
HAL Id: hal-00918505
https://hal.science/hal-00918505v1

Submitted on 13 Dec 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Building Test Harness From Service-based Component
Models

Pascal Andre, Jean-Marie Mottu, Gilles Ardourel

To cite this version:
Pascal Andre, Jean-Marie Mottu, Gilles Ardourel. Building Test Harness From Service-based Com-
ponent Models. MoDeVVa 2013 Workshop on Model Driven Engineering, Verification and Validation,
Oct 2013, Miami, United States. pp. 11-20, ISSN 1613-0073. �hal-00918505�

https://hal.science/hal-00918505v1
https://hal.archives-ouvertes.fr

Building Test Harness

from Service-based Component Models

Pascal André, Jean-Marie Mottu, and Gilles Ardourel

LINA CNRS UMR 6241 - University of Nantes
2, rue de la Houssinière, F-44322 Nantes Cedex, France

firstname.lastname@univ-nantes.fr

Abstract. In model-driven development, the correctness of models is
essential. Testing as soon as possible reduces the cost of the verification
and validation process. Considering separately PIM and PSM reduces
the test complexity and helps the evolution of the system model. In
order to test models before their final implementation, we propose an
approach to guide the tester through the process of designing tests at
the model level. We target model testing for Service-based Component
Models. The approach produces test harness and provides information
on how to bind the services of the components under test and how to
insert the relevant data. The tests are then executed by plunging the
harness into a technical platform.

Keywords: Test Harness, Model Conformance, Test Tool, MDD

1 Introduction

Testing as early as possible reduces the cost of Verification and Validation
(V&V) [1]. In Model-Driven Development (MDD), V&V is improved by directly
testing models for correctness [2]. Testing models helps to focus the effort on the
early detection of platform independent errors, which are costly when detected
too late. Testing models does not consider implementation specific errors and
thus reduces the complexity of testing [3]. Designing the tests on models ease
their adaptation when models are refactored. However, building and running
tests on models remain a challenge.

We target service-based component models with behaviour, including data
and communications. The specification detail level is sufficient enough to enable
various kinds of test at the model level. While testing such software components,
the encapsulation should be preserved. Therefore, finding where and how pro-
viding test data is difficult: variables are accessed through services, which are
available from the interface of the component but also from other required ser-
vices. Designing the test fixture of a service implies a sequence of service calls
additionally to the component initialisation. In [4], Gross mentioned issues in
Component-Based Software (CBS) testing: testing in a new context (i.e. devel-
opment context one, deployment context ones), lack of access to the internal

working of a component. Ghosh et al. [5]. also identify several problems: the
selection of subsets of components to be tested and the creation of testing com-
ponents sequences. Our work is concerned with these issues.

We consider the building of test harness for unit and integration testing ded-
icated to Service-based Component Systems. Test harnesses are used to provide
test data, to run the test, to get the verdict (fail or pass). We create test harness
from the platform independent model (PIM) of the system under test (SUT) and
from test intentions. Those intentions declare which services are tested in which
context, with which data. The tester incrementally builds a harness to run the
test in an appropriate context, especially without breaking the encapsulation.
The tester needs assistance for this task.

In this paper, we propose an approach assisting the test of service-based
component models. This approach integrates the tests at the model level and is
provided with tools. First, we propose operating at the model level, we modelise
the tests at the same abstraction level as the component model. We build test

harnesses as component systems made of Components Under Test (CUT) and
Test Components (TC), which are created to test. As a consequence, the assem-
bly of test components and regular components can benefit from the develop-
ment tools associated with the component model. Additionally, test components
could be transformed into platform specific models, thus capitalising the early
testing effort. Second, we propose a guided process to assist the tester to man-
age the complexity of the component under test. The test harness is obtained
from transformations of the SUT, guided by the test intention, enriched by test
components, and assisted by several analyses and heuristics proposing relevant
information and ensuring model correctness through verifications. Third, we il-
lustrate the approach on a motivating example, a platoon of vehicles. We have
developed a set of prototype tools designed to experiment the proposals. It is
implemented in COSTO, the tool support of the Kmelia component model [6].

2 Testing Service-based Component Model

This section introduces the testing of service-based component model and the
challenges to be tackled. It describes our approach on a motivating example.

2.1 Service-based Component Model

A component system is an assembly of components which services are bound by
assembly links. The interface of a component defines its provided and required

services. The interface of a service defines a contract to be satisfied when calling
it. The service may communicate, and the assembly links denote communication
channels. The set of all the services needed by a service is called its service

dependency. The required services can then be bound to provided services. These
needs are either satisfied internally by other services of the same component, or
specified as required services in the component’s interface and satisfied by other
components. A composite component encapsulates an assembly.

Fig. 1. Component and service notation

In the example of Figure 1, the component c : Client requires a service pro-

vided by the component s :Server, through an assembly link. This assembly is
illustrated with the SCA notation [7]. We extended the SCA notation (right
part of the legend of Figure 1) to make explicit the dependencies and data use-
ful for testing: (i) typed data define the component state, (ii) services access
these variables, (iii) provided services internally depends on required services.

Figure 2 represents a motivating example: a simplified platoon of several ve-
hicles. Each vehicle computes its own state (speed and position) by considering
its current state, its predecessor’s state, and also a safety distance between vehi-
cles. Each vehicle is a component providing its speed and position and requiring
predecessor’s speed and position. Three vehicles are assembled in that example.
Each vehicle provides a configuration service conf initiating its state, a service
run launching the platoon and requiring the service computeSpeed to calculate
new position and speed. The leader is another component controlling its own
values according to a position goal.

Fig. 2. Example of a component model of the Platoon system

2.2 Testing Components at the Modelling Stage

Conformance testing aims to control that system under test behave correctly
according to their specification. With Service-based Components, we test that

the behaviour conforms the specification of their interfaces. In the context of
Service-Based Component Applications, the test harness is designed by selecting
the components under test, replacing their clients and their servers (the first with
mocks, the last with test drivers), then providing test data to the test drivers and
getting their verdicts [8]. Test harness should preserve component encapsulation.
JUnit classes are an example of test harnesses for Java OO programs.

In MDD, Service-based Component System is modelised with a PIM, and
part of its components (the SUT) is tested depending on a test intention. The test
intention defines for each test which part of the system is tested (component(s)),
with which entry point (a service), in which situation (SUT state), with which
request (service call with parameters), expecting which results. At the beginning,
the test intention is tester’s knowledge, then she has to concretely prepare and
run the test to get a verdict from oracles.

Testing such a SUT is not just creating test data and oracles, the difficulty
is to consider components in an appropriate context (assembly of components),
to run the test data on them, get the output to be checked with the oracles. The
building of test harness to fulfil this task is an important work. Moreover, the
process of creating a test harness is not trivial for models of components.

We consider several characteristics making the test of component models an
original process: (i) Early specifications are often too abstract or incomplete to
be executable. In order to test service-based component, we have to execute it
in a consistent environment: its dependencies have to be satisfied by compatible
services and every operation used in the environment has to be concrete enough
or bound to a concrete operation. Furthermore, its environment must be able
to run test cases. (ii) In strongly encapsulated components, finding where and
how to insert data is challenging: variables are usually only accessible through
services and some data is required from external services. (iii) At the model
level, tests should be designed as models. Describing test artefacts like mocks

and drivers in the component modelling language provides several benefits: it is
easy to communicate with designers; tests follow the same validity rules as the
model for both consistency and execution, allowing the use of the development
tools associated with the component model. (iv) Models are subject to frequent
refactoring or even evolutions, which can compromise the applicability of existing
tests.

In this work, we are concerned with the building of test harness for service-
based component models. The tester chooses the components and their services
she tests (defined with the test intention). She orders the tests. She creates the
test data based on existing works considering the specification of component:
work of [13] with state machines, work of [14] performing LTS behaviours testing,
etc. She creates oracles, for instance, based on the contracts usually available
defining a service interface. Our approach assists the tester in building the test
harness allowing her to run such test data and to apply such oracles.

3 Assisting the test harness building

The construction process takes as input the System Under Test (SUT) model
which is a PIM (Platform Independent Model) and a test intention (Figure 3).
It is made of three activities (transformations). The first one builds the test

harness as an assembly with the SUT in a Test Specific Model (TSM) at the
model level. The second composes the harness with a Platform Description Model

(PDM) to get an executable model (code). During the execution, the concrete
data providers give the test data needed to run the test, and the concrete assert
functions return the verdicts. Designing the oracles and the data sets influences
the operational level. This point is out of concern in the rest of the paper.

Test Harness
Construction

SUT Model
(PIM)

Test Intention
 test (TI)

Test
execution Verdict

Data sources

Harness
+ SUT
(TSM)

Code
Mappings and

transformations

Operational Framework
(PDM)

Fig. 3. Testing process overview

3.1 Test Harness Construction

This section explains how the tester is guided to build a consistent test harness.
As noted in [5] (and filed under the issue C3), it is sometimes necessary to
consider different subsets of the architecture when testing a component, because
of the influence (e.g. race conditions) of the other components on the SUT. The
test harness is designed by (i) selecting the relevant subset of original components
and services to test, (ii) replacing all or parts of their clients (resp. servers) by
test drivers (resp. mocks), (iii) providing data sources. The test intention serves
as a guideline during the construction process.

As an example, we are intent on testing the conformance of the computeSpeed
(safeDistance : Integer) : Integer service of the mid component with the follow-
ing safety property: the distance between two neighbour vehicles is greater than

a value safeDistance . The service behaviour depends on (a) the recommended
safe distance from the predecessor, (b) the position and speed of the vehicle
itself and its predecessor. Coming back to the example of Figure 2, testing the
computeSpeed service of mid implies to give a value to the safeDistance param-
eter, to initialise the values of the pos and speed variables, which are used by
the computeSpeed service and to find providers for pilotspeed et pilotpos which
are required by computeSpeed. Only one component vehicle is under test here
because other ones are not necessary to test the computeSpeed service, but a
more complex architecture could have been retained.

The challenge for the tester is to manage the way these data can be provided.
They can be provided by the test driver, by the configuration step, or by other

components (original components or mock components). Finding the service to
be invoked in order to set the component in an acceptable state for the test is
not trivial. Our goal is to help the tester to manage this complexity, in order to
reduce testing effort. At this stage, assisting the harness building consists in:

1. Detecting missing features between the SUT and the test intention. This
detection is achieved by the verification of two properties:
(a) Correctness. All the service dependencies are satisfied in the scope of the

test harness. No pending or incompatible dependencies remain.
(b) Testability. All the formal test data are linked to values in the TSM

(variables, parameters, results...).
2. Proposing candidates for the missing features: which service can configure

data, can handle the test data or can fulfil missing required services?
3. Generating and linking test components (mocks, drivers as mirror services,

bindings, abstract functions...).

Fig. 4. A TSM : test harness for the mid component’s service computeSpeed (SUT)

In the TSM of Figure 4, the vtd test driver is responsible to put the computeSpeed
service in an adequate context (providing input data and oracle). The service
testcase1 of vtd contains only a computeSpeed call and an oracle evaluation.
To fix the computeSpeed requirements, the test designer could (1) ask for mock
components (with random values), (2) reuse the first component coming from
the SUT (and fulfil the requirements of first ...) or (3) design its own mock. This
variability enables several kinds of test and answers to the issue C3 of Ghosh et
al. [5]. Note that a single integer mock component im1 is used here because it
offers a better control of the delivered speed (intdata1) and position (intdata2),
but a harness with two independent integer mocks providing a single intdata
service would also be possible.

The data of computeSpeed test harness are bound in the following way: (a)
the safeDistance parameter is assigned in the call sequence of the test driver,
(b) the position and speed (pos and speed variables) of the mid vehicle under
test are bound to the conf service of mid, (c) the im1 mock component playing
the role of the predecessor is configured to return the position and speed of the
predecessor.

3.2 Mappings and Transformations

According to the MDD principles, the test will be executed by composing the test
harness with the PDM (Figure 3). The test data and test primitives (oracle...)
are provided by the PDM test support or implemented by the tester. The PIM
may include primitive types and functions (numbers, strings, I/O...) that must
also be mapped to the code level. These mappings are predefined in standard
libraries or user-defined. High-level TSM primitives are connected to low level
(PDM, code) functions, as illustrated by Figure 5. If the mapping is complete
and consistent, then the model is executable.

Fig. 5. Test harness Concrete data and Function Mapping

The goal of the Mappings and Transformations activity (Figure 3) is to fix
this composition. Each service involved in the test must be executable in a con-
sistent environment: its dependencies must be satisfied by compatible services,
and every operation used in the environment must be sufficiently concrete or
related to a specific operation. Every abstract type should be mapped to a con-
crete type. At this stage, assisting the harness building consists in (1) detecting
missing mappings between the TSM and PDM (Executability), (2) proposing
tracks for the missing mappings based on signatures, pre/post conditions... (all
the primitive types and functions are mapped to concrete ones, the test data
inputs have concrete entry points), (3) generating standard primitive fragments
(idle functions, random functions...). The mappings are stored in libraries in or-
der to be reused later and the entries can be duplicated to several PDM. This
activity induces an additional cost at model level, but the errors detected are
less expensive to solve than those of components and services. Moreover, if the
component model is implemented several times targeting several PDM, the tests
would be reused and part of the behaviour would have been checked before
runtime, as proposed here.

4 Experimentation

The test process of Figure 3 has been instrumented using the COSTO/Kmelia
tool1. Kmelia is a wide-spectrum language dedicated to the development of cor-
rect components and services [6]. Kmelia includes an abstract language for com-
putations, instead of links to the source code as in related languages like SCA,
AADL, Sofa or Fractal. This layer is useful to check models before transform-
ing to PSM. Kmelia is supported by the COSTO tool, a set of Eclipse plugins
including an editor, a type checker, several analysis tools.

The test harness construction has been experimented on the platoon exam-
ple. The goal was to build a harness to test the conformance of the service
computeSpeed as introduced in Section 3.

– The test intention is a special Kmelia component, where only the name and
description are mandatory. This trick enables to reuse the tool facilities and
to consider test design at the model level.

TEST_INTENTION P l a t o o n T e s t I n t e n t i o n
DESCRIPTION " the v e h i c l e w i l l s t op i f i t i s too c l o s e to the p r e v i o u s one "
INPUT VARIABLES

pos , p r e v i o u s _ p o s , m i n d i s t a n c e : I n t e g e r ;
OUTPUT VARIABLES

speed : I n t e g e r
ORACLE

speed=0

– During the process, the building tool (1) starts from a test intention, (2) asks
the user to select target system and services (or proposes some if the test
intention is detailed), (3) displays the board to match the test intention with
the SUT (Figure 6), (4) proposes candidates, (5) checks the correction and
testability properties, (6) goes back to step (2) until the TSM is complete,
(7) checks the executability properties and proposes candidates (from the
libraries) for the missing elements, (8) generates the code.

A web-appendix2 shows the details of this example.
The harness building activities (transformations, decisions, assistance and

generation) are implemented and integrated as COSTO functionalities. We de-
veloped the PDM framework in Java (7 packages, 50 classes, 540 methods and
3400 LOC). The service instanciation uses Java threads with an ad-hoc com-
munication layer based on buffered synchronous channels (monitors). We keep
strong traceability links from the code level to the PIM level for a better feed-
back on errors and also for animating the specification at the right level (GUI).
We add specific support for contract checking (assertions and oracles).

Compared with the Junit practice, the tester could focus on the "business"
part and did not need to care with Java details of the implementation. While
the specification of the components was available, the tester could not modify
them to make the test case more easy to write. He discovers the specification
elements on-the-fly when mapping them to the test intention.

1 http://www.lina.sciences.univ-nantes.fr/aelos/projects/kmelia/
2 http://www.lina.sciences.univ-nantes.fr/aelos/download/ModeVVa_app.pdf

Fig. 6. Component and service notation

5 Related Work

There are several works interested in generating tests for testing components.
In [9], Mariani et al. propose an approach for implementing self-testing com-

ponents. They move testing of component from development to deployment time.
In [10], Heineman applies Test Driven Development to component-based soft-
ware engineering. The component dependencies are managed with mocks, and
tests are run once components can be deployed. In contrary, in our proposal we
propose to test the components at the modelling phase, before implementation.

In [11], Edwards outlines a strategy for automated black-box testing of soft-
ware components. Components are considered in terms of object-oriented classes,
whereas we consider component as entity providing and requiring services.

In [12], Zhang introduces test-driven modeling to apply the XP test-driven
paradigm to an MDD process. Their approach designs test before modelling when
we design test after modelling. In [13], the authors target robustness testing of
components using rCOS. Their CUT approach involves functional contracts and
a dynamic contract. However, these approaches apply the tests on the target
platform when we design them at the model level and apply them on simulation
code.

6 Conclusion

In this paper, we described a method to integrate testing early in an MDD
process, by designing test artefacts as models. The test designer is assisted in

building component test harnesses from the component model under test and test
abstract information through a guided process. The COSTO/Kmelia framework
enabled to implement the process activities and to run the tests on the target
specific execution platform with a feedback at the model level. The benefits are
a shorter test engineering process with early feedback.

In future work, we will study different kinds of oracle contracts in order to
find which logics are best fitted to express them in a testable way as well as
ensuring a good traceability of the verdict. We will apply mutation analysis on
the models rather than on the generated code because such an approach can be
integrated in MDD while respecting the hypotheses of the mutation analysis.

References

1. G. Shanks, E. Tansley, and R. Weber, “Using ontology to validate conceptual
models,” Commun. ACM, vol. 46, no. 10, pp. 85–89, Oct. 2003.

2. M. Gogolla, J. Bohling, and M. Richters, “Validating uml and ocl models in use
by automatic snapshot generation,” Software and Systems Modeling, vol. 4, no. 4,
pp. 386–398, 2005.

3. M. Born, I. Schieferdecker, H.-g. Gross, and P. Santos, “Model-driven development
and testing - a case study,” in First European Workshop on MDA with Emphasis

on Industrial Application. Twente Univ., 2004, pp. 97–104.
4. H.-G. Gross, Component-based Software Testing With Uml. SpringerVerlag, 2004.
5. S. Ghosh and A. P. Mathur, “Issues in testing distributed component-based

systems,” in In First International ICSE Workshop on Testing Distributed

Component-Based Systems, 1999.
6. P. André, G. Ardourel, C. Attiogbé, and A. Lanoix, “Using assertions to enhance

the correctness of kmelia components and their assemblies,” ENTCS, vol. 263, pp.
5 – 30, 2010, proceedings of FACS 2009.

7. OSOA, “Service component architecture (sca): Sca assembly model v1.00 specifi-
cations,” Open SOA Collaboration, Specification Version 1.0, March 2007, online
http://www.osoa.org.

8. C. R. Rocha and E. Martins, “A method for model based test harness generation
for component testing,” J. Braz. Comp. Soc., vol. 14, no. 1, pp. 7–23, 2008.

9. L. Mariani, M. Pezzè, and D. Willmor, “Generation of integration tests for self-
testing components,” in FORTE Workshops, ser. LNCS, vol. 3236. Springer, 2004,
pp. 337–350.

10. G. Heineman, “Unit testing of software components with inter-component depen-
dencies,” in Component-Based Software Engineering, ser. LNCS. Springer Berlin
/ Heidelberg, 2009, vol. 5582, pp. 262–273.

11. S. H. Edwards, “A framework for practical, automated black-box testing of
component-based software,” Softw. Test., Verif. Reliab., vol. 11, no. 2, pp. 97–111,
2001.

12. Y. Zhang, “Test-driven modeling for model-driven development,” IEEE Software,
vol. 21, no. 5, pp. 80–86, 2004.

13. B. Lei, Z. Liu, C. Morisset, and X. Li, “State based robustness testing for compo-
nents,” Electr. Notes Theor. Comput. Sci., vol. 260, pp. 173–188, 2010.

14. B. Schätz and C. Pfaller, “Integrating component tests to system tests,” Electr.

Notes Theor. Comput. Sci., vol. 260, pp. 225–241, 2010.

