Philippe Kerdelhué 
  
Quasimodes and unstability for linear Schrödinger equation on manifolds

come    

Quasimodes and unstability for linear Schrôdinger equation

Introduction

These last years several papers were published about the stability of the nonlinear Schrödinger equation, that is the uniform continuity of the map u 0 → u where u is the solution of the equation i∂ t u + ∆u = ε|u 2 |u, u(0, x) = u 0 (1.1) where ε = ±1, u(t, •) is defined on a Riemannian manifold M and ∆ is the Laplace-Beltrami operator on this manifold. More precisely :

Definition 1.1. Let σ ∈ R, and denote by B R,σ the ball of radius R in H σ (M ). We say that the problem 1.1 is uniformly well-posed in H σ if for any R > 0, there exists T > 0 suth that the map :

B R,σ ∩ H 1 (M ) ∋ u 0 → u ∈ L ∞ ([-T, T ]; H σ (M ))
in uniformly continuous (B R,σ ∩ H 1 (M ) is endowed with the H σ norm).

Otherwise, we say that the Cauchy problem (1.1) is unstable.

Let us recall some results :

In 1993, J.Bourgain proved in [START_REF] Bourgain | Fourier transform restriction phenomena for certain lattice subsets and applications to non-linear evolution equations. I Schrödinger equations[END_REF] that the Cauchy problem is uniformly well-posed on the rational torus T 2 when σ > 0, in 2002, N.Burq, P.Gérard and N.Tzevtkov showed in [START_REF] Burq | An instability property of the nonlinear Schrödinger equation on S d[END_REF] the unstability on S 2 when 0 ≤ σ < 1/4, in 2004, the same authors proved in [START_REF] Burq | Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds[END_REF] that the Cauchy problem is uniformly well-posed when M is a compact manifold of dimension d ≥ 2 and σ > (d -1)/2, in 2005, they showed in [START_REF] Burq | Bilinear eigenfunction estimates and the nonlinear Schrödinger equation on surfaces[END_REF] that the Cauchy problem is well-posed in S 2 when σ > 1/4, in 2008, L.Thomann [START_REF] Thomann | Geometric instability for NLS on surfaces[END_REF] proved the unstability in the case when M is a surface with a stable and not degenerate periodic geodesic and 0 < σ < 1/4. For results in one dimension, we refer to the work of M.Christ, J.Colliander and T.Tao [START_REF] Christ | Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations[END_REF].

In the linear case, the propagators are unitary operators so the dependence on the initial data has no interest. However, the stability property is the continuity of the evolution operator exp(-it(-∆ + V )) with respect to V running in a proper functions space. Recently in [START_REF] Bourgain | Control for Schrödinger operators on 2-tori: rought potentials[END_REF] J.Bourgain, N. Burq and M.Zworski proved the following stability result on the torus

T 2 = R 2 /(aZ × bZ), (a, b) ∈ R 2 Theorem 1.2.
1. Let K be a compact subset of L 2 (T 2 ). Then for any T > 0 the map

K ∋ V → e -it(-∆+V ) ∈ L ∞ ((0, T ), L(L 2 (T)))
is lipschitz continuous.

2. Let p > 2 and A be a bounded subset of L p (T 2 ). Then for any T > 0 the map

A ∋ V → e -it(-∆+V ) ∈ L ∞ ((0, T ), L(L 2 (T)))
is lipschitz continuous.

The authors notice that "it would be interesting to investigate such properties on other manifolds, as they seem to depend strongly on the geometry". The aim of this article is to answer partially to this remark.

This article is organized as following

• In section 2 we state our main theorem : assuming a geometrical condition on a sequence of quasimodes for a Schrödinger operator -∆ + V on a manifold M , we show the unstability near V of the maps W → e -it(-∆+W ) ∈ L ∞ ((0, T ), L(L 2 (T))) with respect to the L p norm, 1 ≤ p < +∞.

• In section 3 we show examples for which this theorem applies.

• In section 4 we prove that the geometrical hypothetis is not necessary for p < dim M/2.
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Main theorem

Theorem 2.1. Let (M, g) be a Riemannian manifold of finite dimension, ∆ g = ∆ the Laplace-Beltrami operator, dµ the riemannian volume form and V a continuous nonnegative potentiel. Assume 1. There exists a sequence (λ n , u n ) of quasi-eigenvalues and associated quasimodes for the Schrödinger operator

-∆ + V lim n→+∞ (-∆ + V -λ n )u n L 2 (M ) = 0, u n L 2 (M ) = 1.
2. The sequence of measures |u n (x)| 2 dµ tends to a measure ν for the weak* topology, that is for any continuous f vanishing at infinity

lim n→+∞ M f (x)|u n (x)| 2 dµ = M f (x) dν
and ν is not absolutely continuous with respect to µ.

Then there exists a sequence of smooth bounded potentiels W k such that

W k L ∞ (M ) ≤ 1 ∀p ∈ [1, +∞[, lim k→+∞ W k L p (M ) = 0 ∀t > 0, lim inf k→+∞ e -it(-∆+V +W k ) -e -it(-∆+V ) L(L 2 (M )) > 0 Proof : First notice that the operators -∆ + V and -∆ + V + W n are self-adjoined with the same domain {u ∈ L 2 (M ); ∆ u ∈ L 2 (M ), V u ∈ L 2 (M )}.
The second hypothetis ensures the existence of a compact subset Γ of M such that µ(Γ) = 0 and ν(Γ) > 0. Let κ ∈]0, 1] be a parameter to be fixed later and (ϕ k ) k∈N * be a sequence of smooth fonctions on M with values in [0, 1] such that

ϕ k = 1 on Γ µ(supp(ϕ k )) ≤ 1 k
We observe

(-i∂ t + (-∆ + V (x) + κϕ k (x))) e -i(λn+κ)t u n (x) = e -i(λn+κ)t (-∆ + V (x) -λ n )u n (x) + κ(ϕ k (x) -1) e -i(λn+κ)t u n (x) By hypothetis 1 lim n→+∞ e -i(λn+κ)t (-∆ + V -λ n )u n L 2 (M ) = 0
On the other hand

(ϕ k (x) -1)e -i(λn+κ)t u n (x) 2 L 2 (M ) = 1 - M (2ϕ k (x) -ϕ k (x) 2 )|u n (x)| 2 dµ tends to 1 - M (2ϕ k -ϕ 2 k
) dν when n tends to +∞, and this quantity tends to 1 -ν(Γ) when k tends to +∞. So there exists a sequence of integers n k tending to +∞ and a sequence ε k tending to 0 such that :

(-i∂ t + (-∆ + V (x) + κϕ k (x))) e -i(λn k +κ)t u n k (x) L 2 (M ) ≤ ε k + κ (1 -ν(Γ) + ε k ) 1 2 Put v k (t, x) = (-i∂ t + (-∆ + V (x) + κϕ k (x))) e -i(λn k +κ)t u n k (x)
Duhamel's formula gives

e -it(-∆+V +κϕn k ) u n k (t, x) = e -i(λn k +κ)t u n k (x) -i t 0 e i(s-t)(-∆+V +κϕn k ) v k (s, x) ds So e -it(-∆+V +κϕn k ) u n k -e -i(λn k +κ)t u n k L 2 (M ) ≤ t ε k + κ (1 -ν(Γ) + ε k ) 1 2 Similarly e -it(-∆+V ) u n k -e -iλn k t u n k L 2 (M ) ≤ ε k t Obviously e -i(λn k +κ)t u n k -e -iλn k t u n k L 2 (M ) = e iκt -1 Hence e -it(-∆+V +κϕn k ) u n k -e -it(-∆+V ) u n k L 2 (M ) ≥ e iκt -1 -2ε k + κ (1 -ν(Γ) + ε k ) 1 2 t So lim inf k→+∞ e -it(-∆+V +κϕn k ) -e -it(-∆+V ) L(L 2 (M )) ≥ 2 sin κt 2 -(1 -ν(Γ)) 1 2 κ t
For κ small enough the right hand side is positive.

Remark 2.2. For p = ∞ there is always stability. Indeed, Duhamel's formula gives for u 0 in the domain of

-∆ + V e -it(-∆+V +Wn) u 0 -e -it(-∆+V ) u 0 = -i t 0 e -i(t-s)(-∆+V +Wn) W n e -is(-∆+V ) u 0 ds so e -it(-∆+V +Wn) -e -it(-∆+V ) L(L 2 (M )) ≤ t W n L ∞ (M )
Remark 2.3. D. Jakobson (refeering to a communication of J. Bourgain) proves in [START_REF] Jakobson | Quantum limits on flat tori[END_REF] that the second hypothetis of Theorem 2.1 is not satisfied in the case of the Laplacian on tori. The stability is proved in dimension 2 in [START_REF] Bourgain | Control for Schrödinger operators on 2-tori: rought potentials[END_REF], the problem is open for d ≥ 3.

Examples of applications 3.1 The sphere S d

We consider the sphere S d , d ≥ 2 endowed with the usual metric induced by that one of R d+1 . We will show that Theorem 2.1 gives the unstability near -∆ S d . Let e n be the restriction to S d of the harmonic polynomial (x 1 + i x 2 ) n (called equatorial spherical harmonic) and u n = e n / e n L 2 (S d ) which satisfies f (cos θ cos ϕ, sin θ cos ϕ, (sin ϕ) t) dθ dt Laplace's methods gives

-∆ S d u n = n(n + d -1) u n , u n L 2 (S d ) =
S d f |e n | 2 dµ = +∞ 0 e -(n+ 1 2 )ϕ 2 ϕ d-2 dϕ (g(0) + o(1))
Notice that e n 2 L 2 (S d ) is given by f = 1 so

S d f (x) |u n (x)| 2 dµ = 1 2π 2π 0 f (cos θ, sin θ, 0, • • • , 0) dθ + o(1)
which achieves the proof.

Thus Theorem 2.1 applies on the sphere near -∆ S d .

Remark 3.2. The result applies whenever the manifold (M, g) only coincide with the sphere near a closed geodesic.

Periodic stable geodesic

We refer here to the work of J.V.Ralston [START_REF] Ralston | On the construction of quasimodes associated with stable periodic orbits[END_REF] who developed the ideas of [START_REF] Babich | Eigenfunctions concentrated in a neighborhood of a closed geodesic[END_REF] and [START_REF] De Verdière | Quasi-modes des variétés Riemanniennes[END_REF] to obtain quasimodes using WKB constructions. The author considers a Riemannian manifold (M, g) of dimension d ≥ 2 and assumes the existence of a periodic closed non degenerate geodesic γ. The eigenvalues λ j , 1 ≤ j ≤ 2(d -1) of the Poincaré application assciated to γ are supposed to have modulus 1 (so γ is stable) and to satisfy the diophantian condition

∀n ∈ N 2d-2 , 2d-2 j=1 λ n j j = 1
V is a smooth potential on M . Under these hypotheses, J.V. Ralston proves Theorem 3.3. For any nonnegative integer N and real number ε, there exist sequences of quasimodes E j tending to +∞ and associated normalized quasi-eigenfunctions u n , and a constant C N,ε suth that

1. (-∆ g + V -E n ) u n L 2 (M ) = O(E -N n ) 2. u n L 2 (γ N,ε ) < ε, where γ N,ε = {x ∈ M ; d(x, γ) > C N,ε E -1 /4 n }.
As a consequence, Theorem 2.1 applies on M for any smooth nonnegative potential V .

Hyperbolic surfaces

We refer here to the work of Y. Colin de Verdière and B. Parisse [START_REF] De Verdière | Équilibre instable en régime semi-classique I -Concentration microlocale[END_REF]. They state their theorem in a particular case, but it is easy to check that they proved the following 

W n L p (M ) = 0 ∀T > 0, lim n→+∞ e -it(-∆+V +Wn) -e -it(-∆+V ) L ∞ ([0,T ]; L(L 2 (M ))) = 2 Remark 4.2.
Here the smooth potential V is estimated in L p -norm. Notice that the threshold d/2 is natural, as it is the same one above which the operator -∆ + V in well defined (in the quadratic form sense).

Proof of Theorem 4.1: In local coordinates we have

∆ = 1 √ det G ∇ √ det G G -1 ∇ (4.1)
where G is the matrix of the metric g.

Let u 0 ∈ C ∞ 0 (R d ) normalized by u 0 L 2 (R d ) = 1 and W ∈ C ∞ 0 (R d ) real valued such that W = 1 on the support of u 0 . We define for n ∈ N * u 0 n (•) = n d/2 u 0 (n •) (4.2) W n (•) = n 2 ln(n + 1) W 0 (n •) (4.3) so u 0 n L 2 (R d ) = 1 and W n L 2 (R d ) = n 2-d
p ln(n + 1) tends to 0 for any p < d/2. By Duhamel's formula we have for any posive t e -it(-∆+V ) u 0 n -e -itV u 0 n = i t 0 e -i(t-s)(-∆+V ) ∆ e -isV u 0 n ds (4.4)

e -it(-∆+V +Wn) u 0 n -e -it(V +Wn) u 0 n = i t 0 e -i(t-s)(-∆+V +Wn) ∆ e -is(V +Wn) u 0 n ds (4. e -it(-∆+V +Wn) u 0 n -e -it(V +Wn) u 0 n L 2 (R d ) ≤ C(t 3 n 6 ln 2 (n + 1) + n 2 t) (4.9)

We consider the time t n = π n 2 ln(n + 1) 

1 andProposition 3 . 1 . 2 ] × S d- 2 so 2 0

 131222 we have to study the weak* limit of |u n | 2 dµ where dµ is the Riemannian volume form on S d . The sequence of measures |u n (x)| 2 dµ on S d tends to the measure dθ 2π on the circle {(cos θ, sin θ, 0, • • • , 0) ; θ ∈ [0, π]} for the weak* topology. Proof. We parameter S d by x = (cos θ cos ϕ, sin θ cos ϕ, (sin ϕ) t), (θ, ϕ, t) ∈ [0, 2π] × [0, π dµ = cos ϕ (sin ϕ) d-2 dθ dϕ dt. Let f be a continuous fonction on S d . S d f |e n | 2 dµ = π g(ϕ)(cos ϕ) 2n+1 (sin ϕ) d-2 dϕ where g(ϕ) = [0,2π]×S d-2

5 )

 5 Definitions (4.2) and (4.3) of u 0 n and W n , together with (4.1) yield for a suitableC > 0 ∆ e -isV u 0 n L 2 (R d ) ≤ C n 2 (4.6) ∆ e -is(V +Wn) u 0 n L 2 (R d ) ≤ C(s 2 n 6 ln 2 (n + 1) + n 2 ) (4.7)Then (4.4) and (4.5) give e -it(-∆+ V ) u 0 n -e -itV u 0 n L 2 (R d ) ≤ C n 2 t (4.8)

(4. 10 )From ( 4 . 8 )

 1048 and (4.9) we gete -itn(-∆+V ) u 0 n -e -itnV u 0 n L 2 (R d ) ≤ C ln(n + 1) (4.11) e -itn(-∆+V +Wn) u 0 n -e -itn(V +Wn) u 0 n L 2 (R d ) ≤ C ln(n + 1) (4.12)Since W n = 1 on the support of u 0 n andu 0 n L 2 (R d ) = 1 we have e -itn(V +Wn) u 0 n -e -itnV u 0 n L 2 (R d ) = 2 (4.13)So (4.8), (4.9) and (4.13) givee -itn(-∆+V +Wn) u 0 n -e -itn(-∆+V ) u 0 n L 2 (R d ) ≥ 2 -C ln(n + 1)(4.14)which achieves the proof.

  Theorem 3.4. Consider a < b two real numbers, f a smooth positive function on [a, b], H the cylinder [a, b] × Z/2πZ endowed with the metric dt 2 + f 2 (t) d 2 θ, and ∆ the Laplace-Beltrami operator on H associated with this metric with Dirichlet boundary condition. Assume that f reaches its minimum on [a, b] in a unique point t 0 ∈]a, b[, and that this minimum is not degenerate. Then ∆ admits a sequence of normalized eigenfunctions u n suth that the sequence of measures |u n | 2 dµ tends to δ t 0 ⊗ dθ 2π for the weak* topology.In particular, we can consider a rotation invariant surface. Let a < b two real numbers, f and g two smooth functions on [a, b] such that f > 0 and the curve C : [a, b] ∋ t → (g(t), f (t), 0) in R 3 have no multiple point and is parametrized by its curvi-linear abscissa, i.e. f ′2 + g ′2 = 1. The surfaceH = {(g(t), f (t) cos θ, f (t) sin θ); (t, θ) ∈ [a, b] × Z/2πZ}generated by the rotation of C on the X-axis is endowed with the metric induced by that one of R 3 dt 2 + f 2 (t) dθ 2 . Theorem 2.1 applies to the Laplacian on H with Dirichlet boundary condition.In the case when p < dim M/2, the unstability can be proved by local constructions and does not request the geometrical hypothetis. Theorem 4.1. Let (M, g) be a Riemannian manifold of dimension d ≥ 3, ∆ the associated Laplace-Betrami operator, V a smooth nonnegative potential. Then there exists a sequence of smooth bounded potentials W n such that

	4 Unstability for small p	
	∀p ∈ [1,	d 2	[,	lim n→+∞