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We consider the problem of pricing swing options with multiple exercise rights in Lévy-driven models. We propose an efficient Wiener-Hopf factorisation method that solves multiple parabolic partial integro-differential equations associated with the pricing problem. We compare the proposed method with a finite difference algorithm. Both proposed deterministic methods are related to the dynamic programming principle and lead to the solution of a multiple optimal stopping problem. Numerical examples illustrate the efficiency and the precision of the proposed methods.

Introduction

The motivation for this work comes from energy markets, where financial instruments are increasingly important for risk management. In a deregulated market, energy contracts will need to be priced according to their financial risk. Due to the uncertainty of consumption and the limited fungibility of energy, new financial contracts such as swing options have been introduced in the commodity market. Swing options are an American type of options with many exercise rights. Their owner can exercise them at many times under the condition that they respect the refracting time that separates two proposed algorithms.

The rest of the paper is organised as follows. Section 2 is devoted to the basic facts on Lévy processes. In Section 3, we present the multiple optimal stopping problem for swing options. In Section 4 and Section 5, we propose, respectively, a finite difference and a Wiener-Hopf approach for pricing swing options. The numerical results are presented in Section 6.

2 Lévy processes: basic facts

General definitions

A Lévy process is a stochastically continuous process with stationary independent increments (for general definitions, see, e.g., [START_REF] Sato | Lévy processes and infinitely divisible distributions[END_REF]). A Lévy process may have a Gaussian component and/or a pure jump component. The latter is characterised by the density of jumps, which is called the Lévy density. A Lévy process X t can be completely specified by its characteristic exponent, ψ, definable from the equality E[e iξX (t) ] = e -tψ(ξ) (we confine ourselves to the one-dimensional case).

The characteristic exponent is given by the Lévy-Khintchine formula

ψ(ξ) = σ 2 2 ξ 2 -iµξ + +∞ -∞
(1 -e iξy + iξy1 |y|≤1 )ν(dy), (

where σ 2 ≥ 0 is the variance of the Gaussian component, and the Lévy measure ν(dy) satisfies R\{0} min{1, y 2 }ν(dy) < +∞.

(2.2)

Assume that under a risk-neutral measure chosen by the market, the price process has the dynamics S t = e Xt , where X t is a certain Lévy process. Then we must have E[e Xt ] < +∞, and, therefore, ψ must admit analytic continuation into a strip ℑξ ∈ (-1, 0) and continuous continuation into the closed strip ℑξ ∈ [-1, 0].

The infinitesimal generator of X, denoted by L, is an integro-differential operator that acts as follows:

Lu(x) = σ 2 2 ∂ 2 u ∂x 2 (x) + µ ∂u ∂x (x) + +∞ -∞ (u(x + y) -u(x) -y1 |y|≤1 ∂u ∂x (x))ν(dy). (2.3)
The infinitesimal generator L also can be represented as a pseudo-differential operator (PDO) with the symbol -ψ(ξ), i.e., L = -ψ(D), where D = -i∂ x . Recall that a PDO A = a(D) acts as follows:

Au(x) = (2π) -1 +∞ -∞ e ixξ a(ξ)û(ξ)dξ, (2.4) 
where û is the Fourier transform of a function u

û(ξ) = +∞ -∞ e -ixξ u(x)dx.
Note that the inverse Fourier transform in (2.4) is defined in the classical sense only if the symbol a(ξ) and function û(ξ) are sufficiently nice. In general, one defines the (inverse) Fourier transform by duality.

Further, if the riskless rate, r, is constant, and if the stock does not pay dividends, then the discounted price process must be a martingale. Equivalently, the following condition (the EMMrequirement) must hold (see, e.g., [START_REF] Boyarchenko | Non-Gaussian Merton-Black-Scholes theory[END_REF]):

r + ψ(-i) = 0, (2.5) 
which can be used to express µ via the other parameters of the Lévy process, as below:

µ = r - σ 2 2 + +∞ -∞
(1 -e y + y1 |y|≤1 )ν(dy).

(2.6)

Hence, the infinitesimal generator may be rewritten as follows:

Lu(x) = σ 2 2 ∂ 2 u ∂x 2 (x) + r - σ 2 2 ∂u ∂x (x) + R [u(x + y) -u(x) -(e y -1) ∂u ∂x (x)]ν(dy). (2.7)

Regular Lévy processes of exponential type

Loosely speaking, a Lévy process X is called a Regular Lévy Process of Exponential type (RLPE) if its Lévy density has a polynomial singularity at the origin and decays exponentially at infinity (see Boyarchenko and Levendorski ǐ (2002))). A nearly equivalent definition is as follows: the characteristic exponent is analytic in a strip ℑξ ∈ (λ -, λ + ), λ -< -1 < 0 < λ + , is continuous up to the boundary of the strip, and admits the representation

ψ(ξ) = -iµξ + φ(ξ), (2.8) 
where φ(ξ) stabilises to a positively homogeneous function at infinity:

φ(ξ) ∼ c ± |ξ| ν , as ℜξ → ±∞, in the strip ℑξ ∈ (λ -, λ + ), (2.9) 
where c ± > 0. "Nearly" means that the majority of classes of Lévy processes used in empirical studies of financial markets satisfy the conditions of both definitions. These classes are as follows: Brownian motion, Kou's model [START_REF] Kou | A jump-diffusion model for option pricing[END_REF]), Hyperbolic processes (Eberlein and Keller (1995)), Normal Inverse Gaussian processes and their generalisation (Barndorff-Nielsen (1998) and Barndorff-Nielsen and Levendorski ǐ (2001)), and the extended Koponen's family. [START_REF] Koponen | Analytic approach to the problem of convergence of truncated Lévy flights towards the Gaussian stochastic process[END_REF] 

ψ(ξ) = -iµξ + CΓ(-Y )[G Y -(G + iξ) Y + M Y -(M -iξ) Y ],
(2.10)

where C > 0, µ ∈ R, Y ∈ (0, 2), Y = 1, and -M < -1 < 0 < G.

Example 2.2. If the Lévy measure of a jump diffusion process is given by a normal distribution

ν(dx) = λ δ √ 2π exp - (x -γ) 2 2δ 2 dx,
then we obtain the Merton model. The parameter λ characterises the intensity of jumps. The characteristic exponent of the process is of the form

ψ(ξ) = σ 2 2 ξ 2 -iµξ + λ 1 -exp(- δ 2 ξ 2 2 + iγξ) , (2.11) 
where σ, δ, λ ≥ 0, µ, γ ∈ R.

There are two important degenerate cases:

• If the intensity of jumps λ = 0, then we obtain Black-Scholes model with µ = r -σ 2 2 fixed by the EMM-requirement;

• If the intensity of jumps λ > 0 but δ = 0, then we obtain a jump diffusion process with a constant jump size γ; the drift term µ = r -σ 2 2 + λ(1 -e γ ) is fixed by the EMM-requirement.

The Wiener-Hopf factorisation

There are several forms of the Wiener-Hopf factorisation. The Wiener-Hopf factorisation formula used in probability reads as follows:

E[e iξX T ] = E[e iξ XT ]E[e iξX T ], ∀ ξ ∈ R, (2.12) 
where T ∼ Exp q, and Xt = sup 0≤s≤t X s and X t = inf 0≤s≤t X s are the supremum and infimum processes. Introducing the notation

ϕ + q (ξ) = qE ∞ 0 e -qt e iξ Xt dt = E e iξ XT , (2.13) 
ϕ - q (ξ) = qE ∞ 0 e -qt e iξX t dt = E e iξX T (2.14)
we can write (2.12) as q q + ψ(ξ) = ϕ + q (ξ)ϕ - q (ξ).

(2.15) Equation (2.15) is a special case of the Wiener-Hopf factorisation of the symbol of a PDO. In applications to Lévy processes, the symbol is q/(q + ψ(ξ)), and the PDO is E q := q/(q -L) = q(q + ψ(D)) -1 : the normalised resolvent of the process X t or, using the terminology of [START_REF] Boyarchenko | American options: the EPV pricing model[END_REF], the expected present value operator (EPV-operator) of the process X t . The name is due to the observation that, for a stream g(X t ),

E q g(x) = E +∞ 0 qe -qt g(X t )dt | X 0 = x .
We introduce the following operators:

E ± q := ϕ ± q (D), (2.16) 
which also admit interpretation as the EPV-operators under supremum and infimum processes. One of the basic observations in the theory of PDO is that the product of symbols corresponds to the product of operators. In our case, it follows from (2.15) that

E q = E + q E - q = E - q E + q (2.17)
as operators in appropriate function spaces. For a wide class of Lévy models, E and E ± admit interpretation as expectation operators:

E q g(x) = +∞ -∞ g(x + y)P q (y)dy, E ± q g(x) = +∞ -∞ g(x + y)P ± q (y)dy,
where P q (y), P ± q (y) are certain probability densities with

P ± q (y) = 0, ∀ ± y < 0.
Moreover, the characteristic functions of the distributions P q (y) and P ± q (y) are q(q + ψ(ξ)) -1 and ϕ ± q (ξ), respectively. The general results in this paper are based on simple properties of the EPV operators, which follow immediately from the interpretation of E ± as expectation operators. For details, see Boyarchenko and Levendorski ǐ (2005).

Proposition 2.1 EPV-operators E ±

q have the following properties

1. If g(x) = 0 ∀ x ≥ h, then ∀ x ≥ h, (E + q g)(x) = 0 and ((E + q ) -1 g)(x) = 0. 2. If g(x) = 0 ∀ x ≤ h, then ∀ x ≤ h, (E - q g)(x) = 0 and ((E - q ) -1 g)(x) = 0. 3. If g(x) ≥ 0 ∀ x, then (E + q g)(x) ≥ 0, ∀ x. If, in addition, there exists x 0 such that g(x) > 0 ∀ x > x 0 , then (E + q g)(x) > 0 ∀ x. 4. If g(x) ≥ 0 ∀ x, then (E - q g)(x) ≥ 0, ∀ x. If, in addition, there exists x 0 such that g(x) > 0 ∀ x < x 0 , then (E - q g)(x) > 0 ∀ x.
5. If g is monotone, then E + q g and E - q g are also monotone.

6. If g is continuous and satisfies

|g(x)| ≤ C(e σ -x + e σ + x ), ∀ x ∈ R, (2.18) 
where σ -≤ 0 ≤ σ + and C are all independent of x, then E + q g and E - q g are continuous.

3 The multiple optimal stopping problem for swing options

We consider a price process that evolves according to the formula

S t = e Xt ,
where {X} t≥0 , the driving process, is an adapted Lévy process defined on the filtered probability space (Ω, F, F = {F t } t≥0 , P), satisfying the usual conditions. Let T be the option's maturity time, and let T t,T be the set of F-stopping times with values in [t, T ]. Consider a swing option that gives the right to multiple exercise with δ > 0 refracting period that separates two successive exercises (the number of possible exercises is fixed). We consider the possibility of n put exercises. We shall denote by T n the collection of all vectors of stopping times (τ 1 , τ 2 , ..., τ n ), such that

• τ 1 ≤ T a.s. • τ i -τ i-1 ≥ δ on {τ i-1 ≤ T } a.s., for all i = 2, .., n
Denote by v (i) (t, x) the swing option value with the possibility of i exercises at spot level S = e x and time t ≤ T . Following [START_REF] Carmona | Optimal Multiple Stopping and Valuation of Swing Options[END_REF], the multiple exercise problem can be solved computing

v (n) (0, x) = sup (τ 1 ,...,τn)∈T n n i=1 E[e -rτ i φ(X τ i )] (3.1) 
where

φ(x) = (K -e x ) +
is the payoff function.

To solve the multiple optimal stopping problem, [START_REF] Carmona | Optimal Multiple Stopping and Valuation of Swing Options[END_REF] introduce the idea of a inductive hierarchy. In fact, they reduce the multiple stopping problem to a cascade of n optimal single stopping problems. Define the value function for i = 1, ..., n

v (i) (t, x) = sup τ ∈T t,T E[e -rτ φ (i) (τ, X t,x τ )] (3.2)
where the reward function φ (i) is now defined as

φ (i) (t, x) = φ(x) + E[e -rδ v (i-1) (t + δ, X t,x t+δ )], t ≤ T -δ, (3.3) 
φ (i) (t, x) = φ(x), t > T -δ. (3.4)
The problem could be solved using a Monte Carlo algorithm. Let t 0 = 0 < t 1 < t 2 < ... < t N = T be a time discretisation grid. The price of a swing option can be computed by the backward induction procedure

v (i) (t N , x) = φ(x) v (i) (t k-1 , x) = max φ (i) (t k-1 , x); e -r(t k -t k-1 ) E[v (i) (t k , X t k-1 ,x t k )] , k = N, ..., 1.
Carmona-Touzi (2008) and Mnif-Zeghal (2006), respectively, considered a Monte Carlo Malliavinbased algorithm to compute the price in the Black-Scholes and jump models frameworks. Barrera-Esteve et al. (2006) used a regression based method to approximate conditional expectations. In the next sections, we propose two PIDE-based approaches. [START_REF] Barrera-Esteve | Numerical methods for the pricing of swing options: a stochastic control approach[END_REF] The finite difference scheme for pricing swing options

We can compute the swing option price using the formulation given in (3.2) with an analytical approach. In fact, we propose to solve the following system of variational inequalities associated with the swing options formulation

max φ (i) (t, x) -v (i) (t, x), ∂v (i) ∂t + Lv (i) -rv (i) = 0, (t, x) in [0, T [×R, v (i) (T, x) = φ (i) (T, e x ). (4.1) 
with i = 1, ..., n, where the integro-differential operator L is defined in (2.7). Now recall that for t ≤ T -δ

φ (i) (t, x) = (K -e x ) + + E[e -rδ v (i-1) (t + δ, X t,x t+δ )]. Let us define for t ≤ T -δ u (i) (t, x) = E[e -rδ v (i) (t + δ, X t,x t+δ )].
By the Feyman-Kac theorem, u (i) (t, x) = z(0, x), where z(t, x) is the solution of the following partial integro-differential equation (PIDE):

∂z ∂t + Lz -rz = 0, (t, x) ∈ [0, δ[×R, z(δ, x) = v (i) (t + δ, x), (4.2) 
which can be numerically computed using a finite difference approach. To price a swing option, therefore, we can solve the system of variational inequalities (4.1) computing the reward payoff function φ (i) (t, x) in the following way:

φ (i) (t, x) = φ(x)
for T -δ < t ≤ T , and

φ (i) (t, x) = (K -e x ) + + u (i-1) (t, x) for t ≤ T -δ.
As stated above, the reward payoff function can be computed numerically using a finite difference scheme. The numerical solution of the variational inequalities (4.1) requires numerically solving each PIDE problem (4.2). To solve (4.1) and (4.2), we perform the following steps:

• Localisation. We choose a spatial bounded computational domain Ω l , which implies that we must choose some artificial boundary conditions.

• Truncation of large jumps. This step corresponds to truncating the integration domain in the integral part.

• Discretisation. The derivatives of the solution are replaced by finite differences, and the integral terms are approximated using the trapezoidal rule. Then the problem is solved by using an explicit-implicit scheme (see [START_REF] Briani | Convergence of numerical schemes for viscosity solutions to integro-differential degenerate parabolic problems arising in financial theory[END_REF], [START_REF] Cont | A finite difference scheme for option pricing in jump-diffusion and exponential Lévy models[END_REF] and its program implementation, PREMIA). In particular, we introduce a time grid t = s∆t, s = 0, .., N , where ∆t = T N is the time step. At each time step, it is necessary to solve a linear system for the linear problem (4.2) and a linear complementarity problem for the nonlinear problem (4.1). The idea of the explicit-implicit method is based on an asymmetric treatment of the differential and integral parts of L. The operator L in (4.2) is split into two parts

Lz = Dz + Jz,
where D and J are the differential and integral parts of L, respectively. We replace Dz with a finite difference approximation D ∆ z and Jz with the trapezoidal quadrature approximation J ∆ z and use the following explicit-implicit time-stepping:

z s+1 -z s ∆t + D ∆ z s + +J ∆ z s+1 -rz s = 0
The integral part is treated in explicit way to avoid a dense matrix, while the differential part is treated in implicit way. Details of the algorithms are given in [START_REF] Cont | A finite difference scheme for option pricing in jump-diffusion and exponential Lévy models[END_REF].

• Treatment of the variational inequalities. We solve each of the variational inequalities (4.1) using the splitting method of [START_REF] Barles | Convergence of numerical Schemes for problems arising in Finance theory[END_REF]. The splitting methods can be viewed as an analytical version of dynamic programming. The idea of this scheme is to split the American problem into two steps: we construct recursively the approximate solution v (i) (s∆t, x) at each time step s∆t by starting from v (i) (N ∆t, x) = φ(x) and computing at each time step the values of v (i) (s∆t, x) for s = N -1, .., 0 as follows:

-Compute the solution of the following linear Cauchy problem on [s∆t, (s + 1)∆t[×Ω l using an explicit-implicit scheme:

∂w (i) (s∆t,x) ∂t + Lw (i) (s∆t, x) -rw (i) (s∆t, x) = 0, in [s∆t, (s + 1)∆t[×Ω l w (i) ((s + 1)∆t, x) = v (i) ((s + 1)∆t, x)
-Apply the early exercise v (i) (s∆t, x) = max(w (i) (s∆t, x), φ (i) (s∆t, x)), where the reward function φ (i) (s∆t, x) is obtained by solving the linear problem (4.2) with an explicit-implicit finite difference method.

One could also apply the method of horizontal lines or the Carr's randomisation to (3.2), then use the explicit-implicit finite difference scheme to solve the corresponding sequence of free boundary problems. The analytical method of lines was introduced to finance by [START_REF] Carr | Fast accurate valuation of American options[END_REF]; Carr

(1998) suggested an important new probability interpretation of the method, which we call Carr's randomisation. In the case of American options, the convergence of Carr's randomisation algorithm is proved in [START_REF] Bouchard | Maturity randomization for stochastic control problems[END_REF] for a wide class of strong Markov processes. In the next section, we will start with Carr's randomisation procedure.

5 Pricing swing options using the Wiener-Hopf approach

In this section, we apply the Wiener-Hopf approach to pricing swing options. The first step is to discretise the time (0

=)t 0 < t 1 < • • • < t N (= T ) but not the space variable. Set v i N (x) = (K -e x ) + . For s = N -1, N -2, . . . , 0, set ∆ s = t s+1 -t s , q s = r +(∆ s ) -1 ,
and denote by v i s (x) Carr's randomised approximation to v i (t s , x).

The early exercise boundary h i s for an interval (t s , t s+1 ) and v i s (x) can be found using backward induction. For s = N -1, N -2, . . . , the boundary h i s is chosen to maximise

v i s (x) = E τ i s 0 e -q s t v i s+1 (X 0,x t )dt + E e -q s τ i s φ s (X 0,x τ i s ) , (5.1) 
where τ i s is the hitting time of the interval of the form (-∞, h i s ], and

φ (i) s (x) = (K -e x ) + E[e -rδ v (i-1) (t s + δ, X ts,x ts+δ )], t s ≤ T -δ, and 
φ (i) s (x) = (K -e x ), t s > T -δ.
As in [START_REF] Boyarchenko | Pricing American options in regime-switching models[END_REF], where the case of American options was considered, to derive (5.1), we replace φ(x) = (K -e x ) + in (3.1) with (K -e x ). This replacement is justified by a simple consideration that it is non-optimal to exercise the option when (K -e x ) ≤ 0.

In the paper, we use uniform spacing; therefore, q s and ∆ s are independent of s and denoted q and ∆t, respectively. For the case of put swing options, v i s given by (5.1) is a unique solution of the boundary problem Let the refracting period δ be equal to k∆t, where k is a certain positive integer. Then, for i = 1, ..., n, φ (i) s (x) = (K -e x ) + u i-1 s (x), (5.4) where u 0 s (x) = 0;

(q -L)v i s (x) = (∆t) -1 v i s+1 (x), x > h i s , (5.2) 
v i s (x) = φ (i) s (x), x ≤ h i s . ( 5 
(5.5)

u i s (x) = 0, t s > T -δ;
(5.6)

u i s (x) = E[e -rδ v (i) s+k (X ts,x t s+k )], t s ≤ T -δ. (5.7) Introduce ṽi s (x) = v i s (x) -φ (i) s (x), and substitute v i s (x) = ṽi s (x) + φ (i) s (x) into (5.2)-(5.
3) as follows:

(q -L)ṽ i s (x) = (∆t) -1 G i s (x), x > h i s , (5.8) 
ṽi s (x) = 0, x ≤ h i s , (5.9) 
where

G i s = ṽi s+1 + φ (i) s+1 -∆t(q -L)φ (i)
s . Using similar arguments to those by Boyarchenko and Levendorski ǐ (2009), it can be shown that for s = n -1, n -2, ..., 0, the function G i s is a non-decreasing continuous function satisfying bound (2.18) with σ + = 1, σ -= 0; in addition,

G i s (-∞) < 0 < G i s (+∞) = +∞. (5.10) 
Then G i s (x) satisfies the conditions of Theorem 2.6 (Boyarchenko and Levendorski ǐ ( 2009)). Due to this theorem and to Proposition 2.1, we obtain that the following statements hold:

1. the function wi s := E + q G i s (5.11)
is continuous; it increases and satisfies (5.10);

2. the equation wi s (h) = 0 (5.12) has a unique solution, denoted by h i s ;

3. the hitting time of (-∞, h i s ], τ (h i s ) is a unique optimal stopping time;

4. (Carr's approximation to) the swing option value with i exercise rights at the moment s is given by

v i s = (q∆t) -1 E - q 1 (h i s ,+∞) wi s + φ (i) s ; (5.13) equivalently, ṽi s = (q∆t) -1 E - q 1 (h i s ,+∞) wi s ; (5.14) 5. ṽi s = v i s -φ (i)
s is a positive non-decreasing function that admits bound (2.18) with σ + = 1, σ -= 0 and satisfies ṽi s (+∞) = +∞; it vanishes below h i s and increases on [h i s , +∞).

Because functions G i s and wi s tend to plus infinity as x → +∞, the numerical calculation of the integrals in (5.11), (5.13) may face certain difficulties. To improve the convergence, we reformulate the algorithm in terms of the bounded functions v i s . Taking into account (5.4) and (2.5), G i s can be rewritten as follows:

G i s (x) = v i s+1 (x) -∆t(q -L)u (i-1) s (x) -∆t(q -L)(K -e x ) = v i s+1 (x) -ũ(i-1) s (x) -(∆tKq -e x ), (5.15) 
where ũi s (x) can be approximated by the formulae ũ0 s (x) = 0;

(5.16)

ũi s (x) = 0, t s > T -δ; (5.17) ũi s (x) = E[e -r(δ-∆t) v (i) s+k (X t s+1 ,x t s+k )] + o(∆t), t s ≤ T -δ. (5.18) 
Notice that we can easily compute the expectation in the RHS of (5.18) using the Fourier transform technique (see, e.g., [START_REF] Carr | Option valuation using the Fast Fourier Transform[END_REF] or Boyarchenko and Levendorski ǐ (2002)) as follows:

ũi s (x) ≈ (2π) -1 e -ρx +∞ -∞ e ixξ-(δ-∆t)(r+ψ(ξ+iρ)) v(i),ρ s+k (ξ)dξ, (5.19) 
where v(i),ρ s (ξ) is the Fourier transform of the price v (i) s (x) multiplied by an appropriate damping exponential factor e ρx ; in our case, ρ > 0. Numerically, the formula (5. [START_REF] Jaillet | Valuation of Commodity-Based Swing Options[END_REF]) can be efficiently realised by means of the FFT technique (cf. [START_REF] Carr | Option valuation using the Fast Fourier Transform[END_REF]).

However, for very short refracting periods δ, the integrand in (5.19) may decay slowly at infinity (see e.g. [START_REF] Lord | A fast and accurate FFT-based method for pricing early-exercise options under L.evy processes[END_REF]). Hence, the numerical implementation of the Fourier transform may not be sufficiently accurate. To circumvent the potential numerical pricing difficulties when dealing with the case δ = k∆t, k > 1, (k is not too large and ∆t is small), the finite difference approach proposed in Section 4 can be used efficiently to find ũi s (x). The integral in (5.19) can be interpreted as the solution at time ∆t to the problem (4.2), with t s instead of t. Finally, if δ = ∆t, then ũi s (x) ≈ v (i) s+k (x). Now, we can rewrite (5.13) as follows:

v i s = (q∆t) -1 E - q (1 (h i s ,+∞) w i s -1 (-∞;h i s ] w i s,0 ), (5.20) 
where

w i s = E + q v i s+1 ;
(5.21)

w i s,0 = E + q (ũ (i-1) s (x) + ∆tKq -e x ) = E + q ũ(i-1) s (x) + ∆tKq -ϕ + q (-i)e x , (5.22) 
and h i s is a solution to the equation w i s = w i s,0 .

(5.23)

Notice that in (5.20) and (5.21), the functions in the arguments of the operators E - q and E + q are bounded. The algorithm can be efficiently realised by using the Fast Wiener-Hopf factorisation method (see details in Section 2, Kudryavtsev and Levendorski ǐ (2009)).

Numerical results

In this section, we numerically illustrate the efficiency and the robustness of the proposed methods using the parameters of the numerical examples for pricing swing options in the Black-Scholes and CGMY models provided in [START_REF] Wilhelm | Finite element valuation of swing options[END_REF].

We consider a put swing option with n = 1, 2, 3 exercise numbers and a refracting period δ = 0.1. We assume that the initial value of the stock prices is S = 100, the exercise price K = 100, the maturity T = 1, and the force of the interest rate r = 0.05.

In order to solve numerically the PIDE by using the finite difference scheme, we first localise the variables and the integral term to bounded domains. We use for this purpose the estimates for the localisation domain and truncation of large jumps given in [START_REF] Voltchkova | Deterministic methods for option pricing in exponential Lévy models[END_REF].

In the case of Wiener-Hopf approach, we use adaptive method from Kudryavtsev and Levendorskii (2009). For a fixed number of time steps, N , and step in x-space, ∆x, we increase the domain in xspace two-fold to ensure that the price does not change significantly. In the dual space it corresponds to increasing the number of points M . Fix the space step ∆x > 0 and the number of space points (and dual space points) M = 2 m . Define the partitions of the normalised log-price domain [-M ∆x 2 ; M ∆x 2 ) by points x k = -M ∆x 2 + k∆x, k = 0, ..., M -1, and the frequency domain [-π ∆x ; π ∆x ] by points ξ l = 2πl h∆x , l = -M/2, ..., M/2.

In our examples both methods use a spatial discretisation step ∆x = 0.001 and a varying number of time steps N = 50, 100, 200. In the Wiener-Hopf approach, the optimal choice of the number of the space points is M = 4096 (the doubling the number M changes the option prices by 0.0001% or less).

We propose first to assess the numerical robustness of our algorithm in the Black-Scholes case, using the volatility σ = 0.3. In Table 1, we report the prices (with time in seconds in parentheses) with the relative errors in a Black-Scholes framework, using the finite difference method (FD) proposed in Section 4 and the Wiener-Hopf approach (FWHF) proposed in Section 5. As benchmark solutions, we take the ones provided in Wilhelm and Winter (2008) (B-WW). [START_REF] Wilhelm | Finite element valuation of swing options[END_REF], and thus, we use as the benchmark value the FWHF method with a very fine mesh grid (∆x = 0.0002, N = 800 and M = 32768), so that the doubling the number N , decreasing the space step twice and increasing the number of points 4-fold change the option prices by 0.02% or less. In Table 2, we report the numerical results for the CGMY model. [START_REF] Koponen | Analytic approach to the problem of convergence of truncated Lévy flights towards the Gaussian stochastic process[END_REF].306 (1398) 0,20% 0,03% -0,15% Table 3 reports the prices of swing options in the CGMY model with decreasing values of refracting periods δ = 0.1, 0.01, 0.001, 0. The prices are calculated using the FWHF method with a spatial discretisation step ∆x = 0.001 and a number of time steps N = 1000; the other parameters remain the same. We see that the sequence of the prices grows up to the limit value as the refracting period goes to 0. The limit value is the solution to the problem (3.2) with the reward function in (3.3) defined for zero refracting period. Hence, in the limit case, we obtain a simplified problem, because we do not need to calculate the expectation in (3.3). All computations were performed in double precision on an Eee PC with the following characteristics: CPU Atom N450, 1.67 Ghz, 2Gb of RAM.

The numerical results confirm the reliability of both approaches showing the robustness of the methods. In particular, the Wiener-Hopf approach is undoubtedly a very precise and efficient method for pricing swing options in the presence of multiple jumps.

. 3 )

 3 Note that the problem (5.2)-(5.3) can be obtained by discretisation of the time derivative in the generalised Black-Scholes equation (see details in Boyarchenko and Levendorski ǐ (2009) and the bibliography therein).

  [START_REF] Madan | The variance Gamma process and option pricing[END_REF]). VGP satisfy the conditions of the first definition but not the second one, as the characteristic exponent behaves like const • ln |ξ|, as ξ → ∞. The characteristic exponent of a pure jump CGMY model is given by

	introduced a symmetric version; Boyarchenko and Levendorski ǐ (2000) gave a non-symmetric generalisation; later, a subclass of this model appeared under the name CGMY -model in Carr et al. (2002), and Boyarchenko and Levendorski ǐ (2002) used the name KoBoL family. The important exception is Variance Gamma Processes (VGP; see, e.g., Example 2.1.

Table 1 :

 1 Swing options prices in the Black-Scholes model provide numerical results in a Lévy market model. To be exact, we use the CGMY model (Carr et al. 2002) with C = 1, G = 10, M = 10, Y = 0.5. No comparison results are available in the paper by

				Prices		Relative errors
		N	n=1	n=2	n=3	n=1	n=2	n=3
	FWHF	50	9.786 (0.22)	19.130 (0.7)	27.968 (1.17) -0,85% -0,65% -0,56%
		100	9.826 (0.42) 19.190 (1.38)	28.045 (2.33) -0,45% -0,34% -0,29%
		200	9.848 (0.83) 19.222 (2.72)	28.085 (4.59) -0,22% -0,17% -0,15%
		B-WW	9.8700	19.2550	28.1265	-	-	-
	FD	50	9.834 (0.12) 19.096 (5.16)	27.711 (8.10) -0,36% -0,83% -1,48%
		100	9.864 (0.27) 19.184 (8.64) 27.925 (16.47) -0,06% -0,37% -0,72%
		200	9.867 (0.57) 19.220 (16.68) 28.027 (33.0) -0,03% -0,18% -0,35%
	Furthermore, we					

Table 2 :

 2 Swing options prices in the CGMY model

				Prices		Relative errors
		N	n=1	n=2	n=3	n=1	n=2	n=3
	FWHF	50	7.100 (0.22) 13.859 (0.7)	20.228 (1.17) -0,80% -0,61% -0,54%
		100	7.131 (0.42) 13.905 (1.38) 20.287 (2.33) -0,36% -0,28% -0,25%
		200	7.147 (0.83) 13.928 (2.72) 20.317 (4.59) -0,14% -0,11% -0,10%
		B-FWHF	7.157	13.944	20.337	-	-	-
	FD	50	7.173 (1.20) 13.887 (37.1) 20.102 (76.1)	0,22% -0,41% -1,16%
		100	7.172 (2.31) 13.928 (146) 20.238 (286.5) 0,21% -0,11% -0,49%
		200	7.171 (4.56) 13.948 (751)			

Table 3 :

 3 Convergence of swing options prices in the CGMY model

		δ	n=3
	FWHF	0.1	20.3416
		0.01 21.3701
		0.001 21.4699
		0.	21.4760

Acknowledgements

The first author gratefully acknowledges financial support from the European Science Foundation (ESF) through the Short Visit Grant number 3404 of the program "Advanced Mathematical Methods for Finance" (AMaMeF).