
HAL Id: hal-00918569
https://hal.science/hal-00918569v1

Submitted on 13 Dec 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Using Meta-model Coverage to Qualify Test Oracles
Olivier Finot, Jean-Marie Mottu, Gerson Sunyé, Thomas Degueule

To cite this version:
Olivier Finot, Jean-Marie Mottu, Gerson Sunyé, Thomas Degueule. Using Meta-model Coverage to
Qualify Test Oracles. Analysis of Model Transformations, Sep 2013, Miami, United States. pp.1613-
0073. �hal-00918569�

https://hal.science/hal-00918569v1
https://hal.archives-ouvertes.fr


Using Meta-model Coverage

to Qualify Test Oracles

Olivier Finot, Jean-Marie Mottu, Gerson Sunyé, and Thomas Degueule

LINA CNRS UMR 6241 - University of Nantes
2, rue de la Houssinière, F-44322 Nantes Cedex, France

firstname.lastname@univ-nantes.fr

Abstract. The definition of oracle is a significant part of model trans-
formation testing. The tester has to ensure their quality. Rather than
using mutation analysis which is an implementation dependent and ex-
pensive task, we propose to qualify oracles by measuring their coverage
of the transformation’s specification.
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1 Introduction

Model transformations are among the key elements of Model Driven Engineering.
As for any other piece of software, developers must ensure that implementations
are correct w.r.t. specifications. Software testing is a well-known technique for
ensuring the correctness of an implementation. Testing a transformation consists
of providing a set of test cases, where each test case is mainly composed of a
test model and a test oracle. The role of the latter is to ensure that the output
model produced by executing the test model over the transformation under test
(TUT) is correct w.r.t. the transformation specification. Defining a test oracle is
usually a manual task, performed by the tester, which relies on the specification.

In the context of model transformation testing, the qualification and genera-
tion of test models have already been studied [1]. However, beyond the scope of
model transformation testing, few studies have been dedicated to the evaluation
of test oracles. Mutation analysis [2] is a technique used to qualify test cases,
according to their ability to detect real faults in an implementation. Faulty ver-
sions of the program, or mutants, are created by voluntary injecting faults in the
TUT. The mutants are then executed over the test data and the oracles check
the produced models. The more mutants an oracle detects, the more efficient it
is. However performing mutation analysis is an expensive task.

The goal of this paper is to propose a lighter approach to qualify oracles
for model transformation testing. Instead of using mutation analysis, we rely on
output meta-model coverage, i.e., we measure the elements of the output meta-
model that are exercised by the oracle. We claim that between two sets of oracles,
the one covering more elements of the output meta-model is able to detect more
faults than the other. When measuring the coverage of the output meta-model,



the tester obtains two results: a coverage rate and a list of uncovered elements.
The coverage rate is an indicator of the oracle’s quality; the more an oracle
covers the output meta-model, the higher its quality is. The list of uncovered
elements is an indicator on how to improve the oracle. To validate our approach,
we developed a tool to qualify oracles, relying on meta-model coverage and we
compared its results with the results of mutation analysis on two case studies.
Experiments show that sets of oracles with an higher coverage rate kill more
mutants, and therefore detect more errors.

This paper is organized as follows. Section 2 discusses the evaluation of test
case quality, including outside the scope of model transformations. Section 3
details our approach to qualify oracles for model transformation testing based
on their coverage of the output meta-model. Section 4 presents the experiments
we ran on two case studies and discusses the results.

2 Context

Test case quality has been studied both in the general scope of software testing
and in the topic of model transformation testing.

2.1 Test Case Representativeness

Test Data Representativeness Several studies have been conducted on the
generation or selection of test data. Many criteria to evaluate test data rely on
the coverage of the System Under Test (SUT) by the test data. Zhu et al. [3]
list several of these criteria. In the simplest criterion, the test data must cover
each of the SUT’s instructions. In another one, the tester checks that all the
execution paths are covered during the execution of the SUT over the test suite.

Other approaches rely on the SUT’s specification rather than it’s implemen-
tation. With Model Based Testing (MBT), the tester generates test cases using
a model specifying the SUT. Utting et al. [4] classified existing approaches and
tools using MBT. In their study, the test case qualification relies only on the
test data selection criterion. This selection can be based on the coverage of the
model or it can also be random and stochastic. Also in the work of Dias Neto
et al. [5], only the criteria of control or data flow coverage are presented on the
topic of test case evaluation.

Test Oracle Evaluation In a test case, the oracle is as important as the test
data. However, while the generation and selection of test data has been the
subject of many studies, there has been fewer about the oracle. Bertolino [6]
recognizes that the oracle quality is a topic that should be more studied. Staats
et al. [7] also insist on the importance of the test oracle. They propose to describe
a testing system as a collection (P, S, T, O, corr, corrt) where:

– S is a set of specifications
– P is a set of programs
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– T is a set of test data
– O is a set of oracles working as predicates
– corr ⊆ P × S

– corrt ⊆ T × P × S

O is a set of oracles (predicates) o such that o : T × P → Boolean. For a
given t ∈ T and p ∈ P , o(t, p) = true denotes that the test passes. corr(p, o) =
true denotes that p is correct w.r.t. s. corrt(t, p, s) = true denotes that the
specification s holds while executing p with the test data t. Hoffman [8] considers
completeness as one characteristic of test oracles. Completeness can go from
no prediction of the expected result to a complete duplication that is another
implementation of the SUT. Staats et al. [7] also mention the oracle completeness
but they define it differently; an oracle is complete w.r.t. p and s if for each test
data t:

corrt(t, p, s) ⇒ o(t, p)1

If p is correct w.r.t. s for test data t, then the test passes. A complete oracle
does not produce false positives. They also consider and define the soundness of
an oracle; an oracle is sound if:

o(t, p) ⇒ corrt(t, p, s)

If the test passes, then p is correct w.r.t. s for the test data t. Therefore, if
there is an error in the program the test fails. An oracle that is both sound and
complete is perfect:

∀t, o(t, p) ⇔ corrt(t, p, s)

They also propose to compare test oracles based on their power. They state
that an oracle o1 is more powerful than an other o2 w.r.t. a test set TS (written
o1 ≥T S o2) for a program p and a specification s if:

∀t ∈ TS, o1(t, p) ⇒ o2(t, p)

If o1 does not detect a fault for a given test case, then neither does o2.
Mutation analysis can then be used to qualify test oracles [9,10]. In this case it
evaluates an oracle ability to detect faults; therefore it could be used to compare
test oracles. The more faults an oracle detects, the more powerful it is. However,
as we mentioned before, mutation analysis is too expensive to be used to compare
oracles efficiently.

2.2 Test Case Quality in Model Transformation Testing

In this section we discuss published studies on the topic of test case quality
for model transformation testing. They cover the generation and selection of
representative test models or the evaluation of the oracle.

1 For a predicate Q(x), we simply write Q(x) instead of Q(x) = true
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Test Models Generation Fleurey et al. [1] propose to qualify test models
based on their coverage of the input meta-model. They adapted criteria defined
by Andrews et al. [11] for UML Class diagram coverage:

– Class Coverage: each meta-class is instantiated at least once.
– Association End Multiplicities: for each association extremity, each rep-

resentative multiplicity must be covered.
– Class Attribute: for each attribute, each representative value interesting

for the tester must be covered.

The last two criteria use the notion of representative value. The representative
values are determined using partition analysis. An attribute or a multiplicity’s
value domain is partitioned into equivalence classes inside which the transfor-
mation’s behavior is believed to be the same. One value is chosen by equivalence
class. Sen et al. [12] developed a tool based on these criteria to automatically
generate test models.

Oracle Qualification Mottu et al. [13] use mutation analysis to evaluate model
transformation test oracles. They create mutants for the TUT, then transform
the input models with those mutants. In the following step, they compare the
output models produced by the TUT with those produced by the mutants; if
there is a difference, the mutant is killed. Among the alive mutants the tester
must identify the ones that are equivalent to the TUT and remove them. Then,
they evaluate the possibility of improving the mutation score by adding new
test models. Once a sufficient mutation score is reached, they check the output
models produced by the mutants with their oracles; the mutant is killed if the
test fails. The higher is the mutation score, the better is the oracle.

However, despite its effectiveness, mutation analysis has two main drawbacks.
The first one is that the application of mutation analysis depends on the TUT’s
transformation language. Mottu et al. defined generic mutation operators, which
are language independent. However, the creation of mutants is manually done
by the tester and the application of the operators depends of the transformation
language. Furthermore, mutation analysis is an expensive task due to the costs
of execution and a lack of automation.

3 Using Meta-model Coverage to Compare Test Oracles

Our goal is to provide an alternative to the expensive and language-dependent
mutation analysis process, to qualify test oracles dedicated to model transforma-
tions. To qualify an oracle we measure its coverage of the TUT’s specification.
Our approach focuses on the models and is independent from the TUT. It can be
applied to any model in the widely used EMF framework. We first present our
approach, then detail the process of measuring the coverage of the specification
by the oracles.
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3.1 Qualifying Model Transformations’ Test Oracles

For Staats et al. [7] an oracle’s power is its ability to detect faults. We use
this power as an indicator of an oracle’s quality. As with mutation analysis, an
oracle of higher quality detects more faults. We qualify oracles by measuring their
coverage of the TUT’s specification. More precisely, we measure the coverage of
the output meta-model by the set of oracles in the test suite.

When applying our approach to a transformation and a set of oracles (for
instance expected output models for each of the test models), the tester will
measure the coverage of the output meta-model by all of these oracles together.
The result of this measure is composed of two elements: a coverage rate and a
list of uncovered elements. The goal of the tester is to maximize the coverage in
order to obtain an efficient oracles set. If the coverage rate is lower than 100%,
the oracles may have room for improvement. To improve the oracle, she will try
to cover one or more of the uncovered elements.

However, reaching a coverage rate of 100% is not always feasible. The output
meta-model may contain elements that should not be instantiated in a correct
output model w.r.t. the transformation’s specification. Given the list of uncov-
ered elements, the tester may decide that some of these elements should not
be covered. Therefore, the tester does not measure the coverage based on the
complete output meta-model. She starts by defining the effective output meta-
model, containing only elements handled by the transformation, according to its
specification.

3.2 Output Meta-Model Coverage

We measure the coverage of the output meta-model by a set of test oracles.
Fleurey et al. [1] qualify test models based on their coverage of the input meta-
model. We propose to adapt these criteria for the coverage of the output meta-
model. We use the same criteria for the coverage of the meta-model (Class

Coverage, Association Coverage, Class Attribute). However, while Fleurey
et al. combine these criteria to build representative models, we do not.

For input models, it is important to combine elements’ values as different
combinations can produce several different results. However for output models
it is not as relevant. Fleurey et al. proposed a way to handle inheritance links,
only considering concrete meta-classes. For each of them, they check all their
proper and inherited properties (attributes and references). We use the same
process. When measuring the meta-model coverage of a given model, we mark
as covered any EAttribute or EReference instantiated in the model. Then, each
concrete EClass is marked as covered if all of its properties are.

Measuring the coverage of an output meta-model by a set of oracles is a two
steps process (cf Figure 1):

1. The first one transforms the meta-model MMout to add coverage informa-
tion. Each element to be covered is annotated. This annotated meta-model
is the coverage model.
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Fig. 1. Measuring Output Meta-model Coverage of Test Oracles

2. In the second one, the Coverage Checker analyses the coverage model and
a set of oracles, producing two outputs. These outputs are the computed
coverage rate and a list of all the uncovered elements.

4 Experiments and Discussion

In this section, we validate our approach on two case studies. First we present
the two transformations under test (already used in previous works as detailed
in [14]), then we detail our testing protocol and finally we discuss the results we
obtain (experimental material is available2).

4.1 Case Studies

1. Flattening of a finite state machine fsm2ffsm is a refactoring, the flat-
tening of a hierarchical state machine. The input model of the transformation
is a hierarchical state machine, the output model is another state machine
expressing the same behavior without any composite state. This transforma-
tion has been implemented in Kermeta3.

2. UML to CSP uml2csp transforms a simplified UML activity diagram into
its corresponding modeled CSP program. We implemented it in ATL4.

4.2 Evaluation Protocol

We use mutation analysis to evaluate the quality of the oracles in the same way
as Mottu et al. in [13]. First, we create a set of mutants. Second, we create a set
of test models which reaches a 100% mutation score, meaning that those test
models are able to highlight the injected faults. Third, we create a set of oracles
and we measure how many injected faults they detect (knowing that test models
highlight all of them).

Mutation Analysis Using the mutation operators dedicated to model trans-
formation testing in [13], we create mutants by injecting one single fault per
version. Once the equivalent mutants are removed, we obtain 83 mutants for
fsm2ffsm and 137 for uml2csp.

2 https://sites.google.com/site/qualifyingtestoraclesmt/
3 http://www.kermeta.org
4 http://www.eclipse.org/atl
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Test Models We combine input meta-model coverage and testing knowledge to
create test models reaching 100% mutation score. Using the approach proposed
by Sen et al. [15], we define model fragments. The intent of these fragments is
to cover the input meta-model according to a strategy. Additionally, we improve
the fragments using our own knowledge of the transformation [12], increasing
the coverage of the specification.

For fsm2ffsm, we obtain 11 fragments using the IFCombΣ strategy. Each
model fragment is completed producing two test models of different sizes. We
finally obtain 22 test models.

For uml2csp, the IFCombΠ strategy is used to obtain 8 model fragments.
The low number of fragments is due to the fact that there are few references and
many inheritances in the output meta-model used for this transformation, and
almost none of the inherited classes or their superclasses contain attributes or
references. Thus, in order to cover these classes, for each reference towards the
superclass, we define one model for each of its non abstract inherited classes. We
define all the possible combinations, and after eliminating the incorrect cases,
we create 35 test models.

Test Oracles For each case study we create several sets of oracles, using two
of the existing oracle functions [14]: comparison with an expected output model
and contracts.

For the first oracle function we create a complete expected model for each
test case. We also create several sets of partial ones as introduced in previous
work [14]. All of our oracle sets for each case study rely on the same expected
models, but for the partial ones we use a filtered comparison to control only
part of the output model. We systematically create partial oracles by rejecting
successively each meta-class, each attribute, and each reference. In each partial
oracle, we remove only one element.

The other oracle function uses contracts expressing properties on the output
models, or between the test models and their corresponding outputs, as used
by Cariou et al [16]. We write small contracts. Each contract corresponds to
a property we want to check; for instance one contract checks that there is no
composite states in the result of the transformation that flattens a state machine.
By incrementally combining our small contracts we build new ones. We start by
choosing the contract with the lower coverage of the output meta-model, then
we gradually add each of the others. Each time we add the contract which will
minimize the coverage rate’s improvement.

Afterwards, for each oracle set, we measure its coverage of the effective output
meta-model.

4.3 Results and Discussions

To validate our approach we must answer the following questions :

1. Can we measure the coverage of the output meta-model by a test oracle?
2. Is the coverage of the output meta-model related to the mutation score?
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3. Does a 100% coverage rate indicates that the set of oracles is sound for the
transformation?

4. Is the coverage of the output meta-model a good indicator of the quality of
a set of oracles?

We developed and used tools to measure the coverage of a meta-model by a
test oracle (or a set of test oracles) thus answering the first question.

In order to answer the second question, let us take a look at the graphs from
Figure 2 and Figure 3. They show the relationship between meta-model coverage
rate and mutation score, for each case study and for both types of oracles. On
the left hand side graphs, each mark corresponds to a set of oracles (or several
sets of oracles having the same coverage rate and the same mutation score). We
also add a trend curve to see the impact of the coverage rate on the mutation
score. The right hand side graphs display two series of values. Each triangle mark
corresponds to one individual small contract, while each square mark represents
one step of the definition of the incremental contracts. We add a trend curve for
each of these two series, the dotted one corresponds to individual oracles and
the full one corresponds to the incremental ones.

(a) Oracles using Expected
Outputs

(b) Oracles using Contracts

Fig. 2. Relations Between Coverage and Mutation Score with fsm2ffsm

In the graph from Figure 2(a), we can see that by combining input meta-
model coverage strategies with our knowledge of the transformation, we kill all
of the mutants. We have 9 sets of oracles, however 4 of them having the same
coverage rate kill the same number of mutants. The set of oracles without any
filtering kill all of the mutants. In this case we can see that when the coverage rate
increases then the mutation score does not decrease, at least, it stays unchanged.
Moreover the trend curve is strictly growing, meaning that the mutation score
generally grows alongside the coverage rate. These two measures are related.

In the graph from Figure 2(b), we can see that with our incremental contracts
we kill 93% of the mutants. Both series contain 8 contracts and in both cases 2
pairs of contracts have the same coverage rate and mutation score. We can see
from both trend curves that improving the coverage rate improves the mutation
score.
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Answering the third question we can see that while we cover the whole ef-
fective output meta-model, we do not kill all the mutants. Therefore a coverage
rate of 100% does not imply that our oracles are sound.

For our other case study, in the graph from Figure 3(a) we can see the
measures concerning the oracles relying on comparison with a partial expected
output model. We have 16 sets of oracles, however 5 of them have the same
coverage rate along with the same mutation score. The set of oracles without
any filtering once again kills all the mutants. The other sets of oracles have a
lower coverage of the output meta-model and kill less mutants (between 86.86%
and 95.91%). Answering the second question, similarly to the first case study,
we see that the mutation score grows alongside the coverage rate.

As for the contracts, the graph from Figure 3(b) once again shows that we
managed to entirely cover the effective output meta-model. Our final incremental
oracle covering 100% of the output meta-model does not kill all the mutants, two
of them are still alive. This result once again answers the third question. While
the trend curve for the incremental contracts shows a noticeable improvement in
the mutation score with the growth of the coverage rate, it is not so obvious for
the individual partial contracts. Still in this case the trend curve indicates that
improving the mutation score does not diminish the average mutation score.

(a) Oracles using Expected Outputs (b) Oracles using Contracts

Fig. 3. Relations Between Coverage and Mutation Score with UML2CSP

For both case studies, we are able to measure the coverage of the effective
output meta-model by an oracle or a set of oracles. From the obtained results, we
notice that a better coverage rate comes with a better mutation score. However,
we can also notice that entirely covering the effective output meta-model does
not imply that the oracle is sound, since some faults may not be detected. Still
to answer our fourth question, while our approach is not as precise as mutation
analysis, it has some advantages: it is lighter and it is not dependent from the
implementation of the transformation. Therefore, we can conclude that the cov-
erage rate of the effective output meta-model by an oracle is a good indicator of
the quality of this oracle.
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5 Conclusion

In this paper we presented an approach to qualify oracles for model transforma-
tion testing, based on meta-model coverage. The more elements an oracle covers,
the higher is its quality. We validated our approach by comparing the results of
two different experiments with those of mutation analysis for the same exper-
iments. The experiments showed that the oracles covering more meta-model
elements killed more mutants. An important benefit of meta-model coverage
over mutation analysis to qualify test oracles is that coverage is implementation
independent and is less expensive to perform.
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