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Quasimodes and unstability for linear Schrödinger equation

on manifolds

Philippe Kerdelhué

Département de Mathématiques, CNRS UMR 8628,

F-91405 Orsay Cedex, France

Abstract

We consider the evolution operator exp(−it(−∆+V )) associated with a Schrödinger
operator on a Riemannian manifold (M, g). We are interested in the dependence of
this operator on V running in Lp(M). Under a geometrical hypothetis, we show the
unstability for p < ∞ and give examples for which the hypothetis is satisfied. Then
we show in the general case the unstability for p < dimM/2.

1 Introduction

These last years several papers were published about the stability of the nonlinear Schrödinger
equation, that is the uniform continuity of the map u0 7→ u where u is the solution of the
equation

i∂tu + ∆u = ε|u2|u, u(0, x) = u0 (1.1)

where ε = ±1, u(t, ·) is defined on a Riemannian manifold M and ∆ is the Laplace-Beltrami
operator on this manifold. More precisely :

Definition 1.1. Let σ ∈ R, and denote by BR,σ the ball of radius R in Hσ(M). We say
that the problem 1.1 is uniformly well-posed in Hσ if for any R > 0, there exists T > 0
suth that the map :

BR,σ ∩H1(M) ∋ u0 7→ u ∈ L∞([−T, T ]; Hσ(M))

in uniformly continuous (BR,σ ∩H1(M) is endowed with the Hσ norm).
Otherwise, we say that the Cauchy problem (1.1) is unstable.

Let us recall some results :
In 1993, J.Bourgain proved in [2] that the Cauchy problem is uniformly well-posed on the
rational torus T

2 when σ > 0,
in 2002, N.Burq, P.Gérard and N.Tzevtkov showed in [4] the unstability on S

2 when
0 ≤ σ < 1/4,
in 2004, the same authors proved in [5] that the Cauchy problem is uniformly well-posed
when M is a compact manifold of dimension d ≥ 2 and σ > (d− 1)/2,
in 2005, they showed in [6] that the Cauchy problem is well-posed in S

2 when σ > 1/4,
in 2008, L.Thomann [13] proved the unstability in the case when M is a surface with a
stable and not degenerate periodic geodesic and 0 < σ < 1/4.
For results in one dimension, we refer to the work of M.Christ, J.Colliander and T.Tao
[7].
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In the linear case, the propagators are unitary operators so the dependence on the initial
data has no interest. However, the stability property is the continuity of the evolution
operator exp(−it(−∆ + V )) with respect to V running in a proper functions space. Re-
cently in [3] J.Bourgain, N. Burq and M.Zworski proved the following stability result on
the torus T

2 = R
2/(aZ× bZ), (a, b) ∈ R

2

Theorem 1.2. 1. Let K be a compact subset of L2(T2). Then for any T > 0 the map

K ∋ V 7→ e−it(−∆+V ) ∈  L∞((0, T ),L(L2(T)))

is lipschitz continuous.

2. Let p > 2 and A be a bounded subset of Lp(T2). Then for any T > 0 the map

A ∋ V 7→ e−it(−∆+V ) ∈  L∞((0, T ),L(L2(T)))

is lipschitz continuous.

The authors notice that “it would be interesting to investigate such properties on other
manifolds, as they seem to depend strongly on the geometry”. The aim of this article is
to answer partially to this remark.

This article is organized as following

• In section 2 we state our main theorem : assuming a geometrical condition on a
sequence of quasimodes for a Schrödinger operator −∆ + V on a manifold M , we
show the unstability near V of the maps W 7→ e−it(−∆+W ) ∈  L∞((0, T ),L(L2(T)))
with respect to the Lp norm, 1 ≤ p < +∞.

• In section 3 we show examples for which this theorem applies.

• In section 4 we prove that the geometrical hypothetis is not necessary for p <
dimM/2.

Acknoledgements : The author would like to thank N.Burq for suggesting this subject
and for useful help in the realization of this article.

2 Main theorem

Theorem 2.1. Let (M, g) be a Riemannian manifold of finite dimension, ∆g = ∆ the
Laplace-Beltrami operator, dµ the riemannian volume form and V a continuous nonneg-
ative potentiel. Assume

1. There exists a sequence (λn, un) of quasi-eigenvalues and associated quasimodes for
the Schrödinger operator −∆ + V

lim
n→+∞

‖(−∆ + V − λn)un‖L2(M) = 0, ‖un‖L2(M) = 1.

2. The sequence of measures |un(x)|2dµ tends to a measure ν for the weak* topology,
that is for any continuous f vanishing at infinity

lim
n→+∞

∫

M
f(x)|un(x)|2dµ =

∫

M
f(x) dν

and ν is not absolutely continuous with respect to µ.
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Then there exists a sequence of smooth bounded potentiels Wk such that

‖Wk‖L∞(M) ≤ 1

∀p ∈ [1,+∞[, lim
k→+∞

‖Wk‖Lp(M) = 0

∀t > 0, lim inf
k→+∞

‖e−it(−∆+V+Wk) − e−it(−∆+V )‖L(L2(M)) > 0

Proof : First notice that the operators −∆ +V and −∆ +V +Wn are self-adjoined with
the same domain {u ∈  L2(M); ∆u ∈ L2(M), V u ∈ L2(M)}.
The second hypothetis ensures the existence of a compact subset Γ of M such that µ(Γ) = 0
and ν(Γ) > 0. Let κ ∈]0, 1] be a parameter to be fixed later and (ϕk)k∈N∗ be a sequence
of smooth fonctions on M with values in [0, 1] such that

{

ϕk = 1 on Γ
µ(supp(ϕk)) ≤ 1

k

We observe

(−i∂t + (−∆ + V (x) + κϕk(x)))
(

e−i(λn+κ)tun(x)
)

= e−i(λn+κ)t(−∆ + V (x) − λn)un(x) + κ(ϕk(x) − 1) e−i(λn+κ)tun(x)

By hypothetis 1
lim

n→+∞
‖e−i(λn+κ)t(−∆ + V − λn)un‖L2(M) = 0

On the other hand

‖(ϕk(x) − 1)e−i(λn+κ)tun(x)‖2L2(M) = 1 −
∫

M
(2ϕk(x) − ϕk(x)2)|un(x)|2dµ

tends to 1 −
∫

M
(2ϕk − ϕ2

k) dν when n tends to +∞, and this quantity tends to 1 − ν(Γ)

when k tends to +∞.
So there exists a sequence of integers nk tending to +∞ and a sequence εk tending to 0
such that :
∥

∥

∥
(−i∂t + (−∆ + V (x) + κϕk(x)))

(

e−i(λnk
+κ)tunk

(x)
)∥

∥

∥

L2(M)
≤ εk + κ (1 − ν(Γ) + εk)

1

2

Put
vk(t, x) = (−i∂t + (−∆ + V (x) + κϕk(x)))

(

e−i(λnk
+κ)tunk

(x)
)

Duhamel’s formula gives

(

e−it(−∆+V+κϕnk
)unk

)

(t, x) =
(

e−i(λnk
+κ)tunk

(x)
)

− i

∫ t

0
ei(s−t)(−∆+V+κϕnk

)vk(s, x) ds

So
∥

∥

∥
e−it(−∆+V+κϕnk

)unk
−
(

e−i(λnk
+κ)tunk

)
∥

∥

∥

L2(M)
≤ t

(

εk + κ (1 − ν(Γ) + εk)
1

2

)

Similarly
∥

∥

∥
e−it(−∆+V )unk

− e−iλnk
tunk

∥

∥

∥

L2(M)
≤ εk t
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Obviously
∥

∥

∥
e−i(λnk

+κ)tunk
− e−iλnk

tunk

∥

∥

∥

L2(M)
=

∣

∣eiκt − 1
∣

∣

Hence
∥

∥

∥
e−it(−∆+V+κϕnk

)unk
− e−it(−∆+V )unk

∥

∥

∥

L2(M)
≥

∣

∣eiκt − 1
∣

∣−
(

2εk + κ (1 − ν(Γ) + εk)
1

2

)

t

So

lim inf
k→+∞

∥

∥

∥
e−it(−∆+V+κϕnk

) − e−it(−∆+V )
∥

∥

∥

L(L2(M))
≥ 2 sin

κt

2
− (1 − ν(Γ))

1

2κ t

For κ small enough the right hand side is positive.

Remark 2.2. For p = ∞ there is always stability. Indeed, Duhamel’s formula gives for
u0 in the domain of −∆ + V

e−it(−∆+V+Wn)u0 − e−it(−∆+V )u0 = −i

∫ t

0
e−i(t−s)(−∆+V+Wn)Wn e

−is(−∆+V )u0 ds

so
‖e−it(−∆+V+Wn) − e−it(−∆+V )‖L(L2(M)) ≤ t‖Wn‖L∞(M)

Remark 2.3. D. Jakobson (refeering to a communication of J. Bourgain) proves in [11]
that the second hypothetis of Theorem 2.1 is not satisfied in the case of the Laplacian on
tori. The stability is proved in dimension 2 in [3], the problem is open for d ≥ 3.

3 Examples of applications

3.1 The sphere S
d

We consider the sphere S
d, d ≥ 2 endowed with the usual metric induced by that one of

R
d+1. We will show that Theorem 2.1 gives the unstability near −∆Sd .

Let en be the restriction to S
d of the harmonic polynomial (x1 + i x2)

n (called equatorial
spherical harmonic) and un = en/‖en‖L2(Sd) which satisfies

−∆Sd un = n(n + d− 1)un, ‖un‖L2(Sd) = 1

and we have to study the weak* limit of |un|2dµ where dµ is the Riemannian volume form
on S

d.

Proposition 3.1. The sequence of measures |un(x)|2dµ on S
d tends to the measure

dθ

2π
on the circle {(cos θ, sin θ, 0, · · · , 0) ; θ ∈ [0, π]} for the weak* topology.

Proof. We parameter S
d by

x = (cos θ cosϕ, sin θ cosϕ, (sinϕ) t), (θ, ϕ, t) ∈ [0, 2π] × [0,
π

2
] × Sd−2

so dµ = cosϕ (sinϕ)d−2dθ dϕ dt.
Let f be a continuous fonction on S

d.

∫

Sd

f |en|2 dµ =

∫ π
2

0
g(ϕ)(cosϕ)2n+1(sinϕ)d−2dϕ
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where

g(ϕ) =

∫

[0,2π]×Sd−2

f(cos θ cosϕ, sin θ cosϕ, (sinϕ) t) dθ dt

Laplace’s methods gives
∫

Sd

f |en|2 dµ =

(
∫ +∞

0
e−(n+ 1

2
)ϕ2

ϕd−2dϕ

)

(g(0) + o(1))

Notice that ‖en‖2L2(Sd)
is given by f = 1 so

∫

Sd

f(x) |un(x)|2 dµ =
1

2π

∫ 2π

0
f(cos θ, sin θ, 0, · · · , 0) dθ + o(1)

which achieves the proof.

Thus Theorem 2.1 applies on the sphere near −∆Sd .

Remark 3.2. The result applies whenever the manifold (M, g) only coincide with the
sphere near a closed geodesic.

3.2 Periodic stable geodesic

We refer here to the work of J.V.Ralston [12] who developed the ideas of [1] and [8]
to obtain quasimodes using WKB constructions. The author considers a Riemannian
manifold (M, g) of dimension d ≥ 2 and assumes the existence of a periodic closed non
degenerate geodesic γ. The eigenvalues λj , 1 ≤ j ≤ 2(d − 1) of the Poincaré application
assciated to γ are supposed to have modulus 1 (so γ is stable) and to satisfy the diophantian
condition

∀n ∈ N
2d−2,

2d−2
∏

j=1

λ
nj

j 6= 1

V is a smooth potential on M . Under these hypotheses, J.V. Ralston proves

Theorem 3.3. For any nonnegative integer N and real number ε, there exist sequences
of quasimodes Ej tending to +∞ and associated normalized quasi-eigenfunctions un, and
a constant CN,ε suth that

1. ‖(−∆g + V − En)un‖L2(M) = O(E−N
n )

2. ‖un‖L2(γN,ε) < ε, where γN,ε = {x ∈ M ; d(x, γ) > CN,εE
−1/4
n }.

As a consequence, Theorem 2.1 applies on M for any smooth nonnegative potential V .

3.3 Hyperbolic surfaces

We refer here to the work of Y. Colin de Verdière and B. Parisse [9]. They state their
theorem in a particular case, but it is easy to check that they proved the following

Theorem 3.4. Consider a < b two real numbers, f a smooth positive function on [a, b],
H the cylinder [a, b]×Z/2πZ endowed with the metric dt2 + f2(t) d2θ, and ∆ the Laplace-
Beltrami operator on H associated with this metric with Dirichlet boundary condition.
Assume that f reaches its minimum on [a, b] in a unique point t0 ∈]a, b[, and that this
minimum is not degenerate.
Then ∆ admits a sequence of normalized eigenfunctions un suth that the sequence of

measures |un|2dµ tends to δt0 ⊗
dθ

2π
for the weak* topology.
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In particular, we can consider a rotation invariant surface. Let a < b two real numbers,
f and g two smooth functions on [a, b] such that f > 0 and the curve C : [a, b] ∋ t 7→
(g(t), f(t), 0) in R

3 have no multiple point and is parametrized by its curvi-linear abscissa,
i.e. f ′2 + g′2 = 1. The surface

H = {(g(t), f(t) cos θ, f(t) sin θ); (t, θ) ∈ [a, b] × Z/2πZ}

generated by the rotation of C on the X-axis is endowed with the metric induced by that
one of R

3 dt2 + f2(t) dθ2. Theorem 2.1 applies to the Laplacian on H with Dirichlet
boundary condition.

4 Unstability for small p

In the case when p < dimM/2, the unstability can be proved by local constructions and
does not request the geometrical hypothetis.

Theorem 4.1. Let (M, g) be a Riemannian manifold of dimension d ≥ 3, ∆ the associated
Laplace-Betrami operator, V a smooth nonnegative potential.
Then there exists a sequence of smooth bounded potentials Wn such that

∀p ∈ [1,
d

2
[, lim

n→+∞
‖Wn‖Lp(M) = 0

∀T > 0, lim
n→+∞

‖e−it(−∆+V+Wn) − e−it(−∆+V )‖L∞([0,T ];L(L2(M))) = 2

Remark 4.2. Here the smooth potential V is estimated in Lp-norm. Notice that the
threshold d/2 is natural, as it is the same one above which the operator −∆ + V in well
defined (in the quadratic form sense).

Proof of Theorem 4.1: In local coordinates we have

∆ =
1√

detG
∇
√

detGG−1∇ (4.1)

where G is the matrix of the metric g.
Let u0 ∈ C∞

0 (Rd) normalized by ‖u0‖ L2
(Rd)

= 1 and W ∈ C∞
0 (Rd) real valued such that

W = 1 on the support of u0.
We define for n ∈ N

∗

u0n(·) = nd/2u0(n ·) (4.2)

Wn(·) = n2 ln(n + 1)W0(n ·) (4.3)

so ‖u0n‖L2(Rd) = 1 and ‖Wn‖L2(Rd) = n
2− d

p ln(n + 1) tends to 0 for any p < d/2.
By Duhamel’s formula we have for any posive t

e−it(−∆+V )u0n − e−itV u0n = i

∫ t

0
e−i(t−s)(−∆+V )∆

(

e−isV u0n
)

ds (4.4)

e−it(−∆+V+Wn)u0n − e−it(V+Wn)u0n = i

∫ t

0
e−i(t−s)(−∆+V+Wn)∆

(

e−is(V+Wn)u0n

)

ds (4.5)

Definitions (4.2) and (4.3) of u0n and Wn, together with (4.1) yield for a suitable C > 0

‖∆
(

e−isV u0n
)

‖L2(Rd) ≤ C n2 (4.6)

‖∆
(

e−is(V+Wn)u0n

)

‖L2(Rd) ≤ C(s2n6 ln2(n + 1) + n2) (4.7)
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Then (4.4) and (4.5) give

‖e−it(−∆+ V )u0n − e−itV u0n‖L2(Rd) ≤ C n2t (4.8)

‖e−it(−∆+V+Wn)u0n − e−it(V+Wn)u0n‖L2(Rd) ≤ C(t3n6 ln2(n + 1) + n2t) (4.9)

We consider the time
tn =

π

n2 ln(n + 1)
(4.10)

From (4.8) and (4.9) we get

‖e−itn(−∆+V )u0n − e−itnV u0n‖L2(Rd) ≤ C

ln(n + 1)
(4.11)

‖e−itn(−∆+V+Wn)u0n − e−itn(V+Wn)u0n‖L2(Rd) ≤ C

ln(n + 1)
(4.12)

Since Wn = 1 on the support of u0n and ‖u0n‖L2(Rd) = 1 we have

‖e−itn(V+Wn)u0n − e−itnV u0n‖L2(Rd) = 2 (4.13)

So (4.8), (4.9) and (4.13) give

‖e−itn(−∆+V+Wn)u0n − e−itn(−∆+V )u0n‖L2(Rd) ≥ 2 − C

ln(n + 1)
(4.14)

which achieves the proof.
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