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Abstract

We devise mixed methods for heterogeneous anisotropic diffusion problems supporting
general polyhedral meshes. For a polynomial degree k ¥ 0, we use as potential degrees
of freedom the polynomials of degree at most k inside each mesh cell, whereas for the
flux we use both polynomials of degree at most k for the normal component on each face
and fluxes of polynomials of degree at most k inside each cell. The method relies on
three ideas: a flux reconstruction obtained by solving independent local problems inside
each mesh cell, a discrete divergence operator with a suitable commuting property, and a
stabilization enjoying the same approximation properties as the flux reconstruction. Two
static condensation strategies are proposed to reduce the size of the global problem, and
links to existing methods are discussed. We carry out a full convergence analysis yielding
flux-error estimates of order pk� 1q and L2-potential estimates of order pk� 2q if elliptic
regularity holds. Numerical examples confirm the theoretical results.

1 Introduction

Over the last few years, several discretization methods for elliptic PDEs on general meshes
including polyhedral cells and nonmatching interfaces have been proposed and analyzed. Such
general meshes are useful, for instance, in the context of subsurface flow simulations in saline
aquifers and oil reservoirs featuring geological layers with complex three-dimensional shapes.
Another motivation for using general meshes stems from agglomeration-based mesh coarsen-
ing strategies [3]. Examples of low-order discretization methods supporting general meshes
include Mimetic Finite Differences (MFD) [32, 14, 12], Mixed Finite Volumes (MFV) [26]
and Hybrid Finite Volumes (HFV) [29], the generalized Crouzeix–Raviart method [24], Gra-
dient schemes [28], Cell-Centered Galerkin (CCG) methods [19], the Discrete Geometric
Approach [18], and Compatible Discrete Operator (CDO) schemes [9, 10]. Tight connec-
tions exist between various of the above methods, as discussed in [27, 30, 25, 9]. Higher-
order discretizations extending ideas from the above methods have become recently available,
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and include nodal MFD [6], the Virtual Element (VE) method [4, 5], Weak Galerkin (WG)
schemes [34, 35], and Hybrid High-Order (HHO) methods [22, 21, 23].

In many applications involving elliptic PDEs, in particular with heterogeneous and pos-
sibly anisotropic diffusion, it is often of interest to approximate both the potential (primal
variable) and the diffusive flux (dual variable) starting from the elliptic PDE in mixed form.
An extensive choice of mixed finite elements is available on simplicial and rectangular meshes,
see [7] and references therein, while extensions to pyramids and triangular prisms can be found
in [11]. The literature is more scarce on meshes with more general cell shapes. One possi-
bility is to introduce a simplicial submesh of the polyhedral cells so as to reconstruct the
diffusive flux from its normal interface values inside the cell by solving a local minimization
problem [16, 33]. In the present work, we introduce and analyze a simple and alternative
mixed method on general meshes, avoiding the need for local solves on the submesh.

The key ideas can be summarized as follows. Let k ¥ 0 be an arbitrary polynomial degree.
As a starting point, we consider potential degrees of freedom (DoFs) that are polynomials of
degree at most k in each cell, while the flux DoFs consist of face-based DoFs that are scalar-
valued polynomials of degree at most k in each face (approximating the normal flux across
the face) and of cell-based DoFs that are fluxes of potential polynomials of degree at most k.
Then, we devise two key discrete operators, both acting cell-wise: (i) a discrete divergence
operator, mapping flux DoFs to potential DoFs, that satisfies a commuting property with
suitable reduction operators acting on continuous fluxes and potentials, and (ii) a consistent
flux reconstruction operator mapping flux DoFs to a continuous flux evaluated from the
gradient of a polynomial potential of degree at most pk� 1q; consistency stems from the fact
that the flux reduction operator is a right inverse of the reconstruction operator. The third key
ingredient is a stabilization bilinear form which is defined cell-wise as a least-squares penalty
on cell faces between flux face-based DoFs and the normal component of the reconstructed
flux. At the discrete level before the static condensation discussed below, the L2-inner product
between discrete fluxes can be interpreted as originating from a discrete Hodge inner product
built from a consistent and a stabilization part in the spirit of [15, 13, 29, 8]. One salient
difference is, however, that in the present method, the reconstructed flux is not made fully
explicit (only the consistent part is, but not the stabilization part), in a spirit close to the
VE method.

In practice, substantial computational savings can be achieved by static condensation,
whereby cell-based DoFs are eliminated leading to a global linear system in terms of face-
based DoFs. Two strategies for static condensation can actually be considered. On the
one hand, cell-based flux DoFs and potential DoFs up to a constant value per cell can be
eliminated locally. The global problem is then of saddle-point form and involves the face-
based flux DoFs and the mean-value of the potential in each cell. This problem has the same
size and structure as that derived in the Multiscale Hybrid-Mixed (MHM) method [1, 31]
using a different viewpoint based on the primal mixed method with Lagrange multipliers
enforcing the interface continuity of the potential. On the other hand, the face-based flux
DoFs can be hybridized by means of face-based polynomials of degree at most k which play
the role of Lagrange multipliers and can be interpreted as potential traces on cell faces.
In this case, the flux and potential DoFs can be eliminated locally, and the global linear
system in the Lagrange multipliers is symmetric positive definite. The size and structure of
this system are closely related to those obtained using HHO methods [22, 21, 23] and also
Hybrid Discontinuous Galerkin (HDG) methods [17]. One difference with HDG is that the
cell-based flux DoFs to be eliminated locally are not vector-valued polynomials but gradients
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of scalar-valued polynomials as in HHO methods.
This paper is organized as follows. In Section 2, we specify the continuous and discrete

settings including the key ingredients to formulate the discrete problem. In Section 3, we
present the discrete problem and state our main results which include flux-error estimates
of order pk � 1q and L2-potential estimates of order pk � 2q if elliptic regularity holds. We
also discuss static condensation, which is important in the practical implementation of the
method, as well as links with other methods in the lowest-order case (k � 0). Interestingly,
the link with the lowest-order Raviart–Thomas finite elements on simplices shows that the
latter can be decomposed into a consistent and a stabilization part. In Section 4, we collect
the proofs of our results. Finally, in Section 5, we present numerical results illustrating the
error analysis.

2 Continuous and discrete settings

In this section, we introduce the continuous and discrete settings. In particular, we define the
flux and potential DoFs, the discrete divergence and flux reconstruction operators, and the
discrete Hodge inner product.

2.1 Continuous setting

Let Ω � R
d, d ¥ 2, be an open, bounded, connected set with polygonal (or polyhedral)

boundary. We consider the diffusion problem

�∇�pK∇uq � f in Ω

u � 0 on BΩ,
(1)

where we enforce a homogeneous Dirichlet boundary condition for simplicity. The source
term f is in L2pΩq, and the diffusion tensor K is piecewise constant and takes symmetric
positive definite values with eigenvalues in the interval rλ5, λ7s with 0   λ5 ¤ λ7   �8. For
X � Ω, we denote by p�, �qX and }�}X respectively the standard inner product and norm of
L2pXq, with the convention that the index is omitted if X � Ω. The same notation is used
for vector-valued functions. Letting Σ :� Hpdiv; Ωq and U :� L2pΩq, the mixed variational
formulation of problem (1) reads: Find pσ, uq P Σ� U such that

pK�1σ, τ q � pu,∇�τ q � 0 @τ P Σ, (2a)

p∇�σ, vq � �pf, vq @v P U. (2b)

Throughout this work, σ and u are termed flux and potential, respectively. Boldface fonts
are used for vector- and tensor-valued quantities.

2.2 Meshes and analysis tools

Denote by H � R
�
� a countable set of mesh sizes having 0 as its unique accumulation point.

Following [20, Chapter 1], we consider h-refined mesh sequences pThqhPH where, for all h P H,
Th is a finite collection of nonempty disjoint open polyhedral cells T such that Ω �

�
TPTh T

and h � maxTPTh hT with hT standing for the diameter of the cell T . Our analysis hinges on
the following assumption on the mesh sequence.
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Assumption 1 (Admissible mesh sequence). For all h P H, Th admits a matching simplicial
submesh Th and there exists a real number % ¡ 0 independent of h such that, for all h P H,
(i) for all simplex S P Th of diameter hS and inradius rS, %hS ¤ rS and (ii) for all T P Th,
and all S P Th such that S � T , %hT ¤ hS.

The simplicial submesh in Assumption 1 is just an analysis tool, and it is not used in
the actual construction of the discretization method. Furthermore, all the meshes in Th are
assumed to be compatible with the known partition on which the diffusion tensor is piecewise
constant. The (constant) restriction of K to a mesh cell T P Th is denoted KT . The lowest
and largest eigenvalue of KT are denoted λ5,T and λ7,T , respectively, and we introduce the
local anisotropy ratio ρK,T :� λ7,T{λ5,T .

A face F is defined as a hyperplanar closed connected subset of Ω with positive pd�1q-
dimensional Hausdorff measure and such that (i) either there exist T1, T2 P Th such that
F � BT1 X BT2 and F is called an interface or (ii) there exists T P Th such that F � BT X BΩ
and F is called a boundary face. Interfaces are collected in the set F i

h, boundary faces in
Fb
h , and we let Fh :� F i

h Y Fb
h . The diameter of a face F P Fh is denoted by hF . For all

T P Th, FT :� tF P Fh | F � BT u denotes the set of faces contained in BT (with BT denoting
the boundary of T ) and, for all F P FT , nTF is the unit normal to F pointing out of T . For
each interface F P F i

h, we fix once and for all the ordering for the cells T1, T2 P Th such that
F � BT1 X BT2 and we let nF :� nT1,F . For a boundary face, we simply take nF � n, the
outward unit normal to Ω. In what follows, |�|l denotes the l-dimensional Hausdorff measure.

We recall some results that hold uniformly in h on admissible mesh sequences [20, §1.4].
For all h P H, all T P Th, and all F P FT , hF is comparable to hT :

%2hT ¤ hF ¤ hT . (3)

Moreover, there exists an integer NB depending on % such that

@h P H, max
TPTh

cardpFT q ¤ NB. (4)

Let l ¥ 0 be a nonnegative integer. For an n-dimensional subset X of Ω (n ¤ d), we introduce
the space PlnpXq spanned by the restriction to X of n-variate polynomials of total degree ¤ l.
Then, there exists a real number Ctr depending on % and l, but independent of h, such that
the following discrete trace inequality holds for all T P Th and all F P FT :

}v}F ¤ Ctrh
�1{2
F }v}T @v P PldpT q. (5)

Furthermore, the following inverse inequality holds for all T P Th with Cinv again depending
on % and l, but independent of h:

}∇v}T ¤ Cinvh
�1
T }v}T @v P PldpT q. (6)

Moreover, there exists a real number Capp depending on % and l, but independent of h, such
that, for all T P Th, denoting by πlT the L2-orthogonal projector on PldpT q, the following holds:
For all s P t1, . . . , l � 1u and all v P HspT q,

|v � πlT v|HmpT q � h
1{2
T |v � πlT v|HmpBT q ¤ Capph

s�m
T |v|HspT q @m P t0, . . . , s� 1u. (7)

Finally, the following Poincaré inequality is valid for all T P Th and all v P H1pT q such that³
T v � 0:

}v}T ¤ CPhT }∇v}T , (8)
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where CP � π�1 for convex cells while, for more general cell shapes, CP can be estimated in
terms of %.

In what follows, the regularity assumptions in the error estimates are expressed in terms
of the broken Sobolev spaces H lpThq :� tv P L2pΩq | v|T P H lpT q, @T P Thu. Additionally,
we often abbreviate as A À B the inequality A ¤ cB with generic constant c uniform with
respect to the mesh size and the diffusion tensor.

2.3 Local degrees of freedom and reduction operator

Let k ¥ 0. On every cell T P Th, the DoFs for the flux and the potential are

Σk
T :� ΓkT �

#¡
FPFT

P
k
d�1pF q

+
, UkT :� P

k
dpT q, (9)

with ΓkT :� KT∇P
k
dpT q. A generic collection of DoFs in Σk

T is denoted τT � pτT , pτF qFPFT q.
For k � 0, only the face-based flux DoFs are relevant.

Set Σ�pT q :� tτ P LspT q | ∇�τ P L2pT qu with s ¡ 2. The reduction operator IkT :
Σ�pT q Ñ Σk

T is such that, for all τ P Σ�pT q, pIkTτ qT � KT∇v where v P PkdpT q solves the
following Neumann problem:

ppIkTτ qT ,∇wqT � pKT∇v,∇wqT � pτ ,∇wqT @w P PkdpT q, (10)

while pIkTτ qF � πkF pτ �nF q for all F P FT , where πkF is the standard L2-orthogonal projector
onto P

k
d�1pF q. The Neumann problem (10) has compatible right-hand side vanishing for

constant w, and its solution v is defined up to a constant, which we can fix by prescribing its
average value on T . Additionally, the definition of Σ�pT q ensures that pIkTτ qF is well-defined.

2.4 Discrete divergence

The discrete divergence operator Dk
T : Σk

T Ñ UkT is such that, for all pτT , vq P Σk
T � UkT ,

pDk
TτT , vqT � �p∇v, τT qT �

¸
FPFT

pv, τF εTF qF , (11)

where εTF :� nTF �nF for all T P Th and all F P FT .

Lemma 1 (Commuting property). The following holds for all τ P Σ�pT q:

Dk
T pI

k
Tτ q � πkT p∇�τ q. (12)

Proof. For all v P PkdpT q, we observe that

pπkT p∇�τ q, vqT � p∇�τ , vqT � �p∇v, τ qT �
¸
FPFT

pv, τ �nTF qF

� �p∇v, pIkTτ qT q �
¸
FPFT

pv, pIkTτ qF εTF qF � pDk
T pI

k
Tτ qq, vqT ,

where we have used integration by parts in T , the definition of IkT as an element of Σk
T , and

that of Dk
T acting on an element of Σk

T .
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2.5 Consistent flux reconstruction

The consistent flux reconstruction operator Ck�1
T : Σk

T Ñ Γk�1
T :� KT∇Pk�1

d pT q is such that,

for all τT P Σk
T , Ck�1

T τT � KT∇v where v P Pk�1
d pT q solves the following Neumann problem:

For all w P Pk�1
d pT q,

pCk�1
T τT ,∇wqT � pKT∇v,∇wqT � �pw,Dk

TτT qT �
¸
FPFT

pw, τF εTF qF , (13)

with compatible right-hand side vanishing for constant w owing to (11) (v is defined up to a
constant which can be fixed prescribing its average value on T ).

Lemma 2 (Polynomial preservation). The following holds for all τ P Γk�1
T :

Ck�1
T pIkTτ q � τ . (14)

Proof. Let τ P Γk�1
T . Owing to (13), we infer that, for all w P Pk�1

d pT q,

pCk�1
T pIkTτ q,∇wqT � �pw,Dk

T pI
k
Tτ qqT �

¸
FPFT

pw, pIkTτ qF εTF qF .

The commuting property (12) implies that Dk
T pI

k
Tτ q � πkT p∇�τ q � ∇�τ since τ P Γk�1

T �

PPP
k
dpT q. For the same reason, pIkT τqF � πkF pτ �nF q � τ �nF . As a result,

pCk�1
T pIkTτ q,∇wqT � �pw,∇�τ qT �

¸
FPFT

pw, τ �nTF qF � pτ ,∇wqT ,

which proves (14) since pCk�1
T pIkTτ q � τ q P Γk�1

T � KT∇P
k�1
d pT q.

2.6 Discrete Hodge inner product

The discrete Hodge inner product HT : Σk
T �Σk

T Ñ R is such that, for all σT , τT P Σk
T ,

HT pσT , τT q :� pK�1
T Ck�1

T σT ,C
k�1
T τT qT � ST pσT , τT q, (15)

with stabilization bilinear form ST such that, letting κTF :� nF �KT �nF ,

ST pσT , τT q :�
¸
FPFT

hFκ
�1
TF ppC

k�1
T σT q�nF � σF , pC

k�1
T τT q�nF � τF qF . (16)

Notice that the stabilization bilinear form is symmetric and positive semi-definite, so that
introducing the semi-norm |τT |S,T :� ST pτT , τT q

1{2 on Σk
T , we infer that

ST pσT , τT q ¤ |σT |S,T |τT |S,T @σT , τT P Σk
T . (17)

Another important property of ST is the following polynomial consistency: For all σ P Γk�1
T ,

ST pI
k
T pσq, τT q � 0 @τT P Σk

T . (18)

This is a consequence of the fact that Ck�1
T pIkTσq � σ owing to the polynomial consistency

property (14) and that pIkTσqF � σ�nF since Γk�1
T � PPP

k
dpT q.
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3 Discrete problem and main results

In this section, we formulate the discrete problem and state our main results; their proofs are
postponed to Section 4. We also discuss static condensation, which is important in practice,
and draw links with existing methods from the literature in the lowest-order case (k � 0).

3.1 Discrete problem

The global DoFs for the flux and the potential are

Σk
h :�

#¡
TPTh

ΓkT

+
�

#¡
FPFh

P
k
d�1pF q

+
, Ukh :�

¡
TPTh

P
k
dpT q, (19)

so that the face-based DoFs of the flux are patched. A generic collection of DoFs in Σk
h is

denoted τ h � ppτT qTPTh , pτF qFPFhq, and for all T P Th, we set τT :� pτT , pτF qFPFT q P Σk
T . A

generic element in Ukh is denoted vh � pvT qTPTh .
The discrete problem consists in finding pσh, uhq P Σk

h � Ukh such that, for all pτ h, vhq P
Σk
h � Ukh , the following holds for all T P Th:

HT pσT , τT q � pDk
TτT , uT qT � 0, (20a)

pDk
TσT , vT qT � �pf, vT qT . (20b)

3.2 Stability and well-posedness

We introduce the following norms on Σk
T :

}τT }
2
H,T :� HT pτT , τT q � }K

�1{2
T Ck�1

T τT }
2
T � |τT |

2
S,T , (21a)

~τT~
2
T :� }τT }

2
T �

¸
FPFT

hF }τF }
2
F . (21b)

It is clear that ~�~T defines a norm on Σk
T ; that }�}H,T also defines a norm follows from the

following result.

Lemma 3 (Stability of HT ). There is η ¡ 0, uniform with respect to the mesh size and the
diffusion tensor, such that the following holds:

ηλ
�1{2
7,T ~τT~T ¤ }τT }H,T ¤ η�1λ

�1{2
5,T ~τT~T , (22)

for all T P Th and all τT P Σk
T .

We introduce the global flux norm such that }τ h}
2
H :�

°
TPTh }τT }

2
H,T for all τ h P Σk

h.
The following result is a classical consequence of the above setting.

Lemma 4 (Well-posedness of (20)). There exists a real number β ¡ 0, uniform with respect
to the mesh size and the diffusion tensor, such that, for all vh P U

k
h , the following holds:

λ
1{2
5 β}vh} ¤ sup

τhPΣ
k
h, }τh}H�1

# ¸
TPTh

pDk
TτT , vT qT

+
. (23)

Additionally, problem (20) is well-posed.
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3.3 Error estimates

Assuming that σ|T P Σ�pT q for all T P Th, we define the discrete objects ppσh, puhq P Σk
h �U

k
h

such that, for all T P Th,

pσT :� IkT pσ|T q, puT :� πkT pu|T q. (24)

The definition of pσh is meaningful since σ�nF is single-valued for all F P Fh.

Theorem 5 (Flux-error estimate). Let pσ, uq be the unique solution to (2) and let pσh, uhq
be the unique solution to (20). Assume that u P Hk�2pThq. Then, the following holds:

}pσh � σh}H À

# ¸
TPTh

ρK,Tλ7,Th
2pk�1q
T |u|2Hk�2pT q

+1{2

, (25)

and # ¸
TPTh

}K
�1{2
T pCk�1

T σT � σq}
2
T

+1{2

À

# ¸
TPTh

ρK,Tλ7,Th
2pk�1q
T |u|2Hk�2pT q

+1{2

. (26)

Defining the function puh P Ukh such that puh|T � puT for all T P Th, a potential L2-error
estimate of order pk � 1q bounding }puh � uh} by the right-hand side of (25) follows from
Lemma 4 and Theorem 5 (see Remark 9 below). An improved error estimate on the potential
holds under the following elliptic regularity assumption: There is a real number Cell ¡ 0, only
depending on Ω, such that, for all g P L2pΩq, the unique solution z P H1

0 pΩq of �∇�pK∇zq � g

satisfies }z}H2pΩq ¤ Cellλ
�1{2
5 }g}.

Theorem 6 (Supercloseness of the potential). Assume elliptic regularity and, for k � 0 that
f P H1pThq. Then, under the assumptions of Theorem 5, the following holds:

}puh � uh} À ρKh

# ¸
TPTh

ρK,Tλ7,Th
2pk�1q
T }u}2Hk�2pT q

+1{2

� hk�2}f}Hk�δpThq, (27)

where ρK :� λ7{λ5 while δ � 1 for k � 0 and δ � 0 for k ¥ 1.

3.4 Static condensation

We briefly discuss two approaches for reducing substantially the size of the discrete prob-
lem (20) by means of static condensation, the second approach being more computationally
effective.

In the first approach, we eliminate locally the cell-based flux DoFs and the potential DoFs
up to one constant value per mesh cell. Let U0

T be spanned by constant potentials and let

Uk,0T be spanned by polynomials of degree at most k having zero mean-value in T . Observe

that UkT � U0
T `U

k,0
T and correspondingly write uT � pu0

T , ruT q for the potential with u0
T P U

0
T

and ruT P Uk,0T . Then, we infer from (20) that, for all T P Th, pσT , ruT q P ΓkT � Uk,0T can be
eliminated locally by solving the following saddle-point problem:

rHT pσT , τT q � pτT ,∇ruT qT � g1pτT q, (28a)

pσT ,∇rvT qT � g2prvT q, (28b)
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for all pτT , rvT q P pKT∇P
k
dpT qq�U

k,0
T where g1, g2 are suitable linear forms and rHT pσT , τT q :�

HT ppσT , p0qFPFT q, pτT , p0qFPFT qq. Owing to Lemma 3, we infer that rHT pτT , τT q is uniformly
equivalent to }τT }

2
T , so that (28) is well-posed. After static condensation, the global linear

system is still of saddle-point form and involves the face-based flux DoFs and the mean-value
of the potential in each mesh cell. This problem has the same size and structure as that
derived in the MHM method [1, 31].

The second approach is closely inspired by the hybridization technique for mixed finite
elements introduced in [2]. The key idea consists in enforcing the single-valuedness of interface
flux unknowns on every F P F i

h by means of Lagrange multipliers in P
k
d�1pF q, thereafter

recovering a primal problem once (cell- and face-) flux unknowns have been locally eliminated.
Note that the Lagrange multipliers can be interpreted as potential traces. Let T P Th and
consider a local collection of potential DoFs and Lagrange multipliers

vT � pvT , pvF qFPFT q P U
k
T �

# ¡
FPFT

ΛkF

+
,

with ΛkF :� P
k
d�1pF q if F P FT X F i

h while ΛkF :� t0u if F P FT X Fb
h . To eliminate the flux

unknowns in Σk
T , we introduce the local operator ςT : W k

T Ñ Σk
T such that, for all vT PW

k
T ,

ςT pvT q P Σk
T solves the following local problem:

HT pςT pvT q, τT q � �pDk
TτT , vT qT �

¸
FPFT

pτF εTF , vF qF @τT P Σk
T . (29)

The well-posedness of (29) classically follows from (22). Define now the global space of
potential unknowns and Lagrange multipliers as

W k
h :� Ukh �

# ¡
FPFh

ΛkF

+
.

Denoting by pσh, uhq P Σk
h �W k

h the unique solution to the problem obtained from (20) by
enforcing the single-valuedness of face unknowns for the flux via Lagrange multipliers, one can
easily show that σT � ςT puT q for all T P Th. Additionally, uh can be obtained independently
from σh by solving the following primal problem where it appears as the sole unknown: Find
uh PW

k
h such that, for all vh PW

k
h, the following holds for all T P Th:

HT pςT puT q, ςT pvT qq � pf, vT qT . (30)

The well-posedness of (30) stems from the stability (22) of HT and the injectivity of ςT .

Conversely, if uh PW
k
h solves (30), then setting σT � ςT puT q P Σk

h and letting uh P U
k
h collect

the cell DoFs of uh, one can prove that the pair pσh, uhq solves (20). As a result, one can solve
the coercive primal problem (30) in place of the saddle-point problem (20). Additionally, the
size of the global system in (30) can be further reduced by performing static condensation
to express the (cell) potential unknowns in terms of the Lagrange multipliers. Both flux
unknowns and (cell) potential unknowns can then be recovered by local post-processing. As
a closing remark, we observe that the primal problem (30) has the same structure as the
Hybrid High-Order method of [23].
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3.5 Lowest-order case (k � 0)

Since lowest-order mixed methods have been extensively explored in the literature, we devote
this section to a brief discussion of the links with the present method in the case where k � 0
recalling that only the face-based flux DoFs are relevant, i.e., τT � pτF qFPFT for all τT P Σ0

T .
We first observe that (13) leads to the following explicit expression:

C1
TτT �

1

|T |d

¸
FPFT

|F |d�1pxF � xT qεTF τF , (31)

where xF and xT denote the barycenter of F and T , respectively. This lowest-order explicit
flux reconstruction is well-known in the context of Mixed Finite Volumes; see [26, eq. (9)].

To draw further links, let us observe that the stabilization bilinear form can be taken in
the non-diagonal form

ST pσT , τT q �
¸

F,F 1PFT

ppC1
TσT q�nF � σF qMT,FF 1ppC1

TτT q�nF 1 � τF 1q, (32)

where MT is a symmetric positive definite matrix of order #pFT q. The choice (16) corresponds
to a diagonal matrix with diagonal entries set to |F |d�1hFκ

�1
TF for all F P FT . Another

approach to design the matrix MT is to use reconstruction functions tϕTF uFPFT . Denoting
ϕ the mean-value of a generic function ϕ in T , the reconstruction functions must satisfy

ϕTF �
|F |d�1

|T |d
pxF � xT q,

¸
FPFT

ϕTF pxq b nTF � Id, (33)

where Id is the identity matrix in R
d�d. The first property in (33) implies that the recon-

struction operator RT pτT qpxq :�
°
FPFT τF εTFϕTF pxq is such that

RT pτT q � C1
T pτT q. (34)

The second property implies that¸
FPFT

pC1
T pτT q�nF qεTFϕTF pxq � C1

T pτT q � C1
T pτT q �

¸
FPFT

pC1
T pτT q�nF qεTFϕTF . (35)

As a result, defining the discrete Hodge inner product such that

HT pσT , τT q �

»
T
RT pσT qpxq�K

�1
T �RT pτT qpxqdx, (36)

we infer that we recover definition (15) whenever the stabilization bilinear form results
from (32) with non-diagonal matrix MT having entries given by

MT,FF 1 �

»
T
pϕTF pxq �ϕTF q�K

�1
T �pϕTF 1pxq �ϕTF 1qdx. (37)

Whenever KT is isotropic, this matrix is uniformly equivalent to the diagonal matrix associ-
ated with (16). Defining the discrete Hodge inner product as in (36) provides a link with CDO
schemes in cell-based form [9]. Examples of reconstruction functions are the Raviart–Thomas
basis functions on simplices and the piecewise constant (on a simplicial submesh) functions
on polyhedral cells from the Discrete Geometric Approach [18].
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4 Proofs

This section collects the proofs of our results.

4.1 Preliminary results

Lemma 7 (Stability of Dk
T , Ck�1

T , and ST ). The following holds:

hT }D
k
TτT }T � λ

1{2
5,T }K

�1{2
T Ck�1

T τT }T � λ
1{2
5,T |τT |S,T À ~τT~T , (38)

for all T P Th and all τT P Σk
T .

Proof. That }Dk
TτT }T À h�1

T ~τT~T follows from the definition (11) of Dk
TτT followed by an

inverse inequality on ∇v, and a discrete trace inequality on v|F for all F P FT . To bound

}K
�1{2
T Ck�1

T τT }T , we write Ck�1
T τT � KT∇v for some v P Pk�1

d pT q, and use the definition (13)

of Ck�1
T τT to infer that

}K
�1{2
T Ck�1

T τT }
2
T � pCk�1

T τT ,∇vqT � �pπkT v,D
k
TτT qT �

¸
FPFT

pπkF v, τF εTF qF .

Since p1, Dk
TτT qT �

°
FPFT p1, τF εTF qF owing to (11), we can write

}K
�1{2
T Ck�1

T τT }
2
T � �pπkT v � π0

T v,D
k
TτT qT �

¸
FPFT

pπkF v � π0
T v, τF εTF qF .

Since }πkT v � π0
T v}T À hT }∇v}T , }πkF v � π0

T v}F À h
1{2
F }∇v}T , and }∇v}T ¤ λ

�1{2
5,T }K

1{2
T ∇v}T ,

we infer from the above bound on }Dk
TτT }T that }K

�1{2
T Ck�1

T τT }T À λ
�1{2
5,T ~τT~T . Finally, to

bound |τT |S,T , we first observe that

|pCk�1
T τT q�nF | � |nF �KT �pK

�1
T Ck�1

T τT q| ¤ κ
1{2
TF |pK

�1
T Ck�1

T τT q�pC
k�1
T τT q|

1{2,

since for two vectors x,y P Rd, |x�KT �y| ¤ |x�KT �x|
1{2|y�KT �y|

1{2. As a result,

}pCk�1
T τT q�nF }F ¤ κ

1{2
TF }K

�1{2
T Ck�1

T τT }F . (39)

Hence, using a triangle inequality, a discrete trace inequality to bound }K
�1{2
T Ck�1

T τT }F , and

the above bound on }K
�1{2
T Ck�1

T τT }T , we infer that

}pCk�1
T τT q�nF � τF }F À h

�1{2
T κ

1{2
TFλ

�1{2
5,T ~τT~T � }τF }F ,

whence the bound |τT |S,T À λ
�1{2
5,T ~τT~T follows from mesh regularity and the fact that

κ
�1{2
TF ¤ λ

�1{2
5,T for all F P FT .

Lemma 8 (Approximation properties of Ck�1
T and ST ). For all T P Th and all v P Hk�2pT q,

letting τ :� KT∇v, the following holds:

}K
�1{2
T pCk�1

T pIkTτ q � τ q}T � ST pI
k
Tτ , I

k
Tτ q

1{2 À ρ
1{2
K,Tλ

1{2
7,Th

k�1
T |v|Hk�2pT q. (40)
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Proof. (1) Bound on }K
�1{2
T pCk�1

T pIkTτ q � τ q}T . Let qvT P Pk�1
d pT q solve the following well-

posed Neumann problem:

pKT∇qvT ,∇wqT � pKT∇v,∇wqT @w P Pk�1
d pT q, (41)

with
³
T qvT � ³

T v. Using the triangle inequality, we infer that

}K
�1{2
T pCk�1

T pIkTτ q � τ q}T ¤ }K
1{2
T ∇pqvT � vq}T � }K

�1{2
T Ck�1

T pIkTτ q �K
1{2
T ∇qvT }T . (42)

By definition, qvT is the element of Pk�1
d pT q which minimises the distance from v in the

}K
1{2
T ∇�}T -norm, hence we can estimate the first term in (42) as follows:

}K
1{2
T ∇pqvT � vq}T ¤ }K

1{2
T ∇pπk�1

T v � vq}T À λ
1{2
7,Th

k�1
T |v|Hk�2pT q, (43)

where we have concluded using the approximation properties (7) of πk�1
T . Let us estimate

the second term in the right-hand side of (42). Using the definitions (13) of Ck�1
T and (41) ofqvT as well as that of the reduction operator IkT and the commuting property (12) of Dk

T , we

infer, for all w P Pk�1,0
d pT q (the space of polynomials of degree ¤ k � 1 with zero average on

T ) that

pCk�1
T pIkTτ q �KT∇qvT ,∇wqT � p∇�τ � πkT p∇�τ q, wqT �

¸
FPFT

pπkF pτ �nF q � τ �nF , wεTF qF .

Denote by T1 and T2 the addends in the right-hand side. For the first term, using the Cauchy–
Schwarz inequality followed by the approximation properties (7) of πk�1

T and the Poincaré
inequality (8), we infer that |T1| À hkT |∇�τ |HkpT qhT }∇w}T ¤ λ7,Th

k�1
T |v|Hk�2pT q}∇w}T . For

the second term, we use the Cauchy–Schwarz inequality, the approximation properties (7)
of the L2-orthogonal projector, the discrete trace inequality (5) and the Poincaré inequal-
ity (8) to infer |T2| À λ7,Th

k�1
T |v|Hk�2pT q}∇w}T . Then, collecting the above bounds and since

}K
�1{2
T τ }T � sup

wPPk�1,0
d pT q

pτ ,∇wqT

}K
1{2
T ∇w}T

for all τ P Γk�1
T , we infer that

}K
�1{2
T Ck�1

T pIkTτ q �K
1{2
T ∇qvT }T À ρ

1{2
K,Tλ

1{2
7,Th

k�1
T |v|Hk�2pT q. (44)

Using this bound and (43) in (42) together with ρK,T ¥ 1, the desired bound follows.
(2) Bound on ST pI

k
Tτ , I

k
Tτ q

1{2. We observe that, for all F P FT ,

}Ck�1
T pIkTτ q�nF � πkF pτ �nF q}F � }πkF ppC

k�1
T pIkTτ q � τ q�nF q}F

¤ }pCk�1
T pIkTτ q � τ q�nF }F

¤ κ
1{2
TF }K

�1{2
T pCk�1

T pIkTτ q � τ q}F ,

where we have used that Ck�1
T pIkTτ q�nF P Pkd�1pF q, the fact that πkF is a projector, and a

reasoning similar to the proof of (39). Adding and subtracting KT∇qvT yields

κ
�1{2
TF }Ck�1

T pIkTτ q�nF � πkF pτ �nF q}F ¤ }K
�1{2
T Ck�1

T pIkTτ q �K
1{2
T ∇qvT }F � }K

1{2
T ∇pqvT � vq}F .

We bound the first term in the right-hand side using a discrete trace inequality and (44),

while we bound the second term by λ
1{2
7,Th

k�1{2
T |v|Hk�2pT q using a continuous trace inequality

followed by Poincaré’s inequality (8) and (43). Since ρK,T ¥ 1, we infer that

κ
�1{2
TF }Ck�1

T pIkTτ q�nF � πkF pτ �nF q}F À ρ
1{2
K,Tλ

1{2
7,Th

k�1{2
T |v|Hk�2pT q.

Finally, the desired bound follows from the definition (16) of ST and mesh regularity.

12



4.2 Proof of Lemma 3

Let τT P Σk
T with τT � pτT , pτF qFPFT q.

(1) Lower bound on }τT }H,T . We write τT � KT∇v for some v P PkdpT q. Using (11) with
test function v followed by (13) with test function v (this is possible since PkdpT q � P

k�1
d pT q),

we infer that

pK�1
T τT , τT qT � p∇v, τT qT � �pv,Dk

TτT qT �
¸
FPFT

pv, τF εTF qF

� pCk�1
T τT ,∇vqT � pK�1

T Ck�1
T τT , τT qT .

This identity readily implies that }K
�1{2
T τT }T ¤ }K

�1{2
T Ck�1

T τT }T , whence we infer that

}K
�1{2
T Ck�1

T τT }T ¥ λ
�1{2
7,T }τT }T . (45)

Moreover, owing to the triangle inequality, we infer that

h
1{2
F }τF }F ¤ h

1{2
F }pC

k�1
T τT q�nF � τF }F � h

1{2
F }pC

k�1
T τT q�nF }F .

Using (39) followed by a discrete trace inequality to bound }K
�1{2
T Ck�1

T τT }F yields

h
1{2
F }τF }F ¤ h

1{2
F }pC

k�1
T τT q�nF � τF }F � κ

1{2
TF }K

�1{2
T Ck�1

T τT }T .

Recalling the definition of |�|S,T , squaring and summing over F P FT , we obtain¸
FPFT

hF }τF }
2
F À λ7,T |τT |

2
S,T � λ7,T }K

�1{2
T Ck�1

T τT }
2
T ,

since κTF ¤ λ7,T for all F P FT . Combining this bound with (45), we infer the desired lower
bound on }τT }H,T .
(2) Upper bound on }τT }H,T . This bound is a straightforward consequence of (38).

4.3 Proof of Theorem 5

We start by observing that the following holds with local consistency error ET pτT q :�
HT ppσT , τT q � pDk

TτT , puT qT for all T P Th:

}pσh � σh}H ¤ sup
τhPΣ

k
h,}τh}H�1

# ¸
TPTh

ET pτT q

+
. (46)

Indeed, let τ h P Σk
h be such that }τ h}H � 1. Owing to (20a), we infer that

HT ppσT � σT , τT q � pDk
TτT , puT � uT qT � ET pτT q.

Letting τ h �
1

}pσh�σh}H
ppσh � σhq and since Dk

T ppσT � σT q � 0, for all T P Th, owing to the

commuting property (12) and the discrete equation (20b), the bound (46) follows.
To prove (25), we estimate ET pτT q for all T P Th and all τ h P Σk

h such that }τ h}H � 1.
We introduce the discrete functions quT :� πk�1

T pu|T q and qσT :� IkT pKT∇quT q and decompose
the local consistency error as follows:

ET pτT q � HT ppσT � qσT , τT q � pDk
TτT , puT � quT qT � !HT pqσT , τT q � pDk

TτT , quT qT)
:� T1,T � T2,T � T3,T .

13



(1) Bound on T1,T . Since the discrete Hodge inner product is a symmetric and positive
definite bilinear form, we infer that

T1,T ¤ }pσT � qσT }H,T }τT }H,T .
Using the upper bound in (22) yields

λ
1{2
5,T }pσT � qσT }H,T À }pσT � qσT }T � ¸

FPFT

h
1{2
F }pσF � qσF }F ,

where pσT and qσT are the components in ΓkT of pσT and qσT , respectively, and pσF and qσF the
components in Pkd�1pF q. Recalling the definition of IkT , see (10), we infer that

pσT � $k
T pKT∇uq, qσT � $k

T pKT∇quT q,
where $k

T denotes the pK�1
T �, �qT -orthogonal projector onto ΓkT . Since

}$k
Tτ }T ¤ λ

1{2
7,T }K

�1{2
T $k

Tτ }T ¤ λ
1{2
7,T }K

�1{2
T τ }T ¤ λ7,T }K

�1
T τ }T ,

for all τ P L2pT q, using the approximation property (7) of πk�1
T , we infer that

}pσT � qσT }T � }$k
T pKT∇pu� quT qq}T À λ7,Th

k�1
T |u|Hk�2pT q.

Moreover, pσF � πkF pKT∇u�nF q and qσF � πkF pKT∇quT �nF q, so that

}pσF � qσF }F ¤ }KT∇pu� quT q�nF }F ¤ λ7,Th
k�1{2
T |u|Hk�2pT q.

Collecting the above bounds yields

T1,T À ρ
1{2
K,Tλ

1{2
7,Th

k�1
T |u|Hk�2pT q}τT }H,T .

(2) Bound on T2,T . We observe that

T2,T � ppuT � quT , Dk
TτT qT � pπkT pu� πk�1

T uq, Dk
TτT qT ¤ }u� πk�1

T u}T }D
k
TτT }T

À λ
1{2
7,Th

k�1
T |u|Hk�2pT q}τT }H,T ,

where we have used that hT }D
k
TτT }T À ~τT~T À λ

1{2
7,T }τT }H,T owing to (38) and the lower

bound in (22).
(3) Reformulation of T3,T . Since KT∇quT P Γk�1

T , we infer from (18) that

ST pqσT , τT q � 0.

Moreover, (14) implies that Ck�1
T qσT � KT∇quT . Hence,

T3,T � p∇quT ,Ck�1
T τT qT � pDk

TτT , quT qT � ¸
FPFT

pquT , τF εTF qF ,
where we have used (13) for the definition of Ck�1

T τT .
(4) Conclusion. We need to bound

°
TPThtT1,T � T2,T � T3,T u. Using Steps (1) and (2)

and a discrete Cauchy–Schwarz inequality shows that
°
TPThtT1,T �T2,T u is bounded by the
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right-hand side of (25). Furthermore, since the exact potential u is single-valued at interfaces
and vanishes at boundary faces, we infer that¸

TPTh

T3,T �
¸
TPTh

¸
FPFT

pquT � u, τF εTF qF ,

so that
°
TPTh T3,T is also bounded by the right-hand side of (25).

To prove (26), we use the triangle inequality to infer that

}K
�1{2
T pCk�1

T σT � σq}T ¤ }K
�1{2
T Ck�1

T pσT � pσT q}T � }K
�1{2
T pCk�1

T pσT � σq}T ,
and bound the first term in the right-hand side using (25) since }K

�1{2
T Ck�1

T pσT � pσT q}T ¤
}σT � pσT }H,T and the second term using (40).

Remark 9 (Potential error estimate). Since
°
TPThpD

k
TτT , puT � uT qT � HpσT � pσT , τT q �

ET pτT q, a potential L2-error estimate of order pk � 1q bounding }puh � uh} classically follows
from Lemma 4 and Theorem 5.

4.4 Proof of Theorem 6

Let z P H1
0 pΩq be the unique solution of �∇�pK∇zq � uh � puh, set ω :� K∇z, and definepωh P Σk

h, quh P Pk�1
d pThq, and qzh P Pk�1

d pThq such that, for all T P Th,

pωT :� IkTω, quT :� πk�1
T u, qzT :� πk�1

T z.

We have, using ∇�ω � puh�uh followed by Dk
T pωT �∇�pK∇zq|T for all T P Th (a consequence

of (12)) and (20a),

}puh � uh}
2 � ppuh � uh,∇�ωq � pu,∇�ωq �

¸
TPTh

puh, D
k
T pωT q

�
¸
TPTh

t�pσ,∇zqT �HT pσT , pωT qu :� T1 � . . .� T5,

with, for all i P t1, . . . , 5u, Ti �
°
TPTh Ti,T with

T1,T :� pCk�1
T σT � σ,∇pz � qzT qqT

T2,T :� pK�1
T pCk�1

T σT �KT∇quT q,Ck�1
T pωT � ωqT ,

T3,T :� ST pσT � pσT , pωT q � ST ppσT , pωT q,
T4,T :� pCk�1

T σT ,∇qzT qT � pσ,∇qzT qT ,
T5,T :� p∇quT ,Ck�1

T pωT � ωqT .
For the first term, the Cauchy–Schwarz inequality, the flux estimate (26), and the approxi-
mation properties (7) of πk�1

T yield

|T1| À

# ¸
TPTh

ρK,Tλ7,Th
2pk�1q
T |u|2Hk�2pT q

+1{2

λ
1{2
7 h}z}H2pΩq.
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For the second term, we use the Cauchy–Schwarz inequality to infer that

|T2| ¤

# ¸
TPTh

}K
�1{2
T pCk�1

T σT �KT∇quT q}2T
+1{2

�

# ¸
TPTh

}K
�1{2
T pCk�1

T pωT � ωq}2T
+1{2

.

To bound the first factor, we add and subtract σ, use the triangle inequality, the flux esti-
mate (25), and the approximation property (7) of πk�1

T together with ρK,T ¥ 1. To bound
the second factor, we use the approximation property (40) of Ck�1

T . This yields

|T2| À

# ¸
TPTh

ρK,Tλ7,Th
2pk�1q
T |u|2Hk�2pT q

+1{2

ρ
1{2
K λ

1{2
7 h}z}H2pΩq.

For the third term, the Cauchy–Schwarz inequality together with the flux estimate (25) and
the approximation property (40) of ST yield

|T3| À

# ¸
TPTh

ρK,Tλ7,Th
2pk�1q
T |u|2Hk�2pT q

+1{2

ρ
1{2
K λ

1{2
7 h}z}H2pΩq.

For the fourth term, recalling (13) for the first summand, integrating by parts on T the second
summand, and using the fact that ∇�σ � �f and Dk

TσT � �πkT f owing to (2b) and (20b),
respectively, we infer that

T4 �
¸
TPTh

#
pπkT f � f, qzT qT � ¸

FPFT

pσF εTF � σ�nTF , qzT qF
+
. (47)

When k � 0, we estimate the first term in braces as follows:

|pπkT f � f, qzT qT | � |pπ0
T f � f, qzT � π0

T zqT | À h2
T }f}H1pT q}z}H1pT q,

whereas, for k ¥ 1, we obtain

|pπkT f � f, qzT qT | � |pπkT f � f, qzT � π1
T zqT | À hk�2

T }f}HkpT q}z}H2pT q.

Moreover, using the fact that σF , σ�nF , and z are single-valued at interfaces together with
the fact that z vanishes on BΩ, we can replace qzT by pqzT � zq in the second term in braces
in (47) to infer that����� ¸

TPTh

¸
FPFT

pσF εTF � σ�nTF , qzT � zqF

����� À λ
1{2
7

# ¸
TPTh

λ7,Th
2pk�2q
T |u|2Hk�2pT q

+1{2

}z}H2pΩq.

where the last bound follows observing that }σ}Hk�1pThq ¤ λ7|u|Hk�2pThq. In conclusion, the
following bound holds:

|T4| À

# ¸
TPTh

λ7,Th
2pk�1q
T |u|2Hk�2pT q

+1{2

λ
1{2
7 h}z}H2pΩq � hk�2}f}Hk�δpThq.
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Figure 1: Triangular, Kershaw, and hexagonal meshes for the numerical example of Section 5

For the fifth term, we proceed similarly. Using the definition of Ck�1
T , integration by parts,

and the fact that Dk
T pωT � ∇�ω � uh � puh owing to the commuting property (12), we infer

that

T5 �
¸
TPTh

¸
FPFT

pquT , pωF εTF � ω�nTF qF �
¸
TPTh

¸
FPFT

pquT � u, pωF εTF � ω�nTF qF ,
where we have used the fact that pωF , ω�nF , and u are single-valued at interfaces together
with the fact that u vanishes on BΩ to write quT � u in place of u. The Cauchy–Schwarz
inequality and the approximation property (7) of πk�1

T yield

|T5| À

# ¸
TPTh

λ7,Th
2pk�1q
T |u|2Hk�2pT q

+1{2

λ
1{2
7 h}z}H2pΩq.

Gathering the above bounds for T1,. . . ,T5, using elliptic regularity and recalling that ρK,T ¥ 1
for all T P Th and ρK ¥ 1, we obtain the estimate (27).

5 Numerical results

We present a numerical example for the homogeneous Dirichlet problem (2) on the unit

square Ω � p0, 1q2 with diagonal diffusion tensor K �
�

1 0
0 ρ�1

K

	
and exact solution u �

sinpπx1q sinpπx2q.
We first evaluate the convergence rates for polynomial orders 0 ¤ k ¤ 4 by solving the

problem with ρK � 1 on three mesh families obtained by homogeneous refinement of the
meshes depicted in Figure 1. The convergence results displayed in Figure 2 confirm the
theoretical predictions of both Theorems 5 and 6.

We next evaluate numerically the dependence of the multiplicative constant in the error
estimates on the anisotropy ratio ρK by solving the above problem on a fixed mesh with
ρK P t2iu0¤i¤10. The mesh sizes are selected as follows: 7.68 � 10�3 (triangular), 1.19 � 10�2

(Kershaw), and 1.72 � 10�2 (hexagonal). The results collected in Figure 3 show that the
present method behaves in a somewhat more robust manner with respect to anisotropy than
that predicted by the error estimates, in particular for the higher-orders and the hexagonal
mesh family.
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Figure 2: Convergence results for the numerical example of Section 5
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Figure 3: Error vs. ρK for a fixed mesh
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