry rock reservoir.

Prior to the description of long term circulation tests, three parameters of the model have been calibrated
with field data from two instrumented HDR reservoirs, namely from the Fenton Hill and Rosemanowes sites.
Simulations highlight a local thermal non-equilibrium response characterized by three stages.

A sensitivity analysis has been carried out to study the influences of the dual porosity model and of the
fracture spacing on the phase temperatures, the fluid pressures, and the effective stress. As expected, the dual
porosity model provides, close to the injection well, a thermo-hydro-mechanical response which is bounded
by the single porosity response and by the dual porosity response endowed with a low pore permeability.
The drop in the thermally induced pore pressure is more pronounced when the fracture spacing is large.
Hence, large fracture spacings tend to increase the compressive effective stress. In view of potential fluid loss
due to the thermally induced rock contraction, the aforementioned effect advices against densely fractured
reservoirs in favor of multiple fracture systems with large fracture spacings.

Accounting only for the fracture fluid and disregarding the pore pressure contribution, the single porosity
approach overestimates the thermal contraction of fractured reservoirs. A dual porosity approach delivers
information, (1) on fluid permeation in the porous matrix; (2) on the beneficial effect of the pore pressure
contribution towards thermally induced stress; (3) on the history of the stress path and (4) on the optimum
fracture spacing to reduce fluid loss induced by thermal contraction. Actually, the dual porosity response
recovers well the field observations, e.g. Murphy et al. [1981], that fluid loss is high at the beginning of the
circulation test and decreases with time.
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Appendix A. Reduction of the dual porosity model to a single porosity model

The dual porosity model reduces to a single porosity model by assuming that the volume fraction np of the
pore fluid vanishes, which implies cp = cs. Consequently, the effective stress parameters reduce to,

ξp = 0, ξf = 1−
cs
cDS

. (A.1)

Hence, the field equations (43) to (49) describe the balance of momentum of the mixture, the balance of
mass of the fracture fluid, and the balances of energy of the solid and of the fracture fluid, namely,

µDS ∇2u+ (λDS + µDS) ∇(divu)− ξf ∇pf −
cT
cDS

∇Ts = 0 , (A.2)

div

(

kf
µf

∇pf + nfΘf ∇Tf

)

= aff
∂pf
∂t

+ ξf div
∂u

∂t
+ afTs

∂Ts

∂t
+ afTf

∂Tf

∂t
, (A.3)
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div (nsΛs∇Ts) = aTsTs

∂Ts

∂t
+ Ts

cT
cDS

div
∂u

∂t
+ Ts afTs

∂pf
∂t

+ κsf (Ts − Tf) , (A.4)

div
(

nfΛf ∇Tf + Tfn
fΘf ∇pf

)

= aTfTf

∂Tf

∂t
+ Tf afTf

∂pf
∂t

+Mf · ∇Hf + κsf (Tf − Ts) , (A.5)

while the balance of mass and the balance of energy of the pore fluid become elusive.

Appendix B. Definition of the element matrices Ke and De

The submatrices of the element generalized stiffness-convection matrix (62) are built from the constitutive
matrices, namely

Ke
uu

= Ee
uu

, Ke
upp

= −ξp C
e
up, Ke

upf
= −ξf Ce

up, Ke
uTs

= −cT /c
DS Ce

uT ; (B.1)

Ke
pppp

= −Je
kp

− γpp M
e
pp, Ke

pppf
= γpp M

e
pp, Ke

ppTp
= −Je

Θp
− γpT Me

pT , Ke
ppTf

= γpT Me
pT ; (B.2)

Ke
pfpf

= −Je
kf

− γpp M
e
pp, Ke

pfpp
= γpp M

e
pp, Ke

pfTf
= −Je

Θf
− γpT Me

pT , Ke
pfTp

= γpT Me
pT ; (B.3)

Ke
TsTs

= −Qe
Λs

− (κsp + κsf )M
e
TT , Ke

TsTp
= κsp M

e
TT , Ke

TsTf
= κsf Me

TT ; (B.4)

Ke
Tppp

= −Qe
Θp

− γTpp (M
e
pT )

T − bTpp C
e
Tp,vp

,

Ke
Tppf

= γTpp (M
e
pT )

T,

Ke
TpTs

= κsp M
e
TT ,

Ke
TpTp

= −Qe
Λp

− (κsp + κpf + γTpTp
)Me

TT − bTpTp
Ce

TT,vp
,

Ke
TpTf

= (κpf + γTpTp
)Me

TT ;

(B.5)

Ke
Tfpp

= −γTff (Me
pT )

T,

Ke
Tfpf

= −Qe
Θf

+ γTff (Me
pT )

T − bTff Ce
Tp,vf

,

Ke
TfTs

= κsf Me
TT

Ke
TfTp

= (κpf − γTfTf
)Me

TT ,

Ke
TfTf

= −Qe
Λf

− (κsf + κpf − γTfTf
)Me

TT − bTfTf
Ce

TT,vf
,

(B.6)

in which the coefficients have been linearized around the reference configuration,

γpp = η, γpT = −η ρp S
0 ,

γTpp = +η ρp × (C(p)
p T 0 −H0), γTpTp

= −η ρ2p S
0 × (C(p)

p T 0 −H0) ,

γTff = −η ρp × (C
(p)
f T 0 −H0) , γTfTf

= +η ρ2p S
0 × (C

(p)
f T 0 −H0) ,

bTpp = np (1− cpT T 0), bTff = nf (1 − cfT T 0),

bTpTp
= np ρp C

(p)
p , bTfTf

= nfρf C
(p)
f .

(B.7)

The submatrices of the generalized diffusion matrix (61),

De
ppu

= −ξpC
e
pu, De

pppp
= −appM

e
pp,

De
pppf

= −apfM
e
pp, De

ppTs
= −apTs

Me
pT , De

ppTp
= −apTp

Me
pT ;

(B.8)

De
pfu

= −ξfC
e
pu, De

pfpp
= −apfM

e
pp,

De
pfpf

= −affM
e
pp, De

pfTs
= −afTs

Me
pT , De

pfTf
= −afTf

Me
pT ;

(B.9)
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De
Tsu

= −Ts cT /c
DS Ce

Tu
, De

Tspp
= −TsapTs

(Me
pT )

T,

De
Tspf

= −TsafTs
(Me

pT )
T, De

TsTs
= −aTsTs

Me
TT ;

(B.10)

De
Tppp

= −TpapTp
(Me

pT )
T, De

TpTp
= −aTpTp

Me
TT ; (B.11)

De
Tfpf

= −TfafTf
(Me

pT )
T, De

TfTf
= −aTfTf

Me
TT , (B.12)

involve coefficients defined in (50).
The finite element sub-matrices of the weak formulation in equations (B.1) to (B.12) are listed below,

starting with the [1×4] vectors of shape functions,

Np = NT =
[

N1 N2 N3 N4
]

, (B.13)

which are identical for the pressure and temperature fields. N1, N2, N3 and N4 are the shape functions of
the Q4 elements. Nu is the expanded shape function vector of size [2×8] for the displacement.

Five matrices are involved in the balance of momentum of the mixture,

Ee
uu

=

∫

V e

(Bu)
T Del Bu dV e,

Ce
up =

∫

V e

(∇Nu)
T Np dV e, Ce

uT =

∫

V e

(∇Nu)
T NT dV e.

Ce
pu =

∫

V e

(Np)
T [ 1 1 ] ∇ ·Nu dV e, Ce

Tu
=

∫

V e

(NT )
T [ 1 1 ] ∇ ·Nu dV e.

(B.14)

where Del is the drained stiffness matrix and Bu is the strain displacement matrix. The next matrices
pertain to hydraulic conductivity and heat conduction,

Je
kp

=

∫

V e

(∇Np)
T kp
µp

∇Np dV e, Je
kf

=

∫

V e

(∇Np)
T kf
µf

∇Np dV e,

Qe
Λs

=

∫

V e

(∇NT )
T ns Λs ∇NT dV e, Qe

Λp
=

∫

V e

(∇NT )
T np Λp ∇NT dV e,

Qe
Λf

=

∫

V e

(∇NT )
T nf Λf ∇NT dV e ,

(B.15)

while the matrices below are involved in the thermo-osmosis and coupled isothermal heat flow,

Je
Θp

=

∫

V e

(∇Np)
T np Θp ∇NT dV e, Je

Θf
=

∫

V e

(∇Np)
T nf Θf ∇NT dV e,

Qe
Θp

=

∫

V e

(∇NT )
T Tpn

p Θp ∇Np dV e, Qe
Θf

=

∫

V e

(∇NT )
T Tfn

f Θf ∇Np dV e .

(B.16)

Three mass matrices are required in the general case,

Me
pp =

∫

V e

(Np)
T Np dV e, Me

TT =

∫

V e

(NT )
T NT dV e,

Me
pT =

∫

V e

(Np)
T NT dV e .

(B.17)

Note that they actually reduce to a single matrix if the same shape function is used for the pressures and
the temperatures, namely Np = NT .

The four convective matrices discretised with the Galerkin method adopt the format,

Ce
TT,vp

=

∫

V e

(NT )
T (vp − vs) · ∇NT dV e, Ce

Tp,vp
=

∫

V e

(NT )
T (vp − vs) · ∇Np dV e,

Ce
TT,vf

=

∫

V e

(NT )
T (vf − vs) · ∇NT dV e, Ce

Tp,vf
=

∫

V e

(NT )
T (vf − vs) · ∇Np dV e.

(B.18)
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Example of the Soultz-Sous-Forêts European Hot Fractured Rock Geothermal Project, Rhine Graben, France, Oil & Gas Science
and Technology, 57, 459-470.

[17] V. De La Cruz and T.J.T. Spanos, 1989. Thermomechanical coupling during seismic wave propagation in a porous medium,
Journal of Geophysical Research, 94, 637-642.

[18] G. de Marsily, 1981. Quantitative Hydrogeology - Groundwater Hydrology for Engineers, Academic Press, Masson, Paris.

[19] R. DuTeaux, D. Swenson and B. Hardeman, 1996. Insight from modelling discrete fractures using GEOCRACK, Proceedings,
Twenty-First Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California,

[20] D. Elsworth, 1989. Theory of Thermal Recovery From a Spherically Stimulated Hot Dry Rock Reservoir, Journal of Geophysical
Research, 94, 1927-1934.

[21] D. Elsworth and M. Bai, 1992. Flow-deformation response of dual-porosity media, Journal of Geotechnical Engineering, 118,
107-124.

[22] A.C. Eringen and J.D. Ingram, 1965. A continuum theory of chemically reacting media, International Journal of Engineering
Science, 3, 197-212.

[23] R. Gelet, 2011. Thermo-hydro-mechanical study of deformable porous media with double porosity in local thermal non-
equilibrium, PhD thesis, Institut National Polytechnique de Grenoble, France, and The University of New South Wales, Sydney,
Australia.

[24] R. Gelet, B. Loret and N. Khalili, 2011. Borehole Stability Analysis in a Thermo-Poro-Elastic Dual Porosity Medium, Accepted
for publication, International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts.

[25] R. Gelet, B. Loret and N. Khalili, 2012. Thermal recovery from a fractured medium in local thermal non-equilibrium, Submitted
for publication.

[26] A. Ghassemi, S. Tarasovs and A.H.-D. Cheng, 2005. Integral equation solution of heat extraction-induced thermal stress in
enhanced geothermal reservoirs, International Journal for Numerical and Analytical Methods in Geomechanics, 29, 829-844.

[27] A. Ghassemi, A. Nygren and A. Cheng, 2008. Effects of heat extraction on fracture aperture: A poro-thermoelastic analysis,
Geothermics, 37, 525-539.

[28] K. Hayashi, J. Willis-Richards, R.J. Hopkirk and Y. Niibori, 1999. Numerical models of HDR geothermal reservoirs–a review of
current thinking and progress, Geothermics, 28, 507-518.

[29] T.W. Hicks, R.J. Pine, J. Willis-Richards, S. Xu, A.J. Jupe and N.E.V. Rodrigues, 1996. A hydro-thermo-mechanical numerical
model for HDR geothermal reservoir evaluation, International Journal of Rock Mechanics and Mining Sciences & Geomechanics
Abstracts, 33(5), 499-511.

[30] C.T. Hsu, 1999. A closure model for transient heat conduction in porous media, Journal of Heat Transfer, 121, 733-739.

[31] T.J.R. Hughes, 1987. The Finite Element Method. Linear Static and Dynamic Finite Element Analysis, Prentice-Hall, Englewood
Cliffs, NJ.

[32] P.X. Jiang, R.N. Xu and W. Gong, 2006. Particle-to-fluid heat transfer coefficients in miniporous media, Chemical Engineering
Science, 61, 7213-7222.

[33] H. Kazemi, 1969. Pressure Transient Analysis of Naturally Fractured Reservoirs with Uniform Fracture Distribution, Society of
Petroleum Engineers Journal, 9(4), 451-462.

[34] J. Kestin, 1966. A Course in Thermodynamics, vol. I, Blaisdell Publishing Co., Waltham, Massachusetts.

[35] N. Khalili and A.P.S. Selvadurai, 2003. A Fully Coupled Constitutive Model for Thermo-Hydro-Mechanical Analysis in elastic
media with double porosity, Geophysical Research Letters, 30(24), 1-5.

[36] N. Khalili and B. Loret, 2001. An Elasto-plastic Model for Non-Isothermal Analysis of Flow and Deformation in Unsaturated
Porous Media Formulation, International Journal of Solids and Structures, 38, 8305-8330.

[37] N. Khalili and S. Valliappan, 1996. Unified Theory of Flow and Deformation in double porous media, European Journal of
Mechanics - A/Solids, 15(2), 321-336.

[38] T. Kohl, K.F. Evansi, R.J. Hopkirk and L. Rybach, 1995. Coupled hydraulic, thermal and mechanical considerations for the
simulation of hot dry rock reservoirs, Geothermics, 24, 345-359.

29



[39] O. Kolditz and C. Clauser, 1998. Numerical simulation of flow and heat transfer in fractured crystalline rocks: Application to
the hot dry rock site in Rosemanowes (U.K.), Geothermics, 27, 1-23.

[40] B. Loret, 2008. Biomechanical aspects of soft tissues, unpublished lecture notes.

[41] B. Loret and N. Khalili, 2000a. Thermo-mechanical potentials for unsaturated Soils, CISM Courses and Lectures 426 “Advanced
Numerical Applications and Plasticity in Geomechanics”, Udine, Italy; edited by D.V. Griffiths and G. Gioda, Springer Wien
New York (2001), 253-276.

[42] B. Loret and N. Khalili, 2000b. A three-phase model for unsaturated soils, International Journal for Numerical and Analytical
Methods in Geomechanics, 24, 893-927.

[43] I. Masters, W.K.S. Pao and R.W. Lewis, 2000. Coupling Temperature to a Double-porosity model of deformable porous media,
International Journal for Numerical Methods in Engineering, 49, 421-438.

[44] W.J. Minkowycz, A. Haji-Sheikh and K. Vafai, 1999. On departure from local thermal equilibrium in porous media due to a
rapidly changing heat source: the Sparrow number, International Journal of Heat and Mass Transfer, 42, 3373-3385.

[45] J.K. Mitchell, 1993. Fundamentals of Soil Behavior, J. Wiley & Sons, New York.

[46] H.D. Murphy, R.G. Lawton, J.W. Tester, R.M. Potter, D.W. Brow and R.L. Aamodt, 1977. Preliminary assessment of a geothermal
energy reservoir formed by hydraulic fracturing, Society of Petroleum Engineers Journal, 17, 317-326.

[47] H.D. Murphy, J.W. Tester, C.O. Grigsby and R.M. Potter, 1981. Energy extraction from fractured geothermal reservoirs in
low-permeability crystalline rock, Journal of Geophysical Research, 86, 7145-7158.

[48] R. Nair, Y. Abousleiman and M. Zaman, 2004. A finite element porothermoelastic model for dual-porosity media, International
Journal for Numerical and Analytical Methods in Geomechanics, 28, 875-898.

[49] D.A. Nield, A.V. Kuznetsov and M. Xiong, 2002. Effect of local thermal non-equilibrium on thermally developing forced convection
in a porous medium, International Journal of Heat and Mass Transfer, 45, 4949-4955.

[50] C. Pecker and H. Deresiewicz, 1973. Thermal effects on wave propagation in liquid-filled porous media, Acta Mechanica, 16,
45-64.

[51] H.G. Richards, R.H. Parker, A.S.P. Green, R.H. Jones, J.D.M. Nicholls, D.A.C. Nicol, M.M. Randall, S. Richards, R.C. Stewart
and J. Willis-Richards, 1994. The performance and characteristics of the experimental hot dry rock geothermal reservoir at
Rosemanowes, Cornwall (1985-1988), Geothermics, 23(2), 73-109.

[52] N. Tenma, T. Yamaguchi and G. Zyvoloski, 2008. The Hijiori Hot Dry Rock test site, Japan: Evaluation and optimization of
heat extraction from a two-layered reservoir, Geothermics, 37, 19-52.

[53] H. Tenzer, 2001. Development of hot dry rock technology, Bulletin Geo-Heat Center, 32, 14-22.

[54] N. Wakao and S. Kaguei, 1982. Heat and Mass Transfer in Packed Beds, Gordon and Breach, Science Publishers, New York.

[55] J.B. Warren and P.J. Root, 1963. The Behaviour of Naturally Fractured Reservoirs, Society of Petroleum Engineers Journal, 3,
245-255.

[56] R.K. Wilson and E.C. Aifantis, 1982. On the theory of consolidation with double porosity, International Journal of Engineering
Science, 20(9), 1009-1035.

[57] F. Zanotti and R.G. Carbonell, 1984. Development of Transport Equations for Multiphase Systems, I-II-III, Chemical Engineering
Science, 39, 263-278, 279-297, 299-311.

[58] J. Zhang and J.C. Roegiers, 2005. Double Porosity Finite Element Method for Borehole Modeling, Rock Mechanics and Rock
Engineering, 38, 217-242.

[59] G.A. Zyvoloski, R.L. Aamodt and R.G. Aguilar, 1981. Evaluation of the second hot dry rock geothermal energy reservoir: results
of Phase I, Run Segment 5, Report LA-8940-HDR, Los Alamos National Laboratory, NM (USA).

30


