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This paper is devoted to second order necessary optimality conditions for the Mayer optimal control problem when the control set U is a closed subset of R m . We show that, in the absence of endpoint constraints, if an optimal control ū(•) is singular and integrable, then for almost every t such that ū(t) is in the interior of U , both the Goh and a generalized Legendre-Clebsch conditions hold true. Moreover, when the control set is a convex polytope, similar conditions are verified on the tangent subspace to U at ū(t) for almost all t's such that ū(t) lies on the boundary ∂U of U . The same conditions are valid also for U having a smooth boundary at every t where ū(•) is singular, locally Lipschitz and ū(t) ∈ ∂U.

In the presence of a smooth endpoint constraint, these second order necessary optimality conditions are satisfied whenever the Mayer problem is calm and the maximum principle is abnormal. If it is normal, then analogous results hold true on some smaller subspaces.

Introduction

Consider the Mayer optimal control problem (1.1) min ϕ(x(1)) : x(•) ∈ S [0,1] (x 0 ), x(1) ∈ K , where ϕ : R n → R is a given cost function, K is a closed subset of R n and S [0,1] (x 0 ) is the set of all absolutely continuous solutions of the control system (1.2)

x ′ (t) = f (t, x(t), u(t)), u(t) ∈ U for a.e. t ∈ [0, 1], x(0) = x 0 .

In the above U is a closed subset of R m and f : [0, 1]×R n ×R m → R n is sufficiently regular. A pair (x(•), u(•)), with x(•) absolutely continuous and u(•) measurable, is called a trajectory/control pair if it satisfies (1.2).

The Hamiltonian H : [0, 1] × R n × R n × R m → R and the maximized Hamiltonian H : [0, 1] × R n × R n → R ∪ {+∞} associated to the Mayer problem are defined respectively by H(t, x, p, u) := p, f (t, x, u) , H(t, x, p) := sup u∈U H(t, x, p, u).

Consider a trajectory/control pair (x(•), ū(•)) which is a strong local minimizer of the above minimization problem. Then the first order necessary optimality conditions are given by the Pontryagin maximum principle in order to select candidates for being optimal trajectory/control pairs among admissible ones.

We start by discussing this problem in the absence of endpoint constraints, i.e. the Mayer problem (1.3) min ϕ(x(1)) : x(•) ∈ S [0,1] (x 0 ) .
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Then the Pontryagin maximum principle says that there exists an absolutely continuous function p : [0, 1] → R n satisfying the adjoint system (1.4) -p ′ (t) = f x (t, x(t), ū(t)) * p(t) = H x (t, x(t), p(t), ū(t)) for a.e. t ∈ [0, 1],

the maximum principle (1.5) p(t), f (t, x(t), ū(t)) = H(t, x(t), p(t)) for a.e. t ∈ [0, 1] and the transversality condition (1.6) -p(1) = ∇ϕ(x(1)).

The above maximum principle is normal because the endpoint constraints are absent. As a direct consequence of it, for almost all t ∈ [0, 1] such that the optimal control ū(t) lies in the interior of the control constraint U , H u [t] = 0 and H uu [t] ≤ 0. This last inequality is known as the classical Legendre-Clebsch condition. Here and in the following, the abbreviation [t] stands for (t, x(t), p(t), ū(t)). When H uu [•] = 0 (for instance the affine control systems do have H uu = 0), the Legendre-Clebsch condition doesn't bring any additional information about optimal trajectory/control pairs, and different pointwise second-order optimality conditions turn out to be necessary in order to deal with this case.

In this paper we derive pointwise second-order necessary optimality conditions for a trajectory/control pair (x(•), ū(•)) which is a strong local minimizer and such that H uu [t] = 0 a.e. in [t 1 , t 2 ] for some 0 ≤ t 1 < t 2 ≤ 1. We call such (x(•), ū(•)) singular. Let us underline that in the literature singular controls may refer to several situations: vanishing switching function as for instance in [START_REF] Schättler | Geometric optimal control[END_REF], non surjective endpoint mapping as in [START_REF] Bonnard | Singular trajectories and their role in control theory[END_REF], while in [START_REF] Goh | Optimal singular rocket and aircraft trajectories[END_REF][START_REF] Krener | The high order maximal principle and its application to singular extremals[END_REF] singularity of an extremal means H uu [t] not having the full rank. Although most of our results are valid also for weak local minimizers, to simplify their presentation we restrict our attention to strong local minimizers only. The derived second order conditions are a generalization of the conditions introduced by Goh in [START_REF] Goh | Necessary conditions for singular extremals involving multiple control variables[END_REF], to the case in which a closed control constraint and a smooth endpoint constraint are present. According to [START_REF] Goh | Necessary conditions for singular extremals involving multiple control variables[END_REF], when U is an open hypercube, under suitable regularity hypotheses on f , the matrix H xu [t]f u [t] is symmetric and

R(t) := 1 2 f u [t] * H xx [t]f u [t] - 1 2 d dt H xu [t]f u [t] -H xu [t]f x [t]f u [t] + 1 2 H xu [t] d dt f u [t]
is negative semi-definite for a.e. t ∈ [t 1 , t 2 ]. The first property, known in the literature as the Goh condition, in the case of affine control systems reduces to a condition on the Lie brackets of the flux functions, as we recall in Remark 3.2. The second property can be seen as a generalized Legendre-Clebsch condition. Both conditions were proved by applying the classical Legendre-Clebsch condition to a new control problem of linear-quadratic type obtained after a transformation, introduced by Goh in [START_REF] Goh | The second variation for the singular Bolza problem[END_REF], of the following classical second-order optimality condition 0 ≥ In the above u(•) ∈ L ∞ ([0, 1]; R m ) and y(•) solves the following linear system (variational equation)

(1.8) y ′ (t) = f x [t]y(t) + f u [t]u(t) y(0) = 0.
The Goh and the generalized Legendre-Clebsch conditions were proved in [START_REF] Goh | Necessary conditions for singular extremals involving multiple control variables[END_REF] for optimal trajectory/control pairs for which there exists a regular transformation of H uu [•] into a matrix valued mapping of the following type

R 1 [•] 0 0 0 ,
where R 1 [•] is a non-singular (r × r)-matrix and r is the rank of H uu [•], supposed to be constant on [0, 1]. Though our results are proved only for the case H uu [t] = 0 for a.e. t ∈ [t 1 , t 2 ] for some 0 ≤ t 1 < t 2 ≤ 1, they can be easily generalized to the above situation.

Goh also suggested two possible strategies to deal with closed control constraints. The first one is to replace (1.7) by an equivalent inequality in which control constraints are absent, using Valentine's approach from [START_REF] Lawden | Optimal trajectories for space navigation[END_REF], [START_REF] Berkovitz | Variational methods in problems of control and programming[END_REF] for piecewise C 2 trajectory/control pairs. The second one is to use variations of the optimal control which are equal to zero when ū(t) ∈ ∂U . However, both are in a way weak, since the first one requires too much regularity of the optimal control, while the second one can't be used to recover second-order optimality conditions when ū(t) ∈ ∂U almost everywhere.

In this paper we present a different approach, using non-zero variations of the optimal control that remain in the control constraint even when ū(•) takes values in the boundary of U . This is performed using a slightly different second-order optimality condition derived by Hoehener in [START_REF] Hoehener | Variational approach to second-order optimality conditions for control problems with pure state constraints[END_REF]:

0 ≥ 1 0 H u [t]v(t) + 1 2 y(t) * H xx [t]y(t) + u(t) * H xu [t]y(t) + 1 2 u(t) * H uu [t]u(t) dt - 1 2 y(1) * ϕ ′′ (x (1))y(1) 
(1.9) that holds for measurable bounded admissible variations

u(•), v(•) such that H u [t]u(t) = 0, u(t) ∈ T ♭ U (ū(t)), v(t) ∈ T ♭ (2) 
U (ū(t), u(t)) for almost all t ∈ [0, 1] and y(•) is the solution of (1.8). In the above T ♭ U (ū(t)) and T ♭

U (ū(t), u(t)) denote, respectively, the first and the second order adjacent tangent sets to U at ū(t) and (ū(t), u(t)). This second-order optimality condition has been obtained in [START_REF] Hoehener | Variational approach to second-order optimality conditions for control problems with pure state constraints[END_REF] for the Bolza problem. Its equivalent version for the Mayer problem is proved in Theorem 2.5 below.

The second-order optimality condition (1.9) easily reduces to (1.7) when ū(t) takes values in the interior of U . Indeed, in this case

T ♭ U (ū(t)) = R m , H u [t] = 0 due to the maximum principle and 0 ∈ T ♭(2) U (ū(t), u(t)) for almost all t ∈ [0, 1].
Even when ū(t) ∈ Int U , the discontinuity of ū(•) allows it to jump to the boundary in any neighborhood of t and so results known for the case of an open U can not be used. Assuming that t is a Lebesgue point of ū(•), we are able to apply the Goh transformation and an additional refined analysis to recover the symmetry of the matrix H xu [t]f u [t] and the negative semi-definiteness of R(t) without any assumptions on U . Since for an integrable ū(•), its set of Lebesgue points has a full measure, for such optimal control both second order necessary optimality conditions are valid almost everywhere in the set {t ∈

[t 1 , t 2 ] : ū(t) ∈ Int U }.
If U enjoys some additional structural properties, then for a.e. t ∈ [t 1 , t 2 ] such that ū(t) ∈ ∂U , the pointwise second order optimality conditions hold true on a subspace of R m . To be more precise, for every u ∈ U let us consider the maximal subspace P u contained in T ♭ U (u). Note that P u = R m whenever u ∈ Int U . In general P ū(s) is not regular enough with respect to s for two reasons: the lack of regularity of P u with respect to u and the lack of regularity of ū(•). Still we were able to investigate two important classes of control constraints: the one when U is a convex polytope (typical in the geometric control theory) and the one when the boundary of U is of class C 2 , by considering only variations u(•) taking values in a subspace of P ū(s) for all s.

Below Theorem 4.3 provides pointwise second order necessary optimality conditions in the case when U is a convex polytope and the singular optimal control ū(•) is merely integrable while Theorem 5.7 deals with U having a C 2 -boundary and an optimal control which is singular and Lipschitz in a neighborhood of some t ∈ [0, 1]. In both cases, the symmetry of

H xu [t]f u [t] is
proved when it is considered as a bilinear operator on the subspace P ū(t) . The negative semidefiniteness of R(t) on P ū(t) holds true when U is a convex polytope, while when U is of class C 2 a similar result is valid with a slightly different definition of R(•).

Let us underline that in the case of convex polytopes, we assume H uu (•) = 0 on some interval [t 1 , t 2 ] to get our results. In the case when the boundary of U is not flat, we assume that for a subspace S(t) ⊂ P ū(t) introduced in Section 5, (

H uu [t] -H u [t] C(t)) |S(t) = 0 a.e. in some time interval [t 1 , t 2 ]
, where C(•) is a matrix valued mapping related to the curvature of the boundary of U and defined in Section 5.

As a corollary of our results, in the affine case we obtain the following second order necessary optimality condition for an integrable optimal control ū(•). Suppose that 

(1.10) f (x, u) = f 0 (x) + m l=1 u l f l (x), u = (u 1 , ..., u m ), u l ∈ U l , where f l (•) ∈ C 2 (R n ; R n ) and U l ⊂ R
θ k,l (t) := p(t), [f k , f l ](x(t)) ∀ k, l ∈ {1, . . . , m},
where x(•) is the optimal trajectory corresponding to ū(•) and p(•) is as in the maximum principle. In Corollary 4.4 we prove that for a.e. t ∈ [0, 1], the subspace Θ(t) P ū(t) is orthogonal to the subspace P ū(t) . In particular we recover the well known Goh condition in the geometric optimal control: Θ(t) = 0 for a.e. t such that ū(t) ∈ Int U .

For the Mayer problem with the endpoint constraint K, we suppose that the oriented distance b K (•) to K is of class C 2 on a neighborhood of the boundary of K and we assume that the problem is calm at x(•). This allows to reduce it to the one without endpoint constraints, since, by the calmness assumption, for some k > 0, (x(•), ū(•)) is a strong local minimizer of the "penalized" minimization problem min ϕ(x(1)) + kd K (x(1)) : x(•) ∈ S [0,1] (x 0 ) , where d K (•) denotes the distance function to K. This new problem involves a nondifferentiable cost function and so we do not have the necessary condition (1.9). We proceed then in the following way. Let q(•) be the solution of (1.4) such that q(1) is the unit outward normal to K at x(1) and define subspaces T t ⊂ P ū(t) by

T t := {u ∈ P ū(t) : q(t), f u [t]u = 0}.
We would like to underline that if the maximum principle of the Mayer problem (1.1) is abnormal, then T t = P ū(t) . Consider the two solutions q 1 (•) and q 2 (•) of (1.4) satisfying

q 1 (1) = -∇ϕ(x(1)), q 2 (1) = -∇ϕ(x(1)) -k∇b K (x(1).
As it is explained in Section 6, these are "extremal" transversality conditions for the above penalized problem. In general, the mappings q i (•) do not satisfy the maximum principle (1.5).

Define the functions H i (t, •, •) = H(t, •, q i (t), •) for i = 1, 2. In the case of a convex polytope U our second order necessary optimality conditions state that if for some 0 ≤ t 1 < t 2 ≤ 1 and for j = 1, 2 we have

H j uu [•] = 0 on [t 1 , t 2 ], then for a.e. t ∈ [t 1 , t 2 ] there exists i ∈ {1, 2} such that H i xu [t]f u [t] is symmetric on T t and 1 2 f u [t] * H i xx [t]f u [t] - 1 2 d dt H i xu [t]f u [t] -H i xu [t]f x [t]f u [t] + 1 2 H i xu [t] d dt f u [t]
is negative semi-definite on T t . To prove these results, we use the variational approach developed for the Mayer problem without endpoint constraints. For a detailed survey of the origin of high order necessary conditions for optimality, see Gabasov and Kirillova [START_REF] Gabasov | High order necessary conditions for optimality[END_REF], and the reference therein. There, when dealing with closed control constraints, the authors gave second-order optimality conditions for a different definition of singular trajectory/control pair, which reduces to ours in the case of an open set U .

In [START_REF] Krener | The high order maximal principle[END_REF] and [START_REF] Krener | The high order maximal principle and its application to singular extremals[END_REF], for the first time, Krener investigated the Goh condition (and its higher order extensions) when endpoint constraints are present and the optimal control is piecewise C ∞ , by using technics of the geometric control theory. This approach was taken over by several authors and the Goh condition became mostly known in the form involving Lie brackets, as a secondorder necessary optimality condition for the abnormal maximum principle (see Remark 3.2 below). Indeed, the Lie brackets describing second-order variations of the endpoint mapping, some authors studied the Goh condition in the context of such mapping, rather than for the cost function. See [START_REF] Agrachev | Control theory from the geometric viewpoint[END_REF] for a classical derivation of the Goh condition for essentially bounded abnormal optimal controls and open control constraints. In [22, pp.314-319], the Goh condition is derived for a trajectory ending on the boundary of the reachable set of an affine control system with a corresponding control taking values in the interior of control constraints. In [START_REF] Agračev | The principle of second order optimality for time-optimal problems[END_REF], abnormal second order optimality conditions were investigated for an affine control system with the control constraint in the form of a closed convex polytope and endpoint constraints, see also [START_REF] Agrachev | A second order necessary condition for optimality in the general nonlinear case[END_REF]. There, second order necessary optimality conditions are expressed using the Lie brackets at points of continuity of the optimal control. In our approach, when U is a convex polytope, we do not need to assume such continuity. Finally, let us mention [START_REF] Agrachev | Abnormal sub-riemannian geodesics: Morse index and rigidity[END_REF], where for a specific control problem with closed set of controls, the Goh condition was derived for essentially bounded controls.

Several authors made an extensive use of the Goh transformation to recover other necessary and sufficient second order optimality conditions. In [START_REF] Dmitruk | Quadratic conditions for the Pontryagin minimum in an optimal control problem that is linear with respect to control, with a constraint on the control[END_REF] and [START_REF] Dmitruk | Quadratic order conditions for a Pontryagin minimum in an optimal control problem linear in the control[END_REF], Dmitruk considered optimal control problems which are linear in the control and with closed control constraints. Recently, Aronna et al. [START_REF] Aronna | Quadratic order conditions for bang-singular extremals[END_REF] et Aronna [START_REF] Aronna | Singular solutions in optimal control: second order conditions and a shooting algorithm[END_REF], proved an integral and a pointwise forms of second order necessary and sufficient optimality conditions for bang-singular optimal controls with endpoint constraints, in the affine and partially affine cases. Applying the Goh transformation, they reduced the singular classical second-order necessary optimality condition (1.7) to a new one, which includes a quadratic term in the control variation. This implies a pointwise second order condition. However, they imposed strong structural assumptions on optimal controls, cf. Assumptions 1 and 2 in [START_REF] Aronna | Quadratic order conditions for bang-singular extremals[END_REF], that are difficult to check.

In conclusion we propose here pointwise conditions similar to those of Goh and the generalized Legendre-Clebsch conditions in the presence of a closed control constraint. This is done by investigating first the free endpoint problem. To attempt the case of endpoint constraints we add the calmness assumption to reduce the Mayer problem with endpoint constraints to one without them, but involving a nondifferentiable cost function. For this equivalent problem we obtain similar pointwise conditions using the developed variational approach for the free endpoint problems.

The paper is organized as follows. In Section 2 we introduce some notations and provide some preliminary results. In Section 3 we derive the second order necessary optimality conditions for an arbitrary set U and any measurable optimal control at times when it belongs to the interior of U . Section 4 deals with the case when U is a convex polytope and Section 5 with the case when U is of class C 2 . The last Section is devoted to the second order necessary optimality conditions for the Mayer problem involving endpoint constraints.

Preliminaries

All along the paper the norm in R n is denoted by • and the inner product by •, • . Let B := {x ∈ R n : x ≤ 1} be the closed unit ball and B its interior. Definition 2.1. Let C : R m → R m be a linear mapping and F be a subspace of R m . We say that

C is symmetric on F if Cu, v = u, Cv for all u, v ∈ F and that C is negative semi-definite on F if Cu, u ≤ 0 for all u ∈ F . Notice that C is symmetric on F if and only if C -C * maps F into its orthogonal space F ⊥ , where C * is the transpose of C.
For a nonempty subset K of R n , ∂K denotes its boundary, Int K its interior and K c its complement. The distance function

d K : R n → R + is defined by d K (x) := inf y∈K x -y for all x ∈ R n and the oriented distance b K : R n → R for K = R n by b K (x) := d K (x) -d K c (x) for all x ∈ R n . We set b K (•) = 0 if K = R n .
Let U be a nonempty closed subset of R m . For u 0 ∈ U the adjacent tangent cone to U at u 0 is defined by

T ♭ U (u 0 ) := u ∈ R n : lim h→0+ d U (u 0 + hu) h = 0 .
Further for u ∈ R n , the second-order adjacent subset to U at (u 0 , u) is the set defined by

T ♭(2) U (u 0 , u) := v ∈ R n : lim h→0+ d U (u 0 + hu + h 2 v) h 2 = 0 .
In this paper for any u ∈ U we denote by

P u the largest subspace contained in T ♭ U (u). Consider f : [0, 1] × R n × R m → R n . Below f ′ (t,
x, u) denotes the derivative of the map (x, u) → f (t, x, u), while f x (t, x, u) and f u (t, x, u) the partial derivatives of f with respect to x and u; f ′′ (t, x, u) denotes the Hessian of the map (x, u) → f (t, x, u), f xx (t, x, u), f xu (t, x, u) and f uu (t, x, u) the second-order partial derivative of f with respect to x and u.

Fix a trajectory/control pair (x(•), ū(•)) of (1.2) and set

f [t] = f (t, x(t), ū(t)). Notations f u [t], f x [t] and f ′′ [t]
are defined in a similar way.

Throughout the whole paper we impose the following assumptions : For some δ > 0 (a)

f u [•] ∈ L 1 ([0, 1]; R + ) and ∃a 1 (•) ∈ L 1 ([0, 1]; R + ) such that for a.e. t ∈ [0, 1] f u (t, x, u) -f u (t, y, v) ≤ a 1 (t)( x -y + u -v ), ∀x, y ∈ x(t) + δ B, ∀u, v ∈ ū(t) + δ B; (b) For a.e. t ∈ [0, 1], ∀x ∈ x(t) + δB, f (t, x, U ) is a closed set; (c) For all t ∈ [0, 1], f (t, •, •) is twice differentiable on x(t) + δ B × ū(t) + δ B ; (d) f ′ [•] + f ′′ [•] ∈ L 1 ([0, 1]; R + ) and ∃a 2 (•) ∈ L 1 ([0, 1]; R + ) such that for a.e. t ∈ [0, 1] and all x, y ∈ x(t) + δ B, u, v ∈ ū(t) + δ B f ′ (t, x, u) -f ′ (t, y, v) + f ′′ (t, x, u) -f ′′ (t, y, v) ≤ a 2 (t)( x -y + u -v ); (e) ϕ(•) ∈ C 2 on x(1) + δ B.
The above hypotheses are sufficient to ensure the validity of the maximum principle and of (1.9). Proof. Fix t ∈ [0, 1] for which (1.5) is verified and let u ∈ P ū(t) . Then for every h > 0 there exists u h such that ū(t) + hu h ∈ U and lim h→0+ u h = u. Hence H(t, x(t), p(t), ū(t) + hu h ) -H(t, x(t), p(t), ū(t)) ≤ 0. Dividing by h > 0 and letting h → 0+, we obtain H u [t]u ≤ 0. Since -u belongs to P ū(t) , the same inequality holds for -u, implying that H u [t]u = 0.

Definition 2.2. A trajectory/control pair (x(•), ū(•)) is a strong local minimizer for (1.3) (resp. (1.1)) if there exists η > 0 such that x(•) minimizes ϕ over all x(•) ∈ S [0,1] (x 0 ) (resp. over all x(•) ∈ S [0,1] (x 0 ) with x(1) ∈ K) satisfying x(•) -x(•) ∞ ≤ η.
We introduce the following two systems, which will play an important role throughout the paper 

(2.1) y ′ (t) = f x [t]y(t) + f u [t]u(t) y(0) = 0, (2.2) w ′ (t) = f x [t]w(t) + f u [t]v(t) + 1 2 y(t) * f xx [t]y(t) + u(t) * f xu [t]y(t) + 1 2 u(t) * f uu [t]u(t) w(0) = 0. Define A := {t ∈ [0, 1] : ū(t) ∈ ∂U, H u [t] = 0} and U A = {u(•) ∈ L ∞ ([0, 1]; R m ) : ∃ c > 0, h 0 > 0 s.t. ∀ h ∈ [0, h 0 ], ∀ t ∈ A, d U (ū(t) + hu(t)) ≤ ch 2 }. Note that any u(•) ∈ U A satisfies u(t) ∈ T ♭ U (ū(t)) for all t ∈ A.
(•), v(•) ∈ L ∞ ([0, 1]; R m ) such that u(•) ∈ U A and v(t) ∈ T ♭ (2) 
U (ū(t), u(t)) for a.e. t ∈ A, either H u [t]u(t) < 0 on a set of positive measure or H u [t]u(t) = 0 a.e. in [0, 1] and (1.9) holds true, where y(•) is the solution of (2.1).

Proof. Let u(•), v(•) be as in the statement of the theorem. The inequality H u [t]u(t) ≤ 0 for a.e. t in [0, 1] follows from the maximum principle. Thus it remains to prove (1.9) when H u [t]u(t) = 0 a.e. Consider the solution y(•) of (2.1) and the solution w(•) of (2.2). By Propositions 4.2 and 4.4 from [START_REF] Hoehener | Variational approach to second-order optimality conditions for control problems with pure state constraints[END_REF], for every h > 0 there exists

v h (•) ∈ L ∞ ([0, 1], R m ) such that v h (•) converge a.e. to v(•) when h → 0+, { v h ∞ } h>0 is bounded, and for ũh (•) = ū(•) + hu(•) + h 2 v h (•)
, and for every h > 0 small enough, the solution xh (•) to (1.2) with u(•) = ũh (•) is well defined and xh -x-hy h 2 converge uniformly to w(•) when h → 0+. Thus for our minimization problem we have

(2.3) 0 ≥ ϕ(x(1)) -ϕ(x h (1)) = -∇ϕ(x(1)), hy(1) + h 2 w(1) - h 2 2 y(1) * ϕ ′′ (x(1))y(1) + o(h 2 ).
On the other hand, thanks to the transversality condition (1.6) it follows

-∇ϕ(x(1)), y(1) = p(1), y(1) -p(0), y(0) = 1 0 p, y ′ (t)dt = - 1 0 H x [t]y(t)dt + 1 0 ( p(t), f x [t]y(t) + f u [t]u(t) ) dt = 1 0 H u [t]u(t)dt = 0.
Therefore, ∇ϕ(x(1)), y(1) = 0. Hence, dividing (2.3) by h 2 and letting h → 0 yields

(2.4) 0 ≥ -∇ϕ(x(1)), w(1) - 1 2 y(1)) * ϕ ′′ (x(1))y(1).
Using again the transversality condition we obtain

-∇ϕ(x(1)), w(1) = p(1), w(1) -p(0), w(0) = 1 0 p, w ′ (t)dt = - 1 0 H x [t]w(t)dt + 1 0 p(t), w ′ (t) dt
Therefore, by (2.2), inequality (2.4) implies (1.9).

For a Lebesgue measurable set E ⊂ [0, 1], let |E| denote its Lebesgue measure. To say that a property holds true a.e. in E means that for a subset D ⊂ E having |D| = 0 this property is verified for all t ∈ E\D. When |E| = 0, then E\D may be an empty set.

Let a : [0, 1] → R k be an integrable function. We recall that the set of its Lebesgue points has full measure in [0, 1]. If t ∈ (0, 1) is a Lebesgue point, then for every ε > 0 there exists δ ε > 0 such that (2.5) lim

ε→0+ δ ε = 0 and 1 2δ ε t+δε t-δε a(s) -a(t) ds ≤ ε 2 . Thus (2.6) |{s ∈ (t -δ ε , t + δ ε )| a(s) -a(t) ≥ ε}| ≤ 2εδ ε .
For every ε > 0 define the measurable set (depending on t)

(2.7)

E ε := {s ∈ (t -δ ε , t + δ ε ) : s is a Lebesgue point of a(•) and a(s) -a(t) < ε}.
Consider next a Lebesgue measurable Υ ⊂ (0, 1) and define the function

φ ε (s) := s 0 χ Υ∩Eε (τ )dτ , where χ Υ∩Eε denotes the characteristic function of Υ ∩ E ε . Then φ ε (s) = 0 for all s ∈ [0, t -δ ε ], φ ε (t + δ ε ) = |Υ ∩ E ε | and, by the intermediate value theorem, there exists t ε ∈ (t -δ ε , t + δ ε ) such that φ ε (t + δ ε ) = 2φ ε (t ε ). Set (2.8) E 1 ε := Υ ∩ E ε ∩ [0, t ε ], E 2 ε := Υ ∩ E ε ∩ [t ε , 1]. Then |E 1 ε | = |E 2 ε | = 1 2 |Υ ∩ E ε |.
We will need the following lemma. Lemma 2.6. Let a(•) : [0, 1] → R k be an integrable function, Υ ⊂ (0, 1) be a measurable set with |Υ| > 0, t ∈ (0, 1) ∩ Υ be a Lebesgue point of a(•) whose Lebesgue density in Υ is equal to one. Then for δ ε , E ε , E 1 ε , E 2 ε defined as above we have

(2.9) lim ε→0+ |Υ ∩ E ε | 2δ ε = 1
and for all small ε > 0

(2.10) 1 |E 1 ε | 2 t+δε t-δε |E 1 ε ∩ [0, s]| -|E 2 ε ∩ [0, s]| 2 ds = 1 3 |Υ ∩ E ε | + o(|Υ ∩ E ε |), (2.11) 1 |E 1 ε | t+δε t-δε |E 1 ε ∩ [0, s]| -|E 2 ε ∩ [0, s]| χ Υ∩Eε (s)ds = 1 2 |Υ ∩ E ε | + o(|Υ ∩ E ε |), where the notation o(|Υ ∩ E ε |) means lim ε→0+ o(|Υ∩Eε|)
|Υ∩Eε| = 0. Proof. Since t has the Lebesgue density equal to one in Υ, we have (2.12) lim

ε→0+ |Υ ∩ (t -δ ε , t + δ ε )| 2δ ε = 1. By (2.6), |(Υ ∩ (t -δ ε , t + δ ε ))\E ε | ≤ |(t -δ ε , t + δ ε )\E ε | ≤ 2εδ ε and from the equality |Υ ∩ (t -δ ε , t + δ ε )| = |Υ ∩ E ε | + |(Υ ∩ (t -δ ε , t + δ ε ))\E ε |
we deduce (2.9). Observe that (2.12) and (2.9) yield lim

ε→0+ |Υ ∩ (t -δ ε , t + δ ε )| |Υ ∩ E ε | = 1.
Therefore, from (2.9) and the equality

|(t -δ ε , t + δ ε )| = |Υ ∩ E ε | + |(t -δ ε , t + δ ε )\(Υ ∩ E ε )| we obtain (2.13) lim ε→0+ |(t -δ ε , t + δ ε )\(Υ ∩ E ε )| |Υ ∩ E ε | = 0.
The inclusions

(t -δ ε , t ε )\E 1 ε ⊂ (t -δ ε , t + δ ε )\(Υ ∩ E ε ) & (t ε , t + δ ε )\E 2 ε ⊂ (t -δ ε , t + δ ε )\(Υ ∩ E ε )
and (2.13) imply that

(2.14) lim ε→0+ |(t -δ ε , t ε )\E 1 ε | |Υ ∩ E ε | = lim ε→0+ |(t ε , t + δ ε )\E 2 ε | |Υ ∩ E ε | = 0. Notice that t+δε t-δε |E 1 ε ∩ [0, s]| -|E 2 ε ∩ [0, s]| 2 ds = = tε t-δε s t-δε χ E 1 ε (τ )dτ 2 ds + t+δε tε |E 1 ε | - s tε χ E 2 ε (τ )dτ 2 ds.
For the first term we have

tε t-δε s t-δε χ E 1 ε (τ )dτ 2 ds = tε t-δε χ E 1 ε (s) s t-δε χ E 1 ε (τ )dτ 2 ds + tε t-δε χ [t-δε,tε]\E 1 ε (s) s t-δε χ E 1 ε (τ )dτ 2 ds = tε t-δε 1 3 s t-δε χ E 1 ε (τ )dτ 3 ′ ds + a ε = 1 3 |E 1 ε | 3 + a ε ,
where

a ε := tε t-δε χ [t-δε,tε]\E 1 ε (s) s t-δε χ E 1 ε (τ )dτ 2 ds
and, thanks to (2.14),

a ε ≤ |(t -δ ε , t ε ) \ E 1 ε ||E 1 ε | 2 = o(|Υ ∩ E ε |)|E 1 ε | 2 . Since |E 1 ε | = |E 2 ε |, for the second term we have t+δε tε |E 2 ε | - s tε χ E 2 ε (τ )dτ 2 ds = t+δε tε |E 2 ε ∩ [s, t + δ ε ]| 2 ds = t+δε tε t+δε s χ E 2 ε (τ )dτ 2 ds = t+δε tε χ E 2 ε (s) t+δε s χ E 2 ε (τ )dτ 2 ds + t+δε tε χ [tε,t+δε]\E 2 ε (s) t+δε s χ E 2 ε (τ )dτ 2 ds = - 1 3 t+δε tε t+δε s χ E 2 ε (τ )dτ 3 ′ ds + b ε = 1 3 |E 2 ε | 3 + b ε ,
where

b ε := t+δε tε χ [tε,t+δε]\E 2 ε (s) t+δε s χ E 2 ε (τ )dτ 2 ds and, thanks to (2.14), b ε ≤ |(t ε , t + δ ε ) \ E 2 ε ||E 2 ε | 2 = o(|Υ ∩ E ε |)|E 2 ε | 2 . Dividing by |E 1 ε | 2 and recalling that |E 1 ε | = |E 2 ε | = 1 2 |Υ ∩ E ε |,
we deduce (2.10). Using similar arguments it can be shown that

1 |E 1 ε | t+δε t-δε |E 1 ε ∩ [0, s]| -|E 2 ε ∩ [0, s]| ds = 1 2 |Υ ∩ E ε | + o(|Υ ∩ E ε |).
On the other hand

t+δε t-δε |E 1 ε ∩ [0, s]| -|E 2 ε ∩ [0, s]| ds = t+δε t-δε |E 1 ε ∩ [0, s]| -|E 2 ε ∩ [0, s]| χ Υ∩Eε (s)ds + t+δε t-δε |E 1 ε ∩ [0, s]| -|E 2 ε ∩ [0, s]| χ (t-δε,t+δε)\(Υ∩Eε) (s)ds. Since 0 ≤ |E 1 ε ∩[0, s]|-|E 2 ε ∩[0, s]| ≤ |E 1 ε | for every s ∈ (t-δ ε , t+δ ε ) and |(t-δ ε , t+δ ε )\(Υ∩E ε )| = o(|Υ ∩ E ε |) we obtain (2.11).
Let R : [0, 1] → M (l × l), l ∈ N be a matrix-valued function. In this paper we denote by m * (t) the largest integer in {1, . . . , l} such that for some matrices R 0 

(t) ∈ M (m * (t) × m * (t)), R 1 (t) ∈ M (m * (t) × (l -m * (t))), R 2 (t) ∈ M ((l -m * (t)) × m * (t)), R 3 (t) ∈ M ((l -m * (t)) × (l -m * (t))) we have R 0 (t) = R 0 (t) * , R(t) = R 0 (t) R 1 (t) R 2 (t) R 3 (t) . If m * (t) = l, then R 1 (t), R 2 (t), R 3 (t)
R(t) := 1 2 f u [t] * H xx [t]f u [t] - 1 2 d dt H xu [t]f u [t] -H xu [t]f x [t]f u [t] + 1 2 H xu [t] d dt f u [t] ≤ 0. Consequently, if t ∈ [t 1 , t 2 ] is such that for some δ > 0, u(s) is in the interior of U for a.e. s ∈ [t -δ, t + δ] ∩ [t 1 , t 2 ], then H xu [t]f u [t] is symmetric.
Remark 3.2. In the case of f affine with respect to controls, the symmetry of the matrix

H xu [•]f u [•]
implies that the adjoint state is orthogonal to the Lie brackets of the flux. Indeed let f be as in (1.10), where f l (•) ∈ C 2 (R n ; R n ) and U l ⊂ R for l ∈ {1, . . . , m}. Then for all t such that H xu [t]f u [t] is symmetric and for any k, l ∈ {1, . . . , m}

0 = (H xu [t]f u [t] -f u [t] * H xu [t] * ) k,l = n s=1 n j=1 p j (t) ∂f k,j ∂x s [t]f l,s [t] - n s=1 f k,s [t] n j=1 p j (t) ∂f l,j ∂x s [t] = n j=1 p j (t) n s=1 ∂f k,j ∂x s [t]f l,s [t] -f k,s [t] ∂f l,j ∂x s [t] ,
where f l,j is the j-th element of f l . Hence for any k, l ∈ {1, . . . , m},

p(t), ∂f k ∂x [t]f l [t] - ∂f l ∂x [t]f k [t] = p(t), [f k , f l ][t] = 0.
Proof. of Theorem 3.1. It is enough to consider the case when |{t ∈ (t 1 , t 2 ) : ū(t) ∈ Int U }| > 0.

We will prove that the statement is true at all points of

L := {s ∈ (t 1 , t 2 ) : s is a Lebesgue point of (ū(•), R(•)) and ū(s) ∈ Int U }, that is for almost every t ∈ [t 1 , t 2 ] such that ū(t) ∈ Int U . Fix t ∈ L. Note that (ii) implies that H xu [•]f u [•] is continuous at t. For all ρ > 0, η > 0 define A ρ,η = {s ∈ L ∩ ( t -η, t + η) : ||R(s) -R( t)|| < ρ}. It is not difficult to check that |A ρ,η | > 0.
Denote by Υ the set of all points in A ρ,η having the Lebesgue density in A ρ,η equal to one and let m * (•) be defined as at the end of Section 2 for R(

•) = H xu [•]f u [•], l = m. Consider τ ρ,η ∈ Υ such that m * (τ ρ,η ) = min t∈Υ m * (t). Then τ ρ,η ∈ A ρ,η . We claim that it is enough to prove that H xu [τ ρ,η ]f u [τ ρ,η
] is symmetric and R(τ ρ,η ) ≤ 0. Indeed, if this holds true, then we can construct a sequence

t i → t such that H xu [t i ]f u [t i ] is symmetric, R(t i ) ≤ 0 and lim i→∞ R(t i ) = R( t). Then R( t) ≤ 0 and, by assumption (ii), H xu [ t]f u [ t] is symmetric.
Fix ρ > 0, η > 0 and let Υ be as above. Set τ = τ ρ,η and define δ ε , E ε , E 1 ε , E 2 ε as in (2.5), (2.7) and (2.8) for the function a(•) = (ū(•), R(•)) and t = τ ∈ Υ. To simplify the notations we also set

m * = m * (τ ). Consider Q 1 [t] ∈ M (m * ×n), Q 2 [t] ∈ M ((m-m * )×n), B 1 [t] ∈ M (n×m * ), B 2 [t] ∈ M (n × (m -m * )) such that H xu [t] = Q 1 [t] Q 2 [t] f u [t] = [B 1 [t] B 2 [t]] .
Then, by the choice of m * , Q

1 [t]B 1 [t] = (Q 1 [t]B 1 [t]
) * for all t ∈ Υ. If m * = m, then the matrices Q 2 (t) and B 2 (t) are simply absent in the above partition. Observe that if m * < m, then

(3.2) Q 1 [τ ]B 2 [τ ] = (Q 2 [τ ]B 1 [τ ]) * . For any u ∈ R m , let u 1 ∈ R m * , u 2 ∈ R m-m * be such that u * = ((u 1 ) * , (u 2 ) * ). Again, if m * = m, then u = u 1 .
In the case of a vector function u(•) we will use the notations u 1 (•), u 2 (•) for the same type of partition.

Note that for ε > 0 small enough we have (τ -δ ε , τ + δ ε ) ⊂ (t 1 , t 2 ) and ū(t) ∈ Int U for all t ∈ Υ ∩ E ε . For any ε > 0 and u ∈ R m \{0}, let us define

u 1 ε (t) :=      1 |E 1 ε | u 1 t ∈ E 1 ε -1 |E 1 ε | u 1 t ∈ E 2 ε 0 otherwise u 2 ε (t) := u 2 t ∈ E 1 ε ∪ E 2 ε = Υ ∩ E ε 0 otherwise .
Observe that for all small ε > 0, u ε (t) = 0 if and only if t ∈ Υ ∩ E ε . Moreover, by the maximum principle,

H u [t] = 0 for a.e. t ∈ E ε , while for all t ∈ [0, 1] \ E ε we have 0 ∈ T ♭ (2) 
U (ū(t), 0). Therefore u ε (•) ∈ U A . Theorem 2.5 and assumption (i) imply the following inequality

- 1 2 y ε (1) * ϕ ′′ (x(1))y ε (1) + 1 2 1 0 y ε (t) * H xx [t]y ε (t)dt + 1 0 u ε (t) * H xu [t]y ε (t)dt ≤ 0, (3.3)
where y ε (•) is the solution of (2.1) for u(•) = u ε (•). Define for all t ∈ [0, 1]

ζ ε (t) := t 0 u ε (s)ds.
Then, for all t ∈ [0, 1],

ζ 1 ε (t) = |E 1 ε ∩ [0, t]| |E 1 ε | u 1 - |E 2 ε ∩ [0, t]| |E 1 ε | u 1 and ζ 2 ε (t) = u 2 |Υ ∩ E ε ∩ [0, t]|. Thus ζ ε (0) = 0, ζ 1 ε (t) = 0 for t ∈ [0, τ -δ ε ] ∪ [τ + δ ε , 1] and ζ 1 ε (•) ∞ ≤ u 1 .
Moreover, by (2.9), for all ε > 0 small enough (3.4)

1 0 ζ 1 ε (t) dt = τ +δε τ -δε ζ 1 ε (t) dt ≤ τ +δε τ -δε u 1 dt = 2δ ε u 1 ≤ 2|Υ ∩ E ε | • u 1 .
To simplify the notation we will omit for a while the dependence on ε. Integrating by parts

τ +δ τ -δ u(t) * H xu [t]y(t)dt = - τ +δ τ -δ ζ(t) * d dt (H xu y)[t]dt + ζ(•) * H xu [•]y(•) τ +δ τ -δ = - τ +δ τ -δ ζ(t) * d dt H xu [t]y(t)dt - τ +δ τ -δ ζ(t) * H xu [t]f x [t]y(t)dt - τ +δ τ -δ ζ(t) * H xu [t]f u [t]u(t)dt + ζ(•) * H xu [•]y(•) τ +δ τ -δ inequality (3.3) becomes - 1 2 y(1) * ϕ ′′ (x(1))y(1) + 1 2 1 0 y(t) * H xx [t]y(t)dt - τ +δ τ -δ ζ(t) * d dt H xu [t]y(t)dt - τ +δ τ -δ ζ(t) * H xu [t]f x [t]y(t)dt - τ +δ τ -δ ζ(t) * H xu [t]f u [t]u(t)dt + ζ(•) * H xu [•]y(•) τ +δ τ -δ ≤ 0. (3.5) Moreover τ +δ τ -δ ζ(t) * H xu [t]f u [t]u(t)dt = τ +δ τ -δ ζ 1 (t) * Q 1 [t]B 1 [t]u 1 (t) + ζ 1 (t) * Q 1 [t]B 2 [t]u 2 (t) + ζ 2 (t) * Q 2 [t]B 1 [t]u 1 (t) + ζ 2 (t) * Q 2 [t]B 2 [t]u 2 (t) dt.
Integrating again by parts and using the symmetry of

Q 1 [•]B 1 [•] on Υ and that ζ 1 (τ ± δ) = 0 we obtain - τ +δ τ -δ ζ 1 (t) * Q 1 [t]B 1 [t]u 1 (t)dt = 1 2 τ +δ τ -δ ζ 1 (t) * d dt (Q 1 B 1 )[t]ζ 1 (t)dt, - τ +δ τ -δ ζ 2 (t) * Q 2 [t]B 1 [t]u 1 (t)dt = τ +δ τ -δ u 2 (t) * Q 2 [t]B 1 [t]ζ 1 (t) + ζ 2 (t) * d dt (Q 2 B 1 )[t]ζ 1 (t) dt.
Then, coming back to (3.5), we have

0 ≥ - 1 2 y(1) * ϕ ′′ (x(1))y(1) + 1 2 1 0 y(t) * H xx [t]y(t)dt - τ +δ τ -δ ζ(t) * d dt H xu [t]y(t)dt - τ +δ τ -δ ζ(t) * H xu [t]f x [t]y(t)dt + ζ(•) * H xu [•]y(•) τ +δ τ -δ + 1 2 τ +δ τ -δ ζ 1 (t) * d dt (Q 1 B 1 )[t]ζ 1 (t)dt - τ +δ τ -δ ζ 2 (t) * Q 2 [t]B 2 [t]u 2 (t)dt - τ +δ τ -δ ζ 1 (t) * (Q 1 [t]B 2 [t] -(Q 2 [t]B 1 [t]) * )u 2 (t)dt + τ +δ τ -δ ζ 2 (t) * d dt (Q 2 B 1 )[t]ζ 1 (t)dt. (3.6)
Denote by X(•) the matrix solution of

X ′ = f x [t]X, X(0) = Id.
Integrating by parts we get

y(t) = X(t) t 0 X -1 (s)(B 1 [s]u 1 (s) + B 2 [s]u 2 (s))ds = X(t) X -1 (•)B 1 [•]ζ 1 (•) t 0 -X(t) t 0 d ds X -1 B 1 [s]ζ 1 (s)ds + X(t) t 0 X -1 (s)B 2 [s]u 2 (s)ds = B 1 [t]ζ 1 (t) + X(t) t 0 X -1 (s) f x [s]B 1 [s] - d ds B 1 [s] ζ 1 (s)ds + X(t) t 0 X -1 (s)B 2 [s]u 2 (s)ds = ξ(t) + B 1 [t]ζ 1 (t),
where

ξ(t) := X(t) t 0 X -1 (s) f x [s]B 1 [s] - d ds B 1 [s] ζ 1 (s)ds + X(t) t 0 X -1 (s)B 2 [s]u 2 (s)ds.
The transformation y(t) = ξ(t) + B 1 [t]ζ 1 (t) is known as the Goh transformation. Observe that

ξ ′ (t) = f x [t]ξ(t) + f x [t]B 1 [t] - d dt B 1 [t] ζ 1 (t) + B 2 [t]u 2 (t) ξ(0) = 0. Substituting y(•) with ξ(•) + B 1 [•]ζ 1 (•) in (3.6) we obtain - 1 2 ξ(1) * ϕ ′′ (x(1))ξ(1) + 1 2 1 0 ξ(t) * H xx [t]ξ(t)dt + τ +δ τ -δ ζ 1 (t) * B 1 [t] * H xx [t]ξ(t)dt - τ +δ τ -δ ζ(t) * d dt H xu [t] + H xu [t]f x [t] ξ(t)dt - τ +δ τ -δ ζ 2 (t) * Q 2 [t]B 2 [t]u 2 (t)dt - τ +δ τ -δ ζ 2 (t) * d dt Q 2 [t]B 1 [t] + Q 2 [t]f x [t]B 1 [t] - d dt (Q 2 B 1 )[t] ζ 1 (t)dt + τ +δ τ -δ ζ 1 (t) * 1 2 B 1 [t] * H xx [t]B 1 [t] - d dt Q 1 [t]B 1 [t] -Q 1 [t]f x [t]B 1 [t] ζ 1 (t)dt + 1 2 τ +δ τ -δ ζ 1 (t) * d dt (Q 1 B 1 )[t]ζ 1 (t)dt - τ +δ τ -δ ζ 1 (t) * (Q 1 [t]B 2 [t] -(Q 2 [t]B 1 [t]) * )u 2 (t)dt + ζ(•) * H xu [•]ξ(•) τ +δ τ -δ ≤ 0. (3.7)
Restoring the subscript ε, by (3.4) and assumption (iii),

ξ ε (•) ∞ = O(|Υ ∩ E ε |). Furthermore, by (iii), - 1 2 ξ ε (1) * ϕ ′′ (x(1))ξ ε (1) = o(|Υ ∩ E ε |), 1 0 ξ ε (t) * H xx [t]ξ ε (t)dt = o(|Υ ∩ E ε |), τ +δε τ -δε ζ 1 ε (t) * B 1 [t] * H xx [t]ξ ε (t)dt = o(|Υ ∩ E ε |), τ +δε τ -δε ζ 2 ε (t) * Q 2 [t]B 2 [t]u 2 ε (t) = o(|Υ ∩ E ε |), τ +δε τ -δε ζ ε (t) * d dt H xu [t] + H xu [t]f x [t] ξ ε (t)dt = o(|Υ ∩ E ε |), τ +δε τ -δε ζ 2 ε (t) * - d dt Q 2 [t]B 1 [t] -Q 2 [t]f x [t]B 1 [t] + d dt (Q 2 B 1 )[t] ζ 1 ε (t)dt = o(|Υ ∩ E ε |) and ζ ε (•) * H xu [•]ξ ε (•) τ +δε τ -δε = o(|Υ ∩ E ε |).
Since τ ∈ L, by (2.9) and definition of δ ε , for some constant c > 0 we have

τ +δε τ -δε ζ 1 ε (t) * 1 2 B 1 [t] * H xx [t]B 1 [t] - 1 2 d dt Q 1 [t]B 1 [t] -Q 1 [t]f x [t]B 1 [t] + 1 2 Q 1 [t] d dt B 1 [t] ζ 1 ε (t)dt = τ +δε τ -δε ζ 1 ε (t) * 1 2 B 1 [τ ] * H xx [τ ]B 1 [τ ] - 1 2 d dt Q 1 [τ ]B 1 [τ ] -Q 1 [τ ]f x [τ ]B 1 [τ ] + 1 2 Q 1 [τ ] d dt B 1 [τ ] ζ 1 ε (t)dt + a ε where a ε ≤ c u 1 2 ε 2 2δ ε = o(|Υ ∩ E ε |) and - τ +δε τ -δε ζ 1 ε (t) * (Q 1 [t]B 2 [t] -(Q 2 [t]B 1 [t]) * )u 2 ε (t)dt = - τ +δε τ -δε ζ 1 ε (t) * (Q 1 [τ ]B 2 [τ ] -(Q 2 [τ ]B 1 [τ ]) * )u 2 ε (t)dt + b ε , where b ε ≤ c u 1 u 2 ε 2 2δ ε = o(|Υ ∩ E ε |).
Therefore, applying Lemma 2.6 to a(•) = (ū(•), R(•)), dividing by |Υ ∩ E ε | in (3.7) and passing to the limit when ε → 0+, we obtain

1 3 (u 1 ) * 1 2 B 1 [τ ] * H xx [τ ]B 1 [τ ] - 1 2 d dt Q 1 [τ ]B 1 [τ ] -Q 1 [τ ]f x [τ ]B 1 [τ ] + 1 2 Q 1 [τ ] d dt B 1 [τ ] u 1 (3.8) - 1 2 (u 1 ) * (Q 1 [τ ]B 2 [τ ] -(Q 2 [τ ]B 1 [τ ]) * ) u 2 ≤ 0.
We claim that if m * < m, then

(3.9) -(u 1 ) * (Q 1 [τ ]B 2 [τ ] -(Q 2 [τ ]B 1 [τ ]) * ) u 2 ≤ 0.
Indeed, for λ > 0 we have that (λ(u 1 ) * , (u 2 ) * ) * ∈ R m . Thus, replacing u 1 by λu 1 in (3.8), dividing by λ and letting λ → 0, we get (3.9). Furthermore, since (-

(u 1 ) * , (u 2 ) * ) * ∈ R m , we deduce that (u 1 ) * (Q 1 [τ ]B 2 [τ ] -(Q 2 [τ ]B 1 [τ ]) * ) u 2 ≤ 0. Consequently (u 1 ) * (Q 1 [τ ]B 2 [τ ] -(Q 2 [τ ]B 1 [τ ]) * ) u 2 = 0. But ((u 1 ) * , (u 2 ) * ) * being arbitrary in R m , we conclude that Q 1 [τ ]B 2 [τ ] -(Q 2 [τ ]B 1 [τ ]) * = 0 contradicting (3.2). Thus m * = m and B 1 (τ ) = f u [τ ], Q 1 (τ ) = H xu [τ ]. From (3.8) we deduce that R(τ ) ≤ 0.

Second order conditions on convex polytopes

In this section U ⊂ R m is a convex polytope in R m , i.e. U is a finite intersection of affine half-spaces of dimension less or equal than m. Denote by U 0 the set of vertexes of U . Since U is convex, its adjacent tangent cone T ♭ U (u 0 ) coincides with the tangent cone of convex analysis for any u 0 ∈ U . Furthermore for every u 0 ∈ U , T ♭ U (u 0 ) contains a subspace P u 0 of maximal dimension 0 ≤ r ≤ m. Moreover if u 0 ∈ ∂U , then r < m and for some ν > 0 and h 0 > 0 we have

(4.1) z + hu ∈ U, ∀ u ∈ P u 0 ∩ B, h ∈ [0, h 0 ], z ∈ U with z -u 0 ≤ ν.
In particular this implies that for any u 0 ∈ U there exists ν > 0 such that (4.2)

P u 0 ⊂ P z , ∀ z ∈ U with z -u 0 ≤ ν.
Let t ∈ [0, 1] be such that ū(t) ∈ ∂U \ U 0 and 0 < r < m be the dimension of the subspace P ū(t) . Call v 1 , . . . , v r an orthonormal basis of P ū(t) and let v r+1 , . . . , v m be such that v 1 , . . . , v m is an orthonormal basis of R m . Let V (t) ∈ M (m × m) be the change of basis matrix, i.e. v i = V (t)e i for all i ∈ {1, . . . , m}, where {e i } is the canonical basis of R m . Then u ∈ P ū(t) if and only if there exists ũ 

∈ R r × {0} m-r such that u = V (t)ũ. Consider Q 1 [t] ∈ M (r × m), Q 3 [t] ∈ M ((m -r) × m), B 1 [t] ∈ M (m × r) and B 3 [t] ∈ M (m × (m -r)) such that V (t) * H xu [t] = Q 1 [t] Q 3 [t] and f u [t]V (t) = [B 1 [t] B 3 [t]] . Lemma 4.1. Let (x(•), ū(•)) be a
[t]B 1 [t] is symmetric and R 1 (t) := 1 2 B 1 [t] * H xx [t]B 1 [t] - 1 2 d dt Q 1 [t]B 1 [t] -Q 1 [t]f x [t]B 1 [t] + 1 2 Q 1 [t] d dt B 1 [t]
is negative semi-definite on R r .

Proof. It is enough to consider the case when |{t ∈ (t 1 , t 2 ) : ū(t) ∈ ∂U \ U 0 }| > 0. Let R(•) be defined as in Theorem 3.1. We prove the statements for all the points in

L := {s ∈ (t 1 , t 2 ) : s is a Lebesgue point of (ū(•), R(•)), ū(s) ∈ ∂U \ U 0 }, that is for almost every t ∈ [0, 1] such that ū(t) ∈ ∂U \ U 0 .
Fix t ∈ L and set P = P ū( t) . By (ii),

H xu [•]f u [•] is continuous at t. For all ρ > 0, η > 0 define A ρ,η = {s ∈ L ∩ ( t -η, t + η) : ||ū(s) -ū( t)|| + ||R(s) -R( t)|| < ρ}. Then |A ρ,η | > 0.
Let ν > 0 and h 0 > 0 be such that (4.1) and (4.2) hold true with u 0 = ū( t). Below we restrict our attention to 0 < ρ < ν/2.

Consider r > 0 and matrices

Q 1 [ t], Q 3 [ t], B 1 [ t], B 3 [ t]
, V ( t) as described just before the statement of the lemma for t = t. Set V = V ( t) and let

D 1 [t] ∈ M (r×m), D 3 [t] ∈ M ((m-r)×m), C 1 [t] ∈ M (m × r) and C 3 [t] ∈ M (m × (m -r)) be such that V * H xu [t] = D 1 [t] D 3 [t] and f u [t]V = [C 1 [t] C 3 [t]] . Define Φ(t) := 1 2 C 1 [t] * H xx [t]C 1 [t] - 1 2 d dt D 1 [t]C 1 [t] -D 1 [t]f x [t]C 1 [t] + 1 2 D 1 [t] d dt C 1 [t].
Denote by Υ the set of all points in A ρ,η having the Lebesgue density in A ρ,η equal to one and let m * (•) be defined as at the end of Section 2 for R(

•) = D 1 [•]C 1 [•], l = r. Consider τ ρ,η ∈ Υ such that m * (τ ρ,η ) = min t∈Υ m * (t). It is sufficient to prove that D 1 [τ ρ,η ]C 1 [τ ρ,η ] is symmetric and Φ(τ ρ,η ) ≤ 0. Indeed, this would imply the existence of t i → t such that D 1 [t i ]C 1 [t i ] are symmetric, Φ(t i ) ≤ 0 and lim i→∞ Φ(t i ) = R 1 ( t). Then R 1 ( t) ≤ 0 and, by assumption (ii), Q 1 [ t]B 1 [ t] is symmetric.
Fix sufficiently small ρ > 0, η > 0 and let Υ be as above. Set τ = τ ρ,η , m * = m * (τ ) and define

δ ε , E ε , E 1 ε , E 2 ε as in (2.5), (2.7) and (2.8 
) for the function a(•) = (ū(•), R(•)) and t = τ ∈ Υ. Let Q1 [t] ∈ M (m * × m), Q2 [t] ∈ M ((r -m * ) × m), B1 [t] ∈ M (m × m * ) and B2 [t] ∈ M (m × (r -m * )) be such that V * H xu [t] =   Q1 [t] Q2 [t] D 3 [t]   f u [t]V = B1 [t] B2 [t] C 3 [t] . Then Q1 [t] B1 [t] = ( Q1 [t] B1 [t]
) * for all t ∈ Υ. If m * = r, then Q2 and B2 are absent in the above partition. Moreover, by the definition of m * , if m * < r, then

(4.3) Q1 [τ ] B2 [τ ] = ( Q2 [τ ] B1 [τ ]) * ). Let ũ1 ∈ R m * and ũ2 ∈ R r-m * be such (ũ 1 , ũ2 ) = 0. For any ε > 0 define ũ1 ε (t) :=      1 |E 1 ε | ũ1 t ∈ E 1 ε -1 |E 1 ε | ũ1 t ∈ E 2 ε 0 otherwise ũ2 ε (t) := ũ2 t ∈ E 1 ε ∪ E 2 ε 0 otherwise , ũ3 ε (t) := 0 ∈ R m-r
and ũε (t

) := (ũ 1 ε (t), ũ2 ε (t), ũ3 ε (t)). Then V ũε (•) ∈ U A . Moreover, 0 ∈ T ♭(2) U (ū(t), V ũε (t)) for a.e. t ∈ [t 1 , t 2 ]
. Thanks to Lemma 2.4 and Theorem 2.5 we obtain

- 1 2 y ε (1) * ϕ ′′ (x(1))y ε (1) + 1 2 1 0 y ε (t) * H xx [t]y ε (t)dt + 1 0 ũε (t) * V * H xu [t]y ε (t)dt ≤ 0,
where y ε (•) is the solution of (2.1) for u(•) = V ũε (t).

Proceeding exactly in the same way as in the proof of Theorem 3.1, we obtain

1 3 (ũ 1 ) * 1 2 B1 [τ ] * H xx [τ ] B1 [τ ] - 1 2 d dt Q1 [τ ] B1 [τ ] -Q1 [τ ]f x [τ ] B1 [τ ] + 1 2 Q1 [τ ] d dt B1 [τ ] ũ1 (4.4) - 1 2 (ũ 1 ) * Q1 [τ ] B2 [τ ] -( Q2 [τ ] B1 [τ ]) * ũ2 ≤ 0.
If m * < r, then, by the same reasonings as at the end of the proof of Theorem 3. Proof.

Consider A 1 = {t ∈ [t 1 , t 2 ] : u(t) ∈ U 0 }, A 2 = {t ∈ [t 1 , t 2 ] : u(t) ∈ ∂U \U 0 }, A 3 = {t ∈ [t 1 , t 2 ] : u(t) ∈ Int U }.
Since for every t ∈ A 1 , P ū(t) = 0, the statement of theorem holds true on A 1 . By Remark 4.2 it holds true for a.e. t ∈ A 2 . Theorem 3.1 completes the proof.

Corollary 4.4. Under all the assumptions of Theorem 4.3 suppose that f is as in (1.10), where

f l (•) ∈ C 2 (R n ; R n ) and U l ⊂ R is a closed (possibly unbounded
) interval for all l ∈ {1, . . . , m}.

Consider the matrix valued mapping Θ : [0, 1] → M (m × m), whose elements are

θ k,l (t) := p(t), [f k , f l ](x(t)) ∀ k, l ∈ {1, . . . , m}.
Then for a.e. t ∈ [t 1 , t 2 ], the subspace Θ(t) P ū(t) is orthogonal to P ū(t) .

Proof. By Theorem 4.3 applied to the convex polytope

U = U 1 × ... × U m , for a.e. t ∈ [t 1 , t 2 ], H xu [t]f u [t] is symmetric on P ū(t) . Fix such t. Since a * (H xu [t]f u [t] -(H xu [t]f u [t]) * )b = 0 for all a, b ∈ P ū(t) , denoting by f l,j is the j-th element of f l , we obtain 0 = m k=1 m l=1 a k (H xu [t]f u [t] -f u [t] * H xu [t] * ) k,l b l = m k=1 m l=1 a k   n s=1 n j=1 p j (t) ∂f k,j ∂x s (x(t))f l,s (x(t)) - n s=1 f k,s (x(t)) n j=1 p j (t) ∂f l,j ∂x s (x(t))   b l = m k=1 m l=1 a k   n j=1 p j (t) n s=1 ∂f k,j ∂x s (x(t))f l,s (x(t)) -f k,s (x(t)) ∂f l,j ∂x s (x(t))   b l .
Hence where fl (x) := m j=1 V (t) j,l f j (x) for l ∈ {1, . . . , r} (recall that ũl = 0 for l ∈ {r + 1, . . . , m}). Note that fũ [t] = f u [t]V (t) and call H(x, ũ) := p(t), f (x, ũ) . Now for any a, b ∈ P ū(t) we have

p(t), m k=1 m l=1 a k ∂f k ∂x (x(t))f l (x(t)) - ∂f l ∂x (x(t))f k (x(t))b l = p(t),
a * (H xu [t]f u [t] -(H xu [t]f u [t]) * )b = ã * V (t) * (H xu [t]f u [t] -(H xu [t]f u [t]) * )V (t) b = 0.
Therefore for any k, l ∈ {1, . . . , r} That is p(t) is orthogonal to the Lie bracket [ fk , fl ](x(t)) for all k, l ∈ {1, ..., r}.

0 = (V (t) * (H xu [t]f u [t] -f u [t] * H xu [t] * )V (t)) k,l = (

Second order conditions for smooth control constraints

In this section we consider a proper closed set U ⊂ R m of class C 2 whose definition we recall now. For the unit ball B in R m let

B 0 := {v = (v 1 , . . . , v m ) ∈ B : v m = 0} & B + := {v = (v 1 , . . . , v m ) ∈ B : v m > 0}.
Definition 5.1. U is said to be of class C 2 if for each u ∈ ∂U there exist (i) a neighborhood W (u) of u, and (ii) a bijective map g u : W (u) → B with the following properties:

g u (•) ∈ C 2 (W (u); B), h u (•) := g -1 u (•) ∈ C 2 (B; W (u)), Int U ∩ W (u) = h u (B + ), Γ u := ∂U ∩ W (u) = h u (B 0 ), B 0 = g u (Γ u ). Remark 5.2. If U is of class C 2 , then a)
For each u 0 ∈ ∂U there exists a neighborhood W (u 0 ) of u 0 such that the oriented distance b U (•) ∈ C 2 (W (u 0 )) and ∇b U (u) = 1 for all u ∈ W (u 0 ), see for instance Theorem 4.3 in [START_REF] Delfour | Shapes and geometries[END_REF]; b) For every u 0 ∈ ∂U , T ♭ U (u 0 ) = {v ∈ R m : ∇b U (u 0 ), v ≤ 0} and the subspace

P u 0 := {v ∈ R m : ∇b U (u 0 ), v = 0} = ∂T ♭ U (u 0 ) has the dimension equal to m -1.
c) For every u 0 ∈ ∂U , ∇b U (u 0 ) is the unit outward normal to U at u 0 and, applying the inverse mapping theorem to b U , it is not difficult to show that for any u ∈ ∂T ♭ U (u 0 ) we have

-1 2 (u * b ′′ U (u 0 )u) ∇b U (u 0 ) ∈ T ♭ (2) 
U (u 0 , u). Let (x(•), ū(•)) be a strong local minimizer for the Mayer problem (1.3). Define the following matrix valued mapping C(•) on [0, 1] Fix ũ ∈ R m-1 × {0}, ũ = 0 and let ũ1 ∈ R m * , ũ2 ∈ R m-1-m * be such that ũ = (ũ 1 , ũ2 , 0). If m * = m -1, then ũ2 is absent in this decomposition. For any small ε > 0 define

C(t) = b ′′ U (ū(t)) if ū(t)
ũ1 ε (t) :=      1 |E 1 ε | ũ1 t ∈ E 1 ε -1 |E 1 ε | ũ1 t ∈ E 2 ε 0 otherwise ũ2 ε (t) := ũ2 t ∈ E 1 ε ∪ E 2 ε 0 otherwise , ũ3 ε (t) := 0.
With this definition V (t)ũ ε (t) ∈ S(t) for all t ∈ Υ ∩ E ε , where ũε (t) = (ũ 1 ε (t), ũ2 ε (t), 0). Hence, V (•)ũ ε (•) ∈ U A . By Remark 5. [START_REF] Agrachev | Abnormal sub-riemannian geodesics: Morse index and rigidity[END_REF] and assumption (i), Theorem 5.3 implies that

- 1 2 y ε (1) * ϕ ′′ (x(1))y ε (1) + 1 2 1 0 y ε (t) * H xx [t]y ε (t)dt + τ +δε τ -δε ũε (t) * V (t) * H xu [t]y ε (t)dt ≤ 0 (5.4)
where y ε (•) is the solution of (2.1) for u(•) = V (•)ũ ε (•). Define for all t ∈ [0, 1] ζε (t) := t 0 ũε (s)ds.

Then, ζ1

ε (•) ∞ ≤ ũ1 and, as in (3.4),

1 0 ζ1 ε (t) dt = O(|Υ ∩ E ε |), ζ1 ε (t) = 0 outside of the interval (τ -δ ε , τ + δ ε ).
To simplify the notation we will omit for a while the subscript ε.

Performing integrations by parts as in the proof of Theorem 3.1, from (5.4) we obtain

- 1 2 y(1) * ϕ ′′ (x(1))y(1) + ζ(•) * V (•) * H xu [•]y(•) τ +δ τ -δ + 1 2 1 0 y(t) * H xx [t]y(t)dt - τ +δ τ -δ ζ(t) * d dt (V * H xu )[t]y(t)dt - τ +δ τ -δ ζ(t) * V (t) * H xu [t]f x [t]y(t)dt + 1 2 τ +δ τ -δ ζ1 (t) * d dt ( Q1 B1 )[t] ζ1 (t)dt - τ +δ τ -δ ζ2 (t) * Q2 [t] B2 [t]ũ 2 (t)dt - τ +δ τ -δ ζ1 (t) * ( Q1 [t] B2 [t] -( Q2 [t] B1 [t]) * )ũ 2 (t)dt + τ +δ τ -δ ζ2 (t) * d dt ( Q2 B1 )[t] ζ1 (t)dt ≤ 0. (5.5) For all t ∈ [0, 1], define ξ(t) := X(t) t 0 X -1 (s) f x [s] B1 [s] - d ds B1 [s] ζ1 (s)ds + X(t) t 0 X -1 (s) B2 [s]ũ 2 (s)ds
and observe that, as in the proof of Theorem 3.1, y(

•) = ξ(•) + B1 [•] ζ1 (•).
We restore the subscript ε. Thanks to the definition of ũε (

•), ξ ε (•) ∞ = O(|Υ ∩ E ε |) and ξ ε (1) * ϕ ′′ (x(1))ξ ε (1) = o(|Υ ∩ E ε |), 1 0 ξ ε (t) * H xx [t]ξ ε (t)dt = o(|Υ ∩ E ε |), τ +δε τ -δε ζ1 ε (t) * B1 [t] * H xx [t]ξ ε (t)dt = o(|Υ ∩ E ε |), τ +δε τ -δε ζ2 ε (t) * Q2 [t] B2 [t]ũ 2 ε (t) = o(|Υ ∩ E ε |), τ +δε τ -δε ζε (t) * d dt (V * H xu )[t] + V (t) * H xu [t]f x [t] ξ ε (t)dt = o(|Υ ∩ E ε |), τ +δε τ -δε ζ2 ε (t) * - d dt Q2 [t] B1 [t] -Q2 [t]f x [t] B1 [t] + d dt ( Q2 B1 )[t] ζ1 ε (t)dt = o(|Υ ∩ E ε |), ζε (•) * V (•) * H xu [•]ξ ε (•) τ +δε τ -δε = o(|Υ ∩ E ε |).
small perturbations of ū(•) lead to feasible trajectories. For this reason we have to investigate only the case x(1) ∈ ∂K. Since the boundary of K is smooth, the limiting normal cone to K at x(1) is equal to R + ∇b K (x(1)). Thus we deduce, for instance from [START_REF] Vinter | Optimal control[END_REF], the following maximum principle. The above maximum principle may be abnormal, that is λ = 0. In this case p(1) may be taken equal to -∇b K (x( 1)). Lemma 6.2. Let (x(•), ū(•)) be a strong local minimizer for (6.1) with x(1) ∈ ∂K for which an abnormal maximum principle of Theorem 6.1 holds true for some µ > 0. Then for every measurable bounded selection u(t) ∈ P ū(t) a.e. in [0, 1], the solution y(•) of (2.1) satisfies ∇b K (x(1)), y(1) = 0 and p(t), f u

[t]u(t) = 0 a.e. in [0, 1]. Proof. Let u : [0, 1] → R m be as above. By (1.5), H u [t]u(t) = p(t), f u [t]u(t) = 0 a.e. in [0, 1].
Then from (1.4) and (2.1) we obtain

p(1), y(1) = 1 0 p, y ′ (t)dt = 1 0 ( p ′ (t), y(t) + p(t), y ′ (t) )dt = 1 0 H u [t]u(t) = 0.
If the maximum principle is abnormal, then the cost is not involved into the first order optimality conditions. Thus inequality (2.3) can not be related to the costate p(•) as it was done in the proof of Theorem 2.5. To apply the variational approach developed in the previous sections, we use the exact penalization which allows to deal with a normal maximum principle. Assuming that the Mayer problem (6.1) is calm at x(•) we can apply Proposition 6.4.3 from [START_REF] Clarke | Optimization and nonsmooth analysis[END_REF] to deduce that there exists k > 0 such that (x(•), ū(•)) is a strong local minimizer of the following minimization problem without endpoint constraints:

min ϕ(x(1)) + kd K (x(1)) : x(•) ∈ S [0,1] (x 0 ) . (6.2) Since ϕ(•) + kd K (•) is no longer C 2 ,
we need the following (non smooth) maximum principle that can be deduced, for instance, from [START_REF] Vinter | Optimal control[END_REF]. Theorem 6.4. Let (x(•), ū(•)) be a strong local minimizer of (6.2) with x(1) ∈ ∂K. Then there exists an absolutely continuous function p : [0, 1] → R n satisfying (1.4), (1.5) and the transversality condition

(6.3) -p(1) ∈ ∇ϕ(x(1)) + k[0, ∇b K (x(1))],
where [0, ∇b K (x( 1))] = {µ∇b K (x(1)) : µ ∈ [0, 1]}.

Denote by q 1 (•) the solution of (1.4) for p(1) = -∇ϕ(x(1)) and by q 2 (•) the solution of (1.4) for p(1) = -∇ϕ(x(1)) -k∇b K (x(1). Note that q i (1) are extremal points in the transversality condition (6.3). The mappings q i (•) do not satisfy, in general, the maximum principle (1.5) but are used below to express the second order necessary optimality conditions. Define for i = 1, 2 

ϕ 1 (•) := ϕ(•), ϕ 2 (•) := ϕ(•) + kb K (•), H i xx [•] := H xx (•, x(•), q i (•), ū(•)
v(•) ∈ L ∞ ([0, 1]; R m ) satisfying v(t) ∈ T ♭ (2) 
U (ū(t), u(t)) for a.e. t ∈ A, there exists i ∈ {1, 2} such that

0 ≥ 1 0 H i u [t]v(t) + 1 2 y(t) * H i xx [t]y(t) + u(t) * H i xu [t]y(t) + 1 2 u(t) * H i uu [t]u(t) dt - 1 2 y(1) * (ϕ i ) ′′ (x( 1 
))y( 1).

(6.4)

Proof. Let u(•), v(•), y(•) be as in the statement of the theorem and xh (•), w(•) be as in the proof of Theorem 2.5. Then for all small h > 0, 0 ≥ϕ(x(1)) -ϕ(x h (1)) -kd K (x h (1)). (6.5) By the transversality condition for some µ ∈ [0, 1], -p(1) = ∇ϕ(x(1)) + kµ∇b K (x(1)) and by the same arguments as in the proof of Lemma 6.2, p(1), y(1) = 0.

Suppose first that there exists a sequence h i → 0+ such that xh i (1) / ∈ K. Then, by (6.5), 0 ≥ϕ(x(1)) -ϕ(x h i (1)) -kb K (x h i (1)) = -∇ϕ(x(1)) + k∇b K (x(1)), h i y(1) + h 2 i w(1) (6.6) -h 2 i 2 y(1) * (ϕ ′′ (x(1)) + kb ′′ K (x(1)))y(1) + o(h 2 i ).

Since ∇b K (x(1)), y(1) = 0, we deduce from p(1), y(1) = 0 that ∇ϕ(x(1)), y(1) = 0 and therefore ∇ϕ(x(1)) + k∇b K (x(1)), y(1) = 0. From (6.6), dividing by h 2 i and passing to the limit we obtain 0 ≥ -∇ϕ(x(1)) + k∇b K (x(1)), w(1) -1 2 y(1) * (ϕ ′′ (x(1)) + kb ′′ K (x(1)))y(1).

In the same way as in the proof of Theorem 2.5, the last inequality and (2.2) imply (6.4) for i = 2. Suppose next that for all small h > 0, xh (1) ∈ K. Then (6.5) yields 0 ≥ -∇ϕ(x(1)), hy(1) + h 2 w(1) -h 2 2 y(1) * ϕ ′′ (x(1))y(1) + o(h 2 ). (6.7) Since ∇b K (x(1), y(1) = 0, -∇ϕ(x(1)), y(1) = -∇ϕ(x(1)) + kµ∇b K (x(1)), y(1) = p(1), y(1) = 0. Hence, dividing (6.7) by h 2 and letting h → 0 we get (6.8) 0 ≥ -∇ϕ(x(1)), w(1) -1 2 y(1) * ϕ ′′ (x(1))y(1).

Using (2.2), similarly to the proof of Theorem 2.5, we deduce (6.4) from (6.8) for i = 1. Proof. By [START_REF] Hoehener | Variational approach to second-order optimality conditions for control problems with pure state constraints[END_REF] there exist measurable controls u h (•) such that for the corresponding solutions x h (•) of (1.2) the difference quotients x h -x h converge uniformly to y(•) when h → 0+. Furthermore, from the inequality ∇b K (x(1)), y(1) < 0, we deduce that x h (1) ∈ K for all small h > 0. Hence ϕ(x h (1)) ≥ ϕ(x(1)) and therefore ∇ϕ(x(1)), y(1) ≥ 0.

Let p(•), v(•) be as in the second statement of the proposition, µ ≥ 0 be as in the maximum principle of Theorem 6.1 and xh (•) be as in the proof of Theorem 2.5. Then it is not difficult to realize that it is feasible whenever h > 0 is small enough. If H u [t]u(t) = 0 a.e. in [0, 1], then, by the proof of Lemma 6.2, p(1), y(1) = 0. If ∇ϕ(x(1)), y(1) = 0, then the transversality condition of the maximum principle yields µ ∇b K (x(1)), y(1) = 0. Consequently, µ = 0. The ends by using the inequality (2.3).

The above proposition provides a first and a second order necessary optimality conditions only in the case when ∇b K (x(1)), y(1) < 0. Observe that if ∇b K (x(1)), y(1) > 0, then x h (•), xh (•) from the proof of our proposition are not feasible for all small h > 0 and so this case may be ruled out in our analysis.

Below we provide second order necessary optimality conditions obtained by analyzing some particular u(•) ∈ U A with u(t) ∈ P ū(t) a.e. for which the corresponding solutions y(•) of (2.1) satisfy ∇b K (x(1)), y(1) = 0.

Consider the solution q(•) of the adjoint system (1.4) such that q(1) = -∇b K (x(1)) and define the subspaces T t ⊂ P ū(t) by T t := {u ∈ P ū(t) : q(t), f u [t]u = 0}.

Notice that, by Lemma 6.2, if the abnormal maximum principle of Theorem 6.1 holds true, then T t = P ū(t) a.e. in [0, 1]. Observe next that for every measurable essentially bounded selection u(t) ∈ T t and the corresponding solution y(•) of (2.1) we have ∇b K (x(1)), y(1) = -q(1), y(1) = -1 0 q, y ′ (t)dt = -1 0 q(t), f u [t]u(t) dt = 0. Therefore, by Theorem 6.5, (6.4) holds true for every u(•) ∈ U A such that u(t) ∈ T t a.e. in [0, 1]. This and the same arguments as those from Sections 3, 4, 5 allow to deduce from (6.4) the following three theorems. Theorem 6.7. Let (x(•), ū(•)) be a strong local minimizer of the Mayer problem (6.1) such that x(1) ∈ ∂K. Assume that (6.1) is calm at x(•) and for some 0 ≤ t 1 < t 2 ≤ 1, ū(•) is integrable on [t 1 , t 2 ] and for j = 1, 2 (6.9) 

   (i) H j

  is a closed (possibly unbounded) interval for all l ∈ {1, . . . , m}. Consider the matrix valued mapping Θ : [0, 1] → M (m × m), whose elements are
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 23 Maximum Principle). Let (x(•), ū(•)) be a strong local minimizer for the Mayer problem(1.3). Then there exists an absolutely continuous p : [0, 1] → R n satisfying (1.4), (1.5) and (1.6).Lemma 2.4. Let (x(•), ū(•)) be a strong local minimizer of (1.3) and p(•) be as in the maximum principle of Theorem 2.3. Then for a.e. t ∈ [0, 1] and for any u ∈ P ū(t) we have H u [t]u = 0.
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 25 Let (x(•), ū(•)) be a strong local minimizer for the Mayer problem (1.3) and p(•) be as in the maximum principle of Theorem 2.3. Then for all u

aV

  k [f k , f l ](x(t))b l = 0 and therefore 0 = m k=1 m l=1 a k p(t), [f k , f l ](x(t)) b l = a, Θ(t)b . Remark 4.5.a) The matrix Θ(t) of Corollary 4.4 is called in[START_REF] Chitour | Singular trajectories of control-affine systems[END_REF] the Goh matrix. Note that by Theorem 3.1 it is equal to zero for a.e.t ∈ [t 1 , t 2 ] such that ū(t) ∈ Int (U 1 × ... × U m ).b) Using the notations ũ, ã, b, r and V (t) introduced right before Lemma 4.1, we can further develop the conclusions of the above corollary. Fixt ∈ [t 1 , t 2 ] such that H xu [t]f u [t] is symmetric on the subspace P ū(t) . Then f (x, u) = f 0 (x) + (t) l,j ũj   f l (x),and we can define f (x, ũ) := f (x, u) = f 0 (x) + r l=1 ũl fl (x),

Theorem 6 . 1 .

 61 Let (x(•), ū(•)) be a strong local minimizer for (6.1) with x(1) ∈ ∂K. Then there exists an absolutely continuous function p : [0, 1] → R n and λ ∈ {0, 1}, µ ≥ 0, satisfying λ + µ > 0, (1.4), (1.5) and the transversality condition -p(1) = λ∇ϕ(x(1)) + µ∇b K (x(1)) .

Definition 6 . 3 .

 63 The Mayer problem (6.1) is called calm at x(•) if exist ε > 0 and M > 0 such that for every ν ∈ (0, ε) and x(•) ∈ S [0,1] (x 0 ) satisfying d K (x(1)) ≤ ν and ||x(•) -x(•)|| ∞ ≤ ε we have ϕ(x(1)) ≥ ϕ(x(1)) -M ν.

Proposition 6 . 6 .

 66 Let (x(•), ū(•)) be a strong local minimizer for (6.1) with x(1) ∈ ∂K. Consider u(•) ∈ U A and the corresponding solution y(•) of (2.1). If ∇b K (x(1)), y(1) < 0, then ∇ϕ(x(1)), y(1) ≥ 0. Let p(•) be as in the maximum principle of Theorem 6.1. If ∇ϕ(x(1)), y(1) = 0, H u [•]u(•) = 0, then p(1) = -∇ϕ(x(1)) and for any v(•) ∈ L ∞ ([0, 1]; R m ) satisfying v(t) ∈ T ♭(2) U (ū(t), u(t)) for a.e. t ∈ A, we have ∇ϕ(x(1)), w(1) + 1 2 y(1) * ϕ ′′ (x(1))y(1) ≥ 0, where w(•) solves (2.2).

  are absent in the above partition.3. Second order conditions in the interior of control constraintsLet (x(•), ū(•)) be a strong local minimizer for the Mayer problem (1.3) and p(•) be as in the maximum principle of Theorem 2.[START_REF] Agrachev | Control theory from the geometric viewpoint[END_REF].In this section we analyze the points t ∈ [0, 1] such that ū(t) ∈ Int U .

Theorem 3.1. Assume that for some

0 ≤ t 1 < t 2 ≤ 1, ū(•) is integrable on [t 1 , t 2 ] and (3.1)    (i) H uu [t] = 0 a.e. in [t 1 , t 2 ]; (ii) H xu [•], f u [•] are Lipschitz on [t 1 , t 2 ]; (iii) H xx [•], f x [•] are essentially bounded on [t 1 , t 2 ].

Then, for a.e. t ∈ [t 1 , t 2 ] such that ū(t) ∈ Int U , the matrix H xu [t]f u [t] is symmetric and

  strong local minimizer of (1.3) and p(•) be as in the maximum principle of Theorem 2.3. Assume that for some0 ≤ t 1 < t 2 ≤ 1, ū(•) is integrable on [t 1 , t 2 ]and that (3.1) holds true. Then, for a.e. t ∈ [t 1 , t 2 ] such that ū(t) ∈ ∂U \ U 0 and for Q 1 [t], B 1 [t] defined as above, the matrix Q 1

  Remark 4.2. The matrices Q 1 [t] and B 1 [t] depend on the choice of the basis for P ū(t) . However, the above lemma implies that for almost all t ∈ [t 1 , t 2 ] such that ū(t) ∈ ∂U \U 0 , H xu [t]f u [t] is symmetric on the subspace P ū(t) and R(t) is negative semi-definite on P ū(t) . Let (x(•), ū(•)) be a strong local minimizer for the Mayer problem (1.3) and p(•) be as in the maximum principle of Theorem 2.3. Assume that for some0 ≤ t 1 < t 2 ≤ 1, ū(•) is integrable on [t 1 ,t 2 ] and (3.1) holds true. Then for a.e. t ∈ [t 1 , t 2 ], H xu [t]f u [t] is symmetric on the subspace P ū(t) and R(t) is negative semi-definite on P ū(t) .

	Theorem 4.3.

1, we get Q1 [τ ] B2 [τ ] = ( Q2 [τ ] B1 [τ ]) * contradicting

(4.3)

. Thus m * = r and we deduce from (4.4) that R 1 (τ ) ≤ 0 on R r .

  Theorem 6.5. Let (x(•), ū(•)) be a strong local minimizer for (6.2) with x(1) ∈ ∂K and p(•) be as in Theorem 6.4. Then for every u(•) ∈ U A such that H u [•]u(•) = 0 and the corresponding solution y(•) of (2.1) verifies ∇b K (x(1)), y(1) = 0, and for any

). The mappings H i xu [•] and H i uu [•] are defined in a similar way.

  uu [t] = 0 a.e. in [t 1 , t 2 ]; (ii) H j xu [•], f u [•] are Lipschitz on [t 1 , t 2 ]; (iii) H j xx [•], f x [•] are essentially bounded on [t 1 , t 2 ]. Then for a.e. t ∈ [t 1 , t 2 ] with ū(t) ∈ Int U there exists i ∈ {1, 2} such that H i xu [t]f u [t] is symmetric on T t and

	R i (t) :=	1 2	f u [t] * H i xx [t]f u [t] -	1 2	d dt	H i xu [t]f u [t] -H i xu [t]f x [t]f u [t] +	1 2	H i xu [t]	d dt	f u [t]
	is negative semi-definite on T t .							

Theorem 6.8. Let U be a convex polytope and (x(•), ū(•)) be a strong local minimizer of the Mayer problem (6.1) such that x(1) ∈ ∂K. Assume that (6.1) is calm at x(•) and for some 0 ≤ t 1 < t 2 ≤ 1, ū(•) is integrable on [t 1 , t 2 ] and (6.9) holds true for j = 1, 2. Then for a.e. t ∈ [t 1 , t 2 ] there exists i ∈ {1, 2} such that H i xu [t]f u [t] is symmetric on T t and R i (t) is negative semi-definite on T t .
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Proof. By the maximum principle, H u [t] = H u [t] ∇b U (ū(t)) for a.e. t such that ū(t) ∈ ∂U . This, Remark 5.2 c) and Theorem 2.5 imply the claim.

For a trajectory/control pair (x(•), ū(•)) assume that for some 0 ≤ t 1 < t 2 ≤ 1, ū(•) is Lipschitz on (t 1 , t 2 ) and let t ∈ (t 1 , t 2 ) be such that ū( t) ∈ ∂U . Then there exists η > 0 such that [ t -η, t + η] ⊂ (t 1 , t 2 ) and b U ∈ C 2 on a neighborhood of the set ū([ t -η, t + η]). For every t ∈ [ t -η, t + η] define the m -1 dimensional subspace S(t) := {u ∈ R m : ∇b u (ū(t)), u = 0}.

Remark 5.4. In the same way as in Lemma 2.4 it can be shown that H u [t]u = 0 for any u ∈ S(t) and a.e. t ∈ ( t -η, t + η). Hence (5.1) holds for every u(•) ∈ U A , such that u(t) ∈ S(t) a.e. in ( t -η, t + η) and u(t) = 0 on [0, 1]\( t -η, t + η).

For every t ∈ ( t -η, t + η) consider an orthonormal basis {v 1 (t), . . . , v m-1 (t)} of S(t). Thus {v 1 (t), . . . , v m-1 (t), ∇b U (ū(t))} is an orthonormal basis for R m . Let V (t) ∈ M (m × m) be the change of basis matrix, i.e. v i (t) = V (t)e i for all i ∈ {1, . . . , m -1} and ∇b U (ū(t)) = V (t)e m , where {e i } is the canonical basis of R m .

The matrix-valued function V (•) can be chosen on ( t -η, t + η) in such way that its regularity depends only on the regularity of ū(•). Indeed we have the following lemma. Lemma 5.5. For all x ∈ R m \{0}, there exist a neighborhood W (x) ⊂ R m of x and an analytic map

where x 1 (x), . . . , x m-1 (x) ∈ R m are such that {x 1 (x), . . . , x m-1 (x)} is an orthonormal basis of {x} ⊥ := {v ∈ R m : v, x = 0}.

Proof. Fix x ∈ R m , x = 0 and complete it to a basis {x 1 (x), . . . , x m-1 (x), x} of R m . Then, there exists a neighborhood W (x) of x such that det(x 1 (x), . . . , x m-1 (x), x) = 0 for all x ∈ W (x) and therefore {x 1 (x), . . . , x m-1 (x), x} is a basis of R m . Moreover the map x → (x 1 (x), . . . , x m-1 (x), x) is analytic. Using the Gram-Schmidt process we can orthonormalize this basis getting the analytic map V(•).

Define

Thus η > 0 and V (•) can be chosen in such way that

Lemma 5.6. Let (x(•), ū(•)) be a strong local minimizer for the Mayer problem (1.3) and p(•) be as in the maximum principle of Theorem 2.3. Assume that for some

(5.2)

Then for almost every t ∈ (t 1 , t 2 ) such that ū( t) ∈ ∂U there exist η > 0 satisfying ( t -η, t + η) ⊂ (t 1 , t 2 ) and a Lipschitz change of basis 

We will prove that the statement is true at all points of the set

that is for almost every t ∈ (t 1 , t 2 ) such that ū(t) ∈ ∂U . Fix such t. By the comments preceding the statement of the lemma, there exist η > 0 with ( t -η, t + η) ⊂ (t 1 , t 2 ) and a Lipschitz change of basis

, 3 be defined as before the statement of the lemma.

For all ρ > 0, η > 0 consider

Then |A ρ,η | > 0. Denote by Υ the set of all points in A ρ,η having the Lebesgue density in A ρ,η equal to one and let m * (•) be defined as at the end of Section 2 for R(

] is symmetric and R 1 (τ ρ,η ) ≤ 0. Indeed, if this holds true, then we can construct a sequence

Fix ρ > 0, η > 0 sufficiently small and let Υ be as above. Set τ = τ ρ,η , m * = m * (τ ) and define δ ε , E ε , E 1 ε , E 2 ε as in (2.5), (2.7) and (2.8) for the function a (5.5) and using the above estimates, similarly to the proof of Theorem 3.1, we get

(5.6) Therefore, applying Lemma 2.6, dividing by |Υ ∩ E ε | in (5.6) and passing to the limit when ε → 0+, we obtain

By the arbitrariness of ((ũ 1 ) * , (ũ 2 ) * ) * ∈ R m-1 , applying the same arguments as at the end of the proof of Theorem 3.1, we deduce that if

is negative semi-definite on R m-1 .

Theorem 5.7. Let (x(•), ū(•)) be a strong local minimizer for the Mayer problem (1.3) and p(•) be as in the maximum principle of Theorem 2.3. Assume that for some

) and (5.2) holds true. Then for a.e. t ∈ (t 1 , t 2 ), H xu [t]f u [t] is symmetric on the subspace P ū(t) and

is negative semi-definite on P ū(t) , where V is as defined just before Lemma 5.6.

Proof. By Theorem 3. 

Mayer's problem with endpoint constraints

Let K be a proper closed nonempty subset of R n of class C 2 . Then the oriented distance b K (•) is C 2 on a neighborhood of ∂K, cf. [START_REF] Delfour | Shapes and geometries[END_REF]. Denote by S K [0,1] (x 0 ) the set of all x(•) ∈ S [0,1] (x 0 ) satisfying x(1) ∈ K. We call such trajectories feasible. We study here the following Mayer optimal control problem (6.1) min ϕ(x(1)) : x(•) ∈ S K [0,1] (x 0 ) . Let (x(•), ū(•)) be a strong local minimizer of the above problem and P ū(t) be defined as in Section 2. If x(1) belongs to Int K, then the previously developed second order variational analysis does apply as though there were no endpoint constraints. This is due to the fact that Corollary 6.9. Under all the assumptions of Theorem 6.8 suppose that f is as in (1.10), where f l (•) ∈ C 2 (R n ; R n ) and U l ⊂ R is a closed (possibly unbounded) interval for all l ∈ {1, . . . , m}. For i = 1, 2 define the matrix valued mappings Θ i : [0, 1] → M (m × m), where is symmetric on T t . Remark 6.11. Similar analysis can be performed when K is an intersection of a finite family of closed sets K j of class C 2 . Then the assumptions and statements will involve Hamiltonians H j for each active index j.