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Abstract

In this work we propose a new family of arbitrary-order mixed methods for anisotropic
heterogeneous diffusion on general polyhedral meshes. A key ingredient is the choice
of flux degrees of freedom, which allows one to define a discrete divergence operator
that satisfies the usual commuting diagram property. Based on this choice and on the
discrete divergence operator, we define a flux reconstruction with suitable consistency
and stability properties. The flux reconstruction and the discrete divergence operator
are then used to define the discrete counterparts of the bilinear forms that appear in the
continuous mixed formulation. A convergence analysis in the energy norm is carried out,
and a supercloseness result for the L2-norm of potential is proved. Several variations
are considered, and the link with existing methods in the lowest-order case is discussed.
Finally, the most relevant implementation issues are discussed, and some numerical tests
are presented.

1 Introduction

Over the last few years, several discretization methods for diffusive problems have been pro-
posed that support general meshes including polygonal or polyhedral elements and nonmatch-
ing interfaces. In most of the cases, such methods are obtained by preserving (or mimicking)
to some extent the structure of the continuum operators at the discrete level. We mention
the Mimetic Finite Difference (MFD) method of Kutznetsov, Lipnikov, and Shashkov [27] for
which a convergence analysis has been carried out by Brezzi, Lipnikov, and Shashkov [12], see
also [9] for the analysis of the nodal MFD method; the Mixed Finite Volume (MFV) method of
Droniou and Eymard [22] and the Hybrid Finite Volume (HFV) method of Eymard, Gallouët,
and Herbin [25]; the Discrete Geometric Approach of Codecasa, Specogna, and Trevisan [14]
and the Compatible Discrete Operators (CDO) schemes recently introduced by Bonelle and
Ern [6], both drawing on the seminal ideas of Bossavit [7, 8] and Tonti [28]. The similarities
among the above-mentioned approaches and with other methods have been highlighted in
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several papers. It has been shown by Droniou et al. [23] that generalized versions of the
MFD, MFV, and HFV methods coincide at the algebraic level; a correspondence between
CDO and nodal MFD methods has been established in [6]; the link between a generalized
version of the HFV method and the classical Crouzeix–Raviart [15] element has been studied
by Di Pietro and Lemaire [19] in the context of linear elasticity problems. A rather different
point of view from the previous works is adopted in [16, 17], where the application of inte-
rior penalty strategies to consistent reconstructions of differential operators is considered for
diffusive problems.

Until recently, the main focus has been on lowest-order methods. Very recent works con-
sider, however, the extension to higher orders. An example is the arbitrary-order nodal MFD
method of Beirão da Veiga, Lipnikov, and Manzini [5]. We also mention the Virtual Element
(VE) method developed by Beirão da Veiga, Brezzi, and Marini for linear elasticity problems
in [3]; cf. [4] for a presentation of the general ideas underlying the method applied to a model
diffusion problem. The adjective “virtual” refers here to the fact that one defines a variational
formulation in a finite element fashion, but without explicitly defining the underlying basis
functions. While the present work was developed independently, analogies with VE methods
are to be found in the general ideas underlying the reconstruction of differential operators.
Key differences are that we develop a mixed approximation (hence face- rather than node-
based) hinging on an explicit reconstruction of the diffusive flux. This can be interpreted as
providing a full definition of basis functions. Finally, we mention the work of Brezzi, Buffa,
and Manzini [10] on mimetic products of discrete differential forms, which also contains an
extensive bibliographic section.

We focus here on the pure diffusion problem

�∇�pK∇uq � f in Ω

u � 0 on BΩ,
(1)

where Ω � R
d, d ¥ 1, denotes a bounded connected polygonal domain, f P L2pΩq is a forcing

term, and K is a piecewise constant, symmetric uniformly positive definite tensor-valued field
whose eigenvalues are contained in the interval rλ5, λ7s � R

�
� . For X � Ω, we denote by p�, �qX

and }�}X respectively the standard inner product and norm of L2pXq, with the convention
that the index is omitted if X � Ω. Letting Σ :� Hpdiv; Ωq and U :� L2pΩq, the mixed
variational formulation of problem (1) reads: Find ps, uq P Σ� U such that

pK�1s, tq � pu,∇�tq � 0 @t P Σ,

�p∇�s, vq � pf, vq @v P U.
(2)

Throughout this work, s and u will be termed flux and potential, respectively. It has been long
known that mixed methods based on the weak formulation (2) perform well for problems such
as (1) where the diffusion coefficient is possibly anisotropic and can exhibit large jumps across
interfaces; cf., e.g., the discussion in [29, Section 5.4], where an interesting interpretation of
this behaviour is proposed.

The key ideas of our method can be summarized as follows. Let k ¥ 0 be a fixed poly-
nomial degree and denote by Ukh the space of broken polynomials of total degree ¤ k used
to approximate the potential. The starting point is to define the vector space Σk

h of flux de-
grees of freedom (DOFs) so that an interpolator Ikh on Σk

h and a discrete divergence operator
Dk
h : Σk

h Ñ Ukh can be defined that satisfy the usual commuting diagram property [20, 21].
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The flux DOFs are polynomials of total degree ¤ k attached to faces and fluxes of poly-
nomials of total degree ¤ k attached to cells (that is, gradients of such polynomials times
the diffusion tensor). The commuting property of the discrete divergence operator and the
choice of the flux degrees of freedom are used to define a (possibly nonconforming) flux recon-
struction Rk

h : Σk
h Ñ L2pΩqd that (i) is exact when the potential is a polynomial of degree

pk�1q inside each element (consistency), and (ii) has coercivity properties on the kernel of Dk
h

(stability), as well as continuity properties. The flux reconstruction is obtained by reasoning
element-wise, and is composed of two contributions responsible for consistency and stabil-
ity, respectively. It turns out that an important requirement in the analysis is that the two
contributions are mutually K�1-orthogonal. We emphasize that the consistency property is
designed so as to guarantee convergence also in the lowest-order case k � 0. We also observe,
in passing, that the cell unknowns can be eliminated locally thereby yielding a global problem
in the face unknowns only. Moreover, the use of fluxes of polynomial potentials (instead of
fully vector-valued polynomials for the fluxes) results in a substantial reduction in the size
of the local reconstruction problems with respect, e.g., to the Hybrid Mixed Discontinuous
Galerkin method of Cockburn, Gopalakrishnan, and Lazarov [13]. Based on the flux recon-
struction, we next define a bilinear form H on Σk

h �Σk
h which is the discrete counterpart of

the inner product pK�1�, �q. Using the terminology of [6], the bilinear form H corresponds to
the discrete Hodge operator. Finally, a discretization of (2) is obtained based on the bilinear
form H and the discrete divergence operator Dk

h. Under the usual regularity assumptions for
the exact solution, we prove that the error on the flux measured by the norm defined by H
converges as hk�1 (h denotes here the meshsize). Additionally, a supercloseness result can be
proved for the potential as in standard mixed finite elements (cf., e.g., [20, 21, 26]). Provided
elliptic regularity holds, this means that the L2-norm of the difference between the discrete
potential and the L2-orthogonal projection of u on Ukh converges as hk�2.

The material is organized as follows. In Section 2, after briefly recalling the notion of
admissible mesh sequences, we define flux degrees of freedom, introduce the discrete divergence
operator, and define the flux reconstruction upon which the method hinges. The discrete
problem is stated at the end of this section and its well-posedness is established. In Section 3
we carry out the convergence analysis. Section 4 contains some variations of the method,
in particular sufficient conditions to define virtual versions which have similar convergence
properties as the original method, but for which the flux reconstruction is left undefined. In
this section we also show that, in the lowest-order case k � 0, our method has fundamental
similarities with both the HFV and the GDA methods (which are shown to coincide up to a
different choice of the stabilization parameter). Finally, Section 5 addresses the most relevant
implementation issues and contains some numerical tests.

2 Discretization

We introduce here the notion of admissible mesh sequences, recall some basic facts on broken
functional spaces, and define the discrete divergence operator and the flux reconstruction
upon which the discretization of (2) stated at the end of the section hinges.
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2.1 Setting

2.1.1 Admissible mesh sequences

Closely following [18, Chapter 1] and [19, Section 2], we introduce the notion of admissible
mesh sequences possibly including general polygonal or polyhedral elements and nonconform-
ing interfaces. Let H � R

�
� denote a countable set having 0 as its unique accumulation point.

We consider mesh sequences TH :� tThuhPH where, for all h P H, Th denotes a finite col-
lection of nonempty disjoint open polyhedra (called elements or cells) Th � tT u such that
Ω �

�
TPTh T and h � maxTPTh hT (hT denotes here the diameter of T ). We say that a hy-

perplanar closed connected subset F of Ω is a mesh face if it has positive pd�1q-dimensional
measure and if either there exist T1, T2 P Th such that F � BT1XBT2 (and F is called an inter-
face) or there exists T P Th such that F � BTXBΩ (and F is called a boundary face). Interfaces
are collected in the set F i

h, boundary faces in Fb
h and we let Fh :� F i

hYFb
h . The diameter of

a face F P Fh is denoted by hF . Moreover, we set, for all T P Th, FT :� tF P Fh | F � BT u,
and, for all F P FT , we denote by nTF the normal to F pointing out of T . For every interface
F � BT1 X BT2 we fix once and for all an orientation by means of a unit normal vector nF
and number the elements T1 and T2 so that nF :� nT1F . We also define εTF :� nTF �nF for
all T P Th and all F P FT .

It is assumed that, for all h P H, Th admits a matching simplicial submesh Th and that
the following holds:

(M1) Shape-regularity. There exists a real number %1 ¡ 0 independent of h such that, for
all h P H and all simplex S P Th of diameter hS and inradius rS , %1hS ¤ rS holds.

(M2) Contact-regularity. There exists a real number %2 ¡ 0 independent of h such that, for
all h P H, all T P Th, and all S P TT :� tS P Th | S � T u, %2hT ¤ hS holds.

(M3) Star-shaped property. For all h P H and all T P Th, there exists a point xT P T such
that T is star-shaped with respect to xT and, for all F P FT , dTF ¥ %3hT holds with
dTF orthogonal distance between xT and F and %3 ¡ 0 independent of h.

The star-shaped property is used here to define the flux reconstruction in Section 2.4.2.
Additionally, owing to [18, Lemma 1.41], there exists pd� 1q ¤ NB   �8 such that

@h P H, max
TPTh

cardpFT q ¤ NB. (3)

In what follows, we often abbreviate as a À b the inequality a ¤ Cb with C ¡ 0 independent
of h and K (the dependence on K is explicitly tracked to pinpoint the effect of the local
anisotropy ratio on the error estimates).

2.1.2 Basic results on broken functional spaces

In this section we recall some basic results for broken functional spaces that can be proved
under assumptions (M1)–(M2). For h P H and an integer k ¥ 0 we define the broken
polynomial space

P
k
dpThq :�

 
v P L2pΩq | v|T P P

k
dpT q @T P Th

(
,

where PkdpT q denotes the restriction to T of d-variate polynomials of total degree ¤ k. We
express local regularity in terms of the broken Sobolev spaces

H lpThq :�
 
v P L2pΩq | v|T P H

lpT q @T P Th
(
.
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The following trace inequalities hold for all T P Th and all F P FT , cf. [18, Lemmata 1.46
and 1.49]:

}v}F ¤ Ctrh
�1{2
F }v}T @v P PkdpT q, (4)

}v}F ¤ Ctr,c

�
h�1
T }v}2T � hT |v|

2
H1pT q

	1{2
@v P H1pT q, (5)

with Ctr and Ctr,c depending on %1 and %2 but independent of h. The following inverse
inequality holds for all T P Th with Cinv again depending on %1, %2 but independent of h,
cf. [18, Lemma 1.44],

}∇v}L2pT qd ¤ Cinvh
�1
T }v}L2pT q @v P PkdpT q. (6)

It follows from the mesh regularity assumptions together with [18, Lemma 1.40] and the results
of [24] that the L2-orthogonal projector πkh on P

k
dpThq has optimal approximation properties:

For all T P Th, all s P t0, . . . , k � 1u, and all v P HspT q,

|v � πkhv|HmpT q ¤ Capph
s�m
T |v|HspT q @m P t0, . . . , su,

holds with Capp depending on %1 and %2 but independent of h. Finally, we recall the following
Poincaré inequality valid for all T P Th:

}v � v}T ¤ CPhT }∇v}T , @v P H1pT q, (7)

where v :� pv, 1qT {|T |d and CP is independent of h (CP � π�1 for convex elements [2]).

2.2 Flux degrees of freedom

We define in this section the degrees of freedom (DOFs) for the flux approximation. It is
assumed from this point on that, for all h P H, Th is K-compliant, i.e., jumps in the diffusion
coefficient do not occur inside elements. As a consequence,

@h P H, KT :� K|T P P
0
dpT q

d�d @T P Th.

Let, for a fixed integer k ¥ 0,

T
k
T :� KT∇P

k,0
d pT q @T P Th, F

k
F :� P

k
d�1pF q @F P Fh,

denote the flux DOFs attached to cells and faces, respectively, where, for l ¥ 0, Pl,0d pT q is
spanned by scalar-valued polynomial functions of total degree ¤ l having zero average on T
(concerning the zero-average condition, see Remark 4). For all T P Th, we define the local
space of DOFs for the flux approximation as

Σk
T :� T

k
T � F

k
T , F

k
T :�

¡
FPFT

F
k
F .

In the lowest-order case k � 0 it is understood that the cell DOFs are unnecessary (the space
T

0
T contains only the null function over T ). The global space of DOFs for the flux is obtained

from the local spaces tΣk
T uTPTh by patching interface values,

Σk
h :� T

k
h � F

k
h, T

k
h :�

¡
TPTh

T
k
T , F

k
h :�

¡
FPFh

F
k
F . (8)

To localize DOFs in Σk
h to Σk

T for a given element T P Th, we introduce the restriction
operator LT : Σk

h Ñ Σk
T which, for all τ h :� ptτT uTPTh , tτF uFPFh

q P Σk
h is such that LTτ h �

pτT , tτF uFPFT
q P Σk

T .
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2.3 Discrete divergence operator

We next introduce a discrete divergence operator which is instrumental in the formulation of
the method and use it to define the discrete counterpart of the Hpdiv; Ωq-norm. The local
discrete divergence operator

Dk
T : Σk

T Ñ UkT :� P
k
dpT q (9)

is such that, for all τ � pτT , tτF uFPFT
q P Σk

T and all v P UkT ,

pDk
Tτ , vqT � �p∇v, τT qT �

¸
FPFT

pv, τF εTF qF . (10)

We equip the space Σk
T with the following Hpdiv; Ωq-like norm:

@τ P Σk
T , |||τ |||2T :� }τT }

2
T � h2

T }D
k
Tτ }

2
T �

¸
FPFT

hF }τF }
2
F . (11)

The global discrete divergence operator

Dk
h : Σk

h Ñ Ukh :� P
k
dpThq (12)

is such that, for all τ h P Σk
h and all vh P U

k
h ,

pDk
hτ h, vhq �

¸
TPTh

pDk
T pLTτ hq, vhqT . (13)

We equip the space Σk
h with the following norm:

@τ h P Σk
h, |||τ h|||

2 :�
¸
TPTh

|||LTτ h|||
2
T . (14)

Let us study the properties of the local and global discrete divergence operators defined
by (10) and (13), respectively. We let, for all T P Th, Σ�pT q :� tt P LspT q |∇�t P L2pT qu for
a fixed s ¡ 2. Classically, the moments of the normal components of functions in Σ�pT q are
meaningful on the faces of T ; cf., e.g., [11, Section III.3.3]. We let IkT : Σ�pT q Ñ Σk

T denote
the local interpolator such that, for all t P Σ�pT q, IkT t � pτT , tτF uFPFT

q with

τT � $k
T t, τF � πkF pt�nF q @F P FT . (15)

where πkF is the standard L2-orthogonal projector on F
k
F , while $k

T denotes the pK�1
T �, �qT -

orthogonal projector on T
k
T (in fact, an elliptic projector in terms of the potential) such that

pK�1
T $k

T t,wqT � pK�1
T t,wqT @w P TkT . (16)

Note that this projection is well-defined owing to the zero-average condition on Pk,0d pT q. Corre-
spondingly, the global interpolator Ikh : Σ� Ñ Σk

h with Σ� :� tt P Σ | t|T P Σ�pT q, @T P Thu
is such that, for all t P Σ�, Ikht � ptτT uTPTh , tτF uFPF q with

τT � $k
T t @T P Th, τF � πkF pt�nF q @F P Fh. (17)

Proposition 1 (Commuting property for discrete divergence operator). Denoting by πkT and
πkh the L2-orthogonal projectors on P

k
dpT q and P

k
dpThq, respectively, the following commuting

diagrams hold:
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Σ�pT q L2pT q

Σk
T UkT

∇�

πkT
Dk
T

IkT

Σ� U

Σk
h Ukh

∇�

πkh

Dk
h

Ikh

Proof. Consider the local commuting diagram. Let T P Th, t P Σ�pT q, and set τ :� IkT t. We
infer that, for all v P UkT ,

pπkT p∇�tq, vqT � p∇�t, vqT � �p∇v, tqT �
¸
FPFT

pv, pt�nF qεTF qF

� �p∇v,$k
T tqT �

¸
FPFT

pv, πkF pt�nF qεTF qF

� �p∇v, τT qT �
¸
FPFT

pv, τF εTF qF � pDk
Tτ , vqT ,

where we have used that KT∇v P TkT , v|F P FkF , (15), and (10). For the global commuting

diagram, we use that, for all T P Th, pDk
hτ hq|T � Dk

T pLTτ hq for all τ h P Σk
h owing to (13),

LT pI
k
htq � IkT pt|T q for all t P Σ� owing to (17), whence

pDk
hpI

k
htqq|T � Dk

T pI
k
T pt|T qq � πkT p∇�pt|T qq � pπkhp∇�tqq|T ,

owing to the local commuting diagram.

An immediate consequence of Proposition 1 that Ikh can play the role of a Fortin opera-
tor [11].

2.4 Flux reconstruction

We now introduce an arbitrary-order flux reconstruction Rk
h inspired by the lowest-order

Hybrid Finite Volume method of [23, Section 2.3]. The operator Rk
h : Σk

h Ñ L2pΩqd is
obtained elementwise from local reconstructions Rk

T : Σk
T Ñ L2pT qd by setting, for all T P Th,

Rk
hpτ hq|T :� Rk

T pLTτ hq @τ h P Σk
h. (18)

Let HT denote the local bilinear form on Σk
T �Σk

T such that, for all σ, τ P Σk
T ,

HT pσ, τ q :� pK�1
T Rk

Tσ,R
k
Tτ qT . (19)

By construction, HT is nonnegative. The global bilinear form H on Σk
h�Σk

h is such that, for
all σh, τ h P Σk

h,

Hpσh, τ hq :�
¸
TPTh

HT pLTσh, LTτ hq � pK�1Rk
hσh,R

k
hτ hq, (20)

where the last equality is a consequence of (18). We denote by }�}H and }�}H,T the seminorms
defined by H on Σk

h and by HT on Σk
T , respectively. The use of a double bar notation is

motivated by the fact that }�}H (resp. }�}H,T ) is a norm on kerpDk
hq (resp. kerpDk

T q) as a
result of requirement (R2) below.

We aim at satisfying the following properties for the local reconstructions:
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(R1) Consistency and orthogonality. For all T P Th, the space Rk
T :� Rk

T pΣ
k
T q contains the

space ΓkT :� KT∇P
k�1,0
d pT q, and, the local reconstruction operator can be decomposed

as Rk
T � CkT � JkT with CkT : Σk

T Ñ ΓkT and JkT : Σk
T ÑRk

T such that

CkT pI
k
Twq � w @w P ΓkT , (21)

JkT pI
k
Twq � 0, @w P ΓkT , (22)

pK�1
T JkTτ ,wqT � 0 @pτ ,wq P Σk

T � ΓkT . (23)

Owing to properties (21) and (22), which imply that

Rk
T pI

k
Twq � w @w P ΓkT . (24)

CkT is termed the consistent part of the reconstruction and JkT is termed the residual.
The residual is introduced to satisfy the stability property (25a) below. The orthogo-
nality property (23) is used in Section 2.4.2 to prove (25a) and, via (29), in the proof
of Theorem 11 (bound on T3).

(R2) Stability and continuity. There is η ¡ 0 independent of h and K such that, for all
T P Th,

}τ }2H,T ¥ λ�1
7,T η|||τ |||

2
T @τ P kerpDk

T q, (25a)

}τ }2H,T ¤ η�1λ�1
5,T |||τ |||

2
T @τ P Σk

T , (25b)

where λ7,T and λ5,T denote the largest and smallest eigenvalue of KT , respectively.
Inequality (25a) implies, in particular, that Rk

T (resp. Rk
h) is injective on kerpDk

T q
(resp. kerpDk

hq). Accounting for (14) and (20), and summing over T P Th, it is inferred
from (25) that

}τ h}
2
H ¥ λ�1

7 η|||τ h|||
2 @τ h P kerpDk

hq, (26a)

}τ h}
2
H ¤ η�1λ�1

5 |||τ h|||
2 @τ h P Σk

h, (26b)

where we have used the fact that τ h P kerpDk
hq implies LTτ h P kerpDk

T q for all T P Th.

Proposition 2 (Consequences of (R1)). The following holds for all T P Th:

@σ, τ P Σk
T , HT pσ, τ q � pK�1

T CkTσ,C
k
Tτ qT � pK�1

T JkTσ, J
k
Tτ qT , (27)

hence,

@τ P Σk
T , }τ }2H,T � }K

�1{2
T Rk

Tτ }
2
T � }K

�1{2
T CkTτ }

2
T � }K

�1{2
T JkTτ }

2
T . (28)

Additionally, for all w P ΓkT , letting υ :� IkTw with IkT defined by (15), the following holds:

HT pυ, τ q � pK�1
T w,C

k
Tτ qT @τ P Σk

T . (29)

2.4.1 Consistency

We first examine the consistency requirement expressed by (21) by generalizing the reasoning

of [22, Lemma 6.1]. Let t,w P ΓkT with w � KT∇v for a specific v P Pk�1,0
d pT q. The following

holds: ¸
FPFT

pv, t�nTF qF �

»
T
∇�pvtq � p∇v, tqT � pv,∇�tqT ,
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that is to say, owing to the symmetry of KT ,

pK�1
T t,wqT � �pv,∇�tqT �

¸
FPFT

pv, t�nTF qF . (30)

Let τ � pτT , tτF uFPFT
q P Σk

T be such that τ � IkT t with IkT defined by (15). Owing to
the local commutativity property from Proposition 1, we infer that Dk

Tτ � πkT p∇�tq � ∇�t,
since ∇�t P Pk�1

d pT q � P
k
dpT q. Moreover, since, for all F P FT , t�nF P Pkd�1pF q, we obtain

τF � t�nF , whence we infer from (30) that

pK�1
T t,wqT � �pv,Dk

Tτ qT �
¸
FPFT

pv, τF εTF qF . (31)

Inspired by (31), we define the consistent part of the local flux reconstruction CkT : Σk
T Ñ ΓkT

such that, for all τ � pτT , tτF uFPFT
q P Σk

T and all w P ΓkT with w � KT∇v for a specific

v P Pk�1,0
d pT q,

pK�1
T CkTτ ,wqT � �pv,Dk

Tτ qT �
¸
FPFT

pv, τF εTF qF . (32)

Recalling that CkTτ P ΓkT means that there exists z P Pk�1,0
d pT q such that CkTτ � KT∇z, we

can reformulate (32) as the (well-posed) Neumann problem: Find z P Pk�1,0
d pT q such that

pKT∇z,∇vqT � �pv,Dk
Tτ qT �

¸
FPFT

pv, τF εTF qF @v P Pk�1,0
d pT q. (33)

For further use, we note the following relation that stems from (32) after integrating by parts

the left-hand side: For all τ P Σk
T and all v P Pk�1,0

d pT q:

pp∇�CkT �Dk
T qτ , vqT �

¸
FPFT

εTF pC
k
Tτ �nF � τF , vqF . (34)

Lemma 3 (Properties of CkT ). Let CkT be defined by (32). Then, condition (21) holds. Addi-
tionally, there exists η1 ¡ 0 independent of h and K such that, for all τ P Σk

T ,

}K
�1{2
T CkTτ }

2
T ¥ λ�1

7,T }τT }
2
T , (35a)

}K
�1{2
T CkTτ }

2
T ¤ η�1

1 λ�1
5,T |||τ |||

2
T . (35b)

Proof. Condition (21) follows from (31) and (32) since for all t P ΓkT , pCkT I
k
T t � tq P ΓkT and

pK�1
T pCkT I

k
T t� tq,wqT � 0 for all w P ΓkT . Let us prove (35).

(i) Proof of (35a). Let τ :� pτT , tτF uFPFT
q P Σk

T be given with τT � KT∇v for a

specific v P Pk,0d pT q. Clearly, τT P ΓkT . Letting w � τT in (32) and using (10) to replace the
first term on the right-hand side (this is possible since v P UkT ), it is inferred that

pK�1
T CkTτ , τT qT � p∇v, τT qT � }K

�1{2
T τT }

2
T .

Using the Cauchy–Schwarz inequality to bound the left-hand side from above, we infer (35a)
since

λ
�1{2
7,T }τT }T ¤ }K

�1{2
T τT }T ¤ }K

�1{2
T CkTτ }T .

9



(ii) Proof of (35b). Let τ :� pτT , tτF uFPFT
q P Σk

T with CkTτ � KT∇v for a specific

v P Pk�1,0
d pT q. Recalling (10) and (32), and using Dk

Tτ P U
k
T , we infer that

}K
�1{2
T CkTτ }

2
T � �pπkT v,D

k
Tτ qT �

¸
FPFT

pv, τF εTF qF

� pτT ,∇πkT vqT �
¸
FPFT

pv � πkT v, τF εTF qF :� T1 � T2.

We obtain

|T1| ¤ }τT }T }∇πkT v}T À }τT }T }∇v}T À λ�1
5,T }τT }T }KT∇v}T � λ�1

5,T }τT }T }C
k
Tτ }T ,

where we have used the H1-continuity of the L2-orthogonal projection along with CkTτ �
KT∇v to conclude. On the other hand, using the Cauchy–Schwarz inequality followed by the
discrete trace and Poincaré’s inequalities, it is inferred that, for all F P FT ,

|pv � πkT v, τF qF | ¤ Ctrh
�1{2
F }v � πkT v}T }τF }F

À CtrCPh
1{2
F }∇v}T }τF }F ¤ CtrCPλ

�1
5,T }C

k
Tτ }Th

1{2
F }τF }F ,

where we have used that }v�πkT v}T ¤ }v�v}T ¤ CPhT }∇v}T À CPhF }∇v}T . Collecting the
above estimates and using the discrete Cauchy–Schwarz inequality for the boundary terms
together with (3) yields (35b).

Remark 4 (Alternatives to the zero-average condition). The zero-average condition on the
potential defining the elements of TkT and ΓkT ensures the well-posedness of the local Neumann
problems (33). An alternative condition commonly used in finite volume methods consists in
considering functions that vanish at a given point inside the element (usually the point xT
of (M3)). This corresponds to replacing the polynomial spaces Pl,0d pT q, l P tk, k�1u, with the

polynomial spaces Pl,�d pT q of functions that vanish at xT . The local Neumann problems (33)
remain well-posed since the right-hand side vanishes if v is a constant function.

2.4.2 Construction of the residual on a pyramidal submesh

We now turn to devising a residual JkT : Σk
T Ñ Rk

T ; its design criteria are to match the
orthogonality property (23) and the local stability property (25a). The latter means that

}K
�1{2
T Rk

Tτ }
2
T � }K

�1{2
T CkTτ }

2
T � }K

�1{2
T JkTτ }

2
T must control the first and the third terms on

the right-hand side of (11) for all τ P kerpDk
T q. Note that CkT cannot achieve this control

alone, since it only bounds the first term on the right-hand side of (11), see (35a).
Owing to (M3), for every element T P Th it is possible to define a submesh composed of

the face-based pyramids tPTF uFPFT
with apex xT . It has been proved in [19, Lemma 3] that

the pyramidal submesh thus obtained inherits the shape- and contact-regularity properties of
the original mesh. As a result, trace and inverse inequalities analogous to (4)–(6) hold.

For all F P FT , we set ΓkTF :� KT∇P
k�1,0
d pPTF q extended by 0 outside PTF , and define

the pyramidal residual JkTF : Σk
T Ñ ΓkTF such that, for all τ � pτT , tτF uFPFT

q P Σk
T and all

w P ΓkTF with w|PTF
� KT∇v for a specific v P Pk�1,0

d pPTF q,

pK�1
T JkTFτ ,wqPTF

� pp∇�CkT �Dk
T qτ , vqPTF

� εTF pC
k
Tτ �nF � τF , vqF . (36)
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Computing JkTF amounts to solving a (well-posed) Neumann problem inside each pyramid.
Note that here the zero mean condition on v is important since the right-hand side of (36) does
not necessarily vanish for constant v. We define the residual by collecting all the pyramidal
residuals,

JkT :�
¸
FPFT

JkTF , Rk
T :�

à
TPTh

ΓkTF . (37)

We can then reformulate (28) as follows:

@τ P Σk
T , }τ }2H,T � }K

�1{2
T Rk

Tτ }
2
T � }K

�1{2
T CkTτ }

2
T �

¸
FPFT

}K
�1{2
T JkTFτ }

2
PTF

. (38)

Proposition 5 (Consistency and orthogonality of the residual). Conditions (22) and (23)
hold.

Proof. To prove (22), we observe that for all t P ΓkT , CkT pI
k
T tq � t so that ∇�CkT pI

k
T tq �∇�t �

πkT p∇�tq � Dk
T pI

k
T tq. Moreover, for all F P FT , CkT pI

k
T tq�nF � t�nF � πkF pt�nF q. Hence, (36)

yields that JkTF pI
k
T tq � 0. To prove (23), we consider an arbitrary t P ΓkT , sum (36) tested

with w � t|PTF
for all F P FT , and use (34).

Lemma 6 (Properties of Rk
T ). Let CkT and JkT be defined by (10)-(32) and (36)-(37), respec-

tively. Let Rk
T � CkT � JkT . Then, properties (R1)–(R2) hold.

Proof. The three properties composing (R1) have already been established. It only remains
to check the properties (25) composing (R2).

(i) Proof of (25a). Let τ P kerpDk
T q, let F P FT , and denote by yTF P P

k
dpPTF q the

function obtained by extending the function h
1{2
F εTF pC

k
Tτ |F �nF � τF q to PTF by constant

values along the direction of xT�xF (with xF denoting the barycenter of F ). By construction
and using mesh regularity, the following bound holds:

}yTF }PTF
À hF }C

k
Tτ �nF � τF }F . (39)

Letting w � KT∇yTF P ΓkTF and v � yTF in (36) and using Dk
Tτ � 0, it is inferred that

h
1{2
F }CkTτ �nF � τF }

2
F � p∇�CkTτ , yTF qPTF

� pJkTFτ ,∇yTF qPTF
:� T1 � T2. (40)

Using the Cauchy–Schwarz inequality followed by the inverse inequality on PTF together
with (39) and using mesh regularity, it is inferred that

|T1| ¤ }∇�CkTτ }PTF
}yTF }PTF

À }CkTτ }PTF
}CkTτ �nF � τF }F .

Proceeding in a similar way for the second term, we obtain

|T2| ¤ }JkTFτ }PTF
}∇yTF }PTF

À }JkTFτ }PTF
}CkTτ �nF � τF }F .

Using the above bounds to estimate the right-hand side of (40), it is inferred that

λ
�1{2
7,T h

1{2
F }CkTτ �nF � τF }F À }K

�1{2
T CkTτ }PTF

� }K
�1{2
T JkTFτ }PTF

. (41)
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Recalling (11) and the fact that Dk
Tτ � 0, we then proceed as follows using (35a) together

with the triangular inequality followed by (41) and the discrete trace inequality on PTF ,

|||τ |||2T � }τT }
2
T �

¸
FPFT

hF }τF }
2
F

À λ7,T }K
�1{2
T CkTτ }

2
T �

¸
FPFT

hF }C
k
Tτ �nF � τF }

2
F �

¸
FPFT

hF }C
k
Tτ �nF }

2
F

À λ7,T }K
�1{2
T CkTτ }

2
T � λ7,T

¸
FPFT

!
}K

�1{2
T CkTτ }

2
PTF

� }K
�1{2
T JkTFτ }

2
PTF

)
À λ7,T }K

�1{2
T Rk

Tτ }
2
T ,

where the last inequality is a consequence of (38). This proves (25a).
(ii) Proof of (25b). Let τ P Σk

T . Recalling (35b) together with (38), it suffices to prove
the continuity of the residuals in the |||�|||T -norm. Denote by T1 and T2 the terms on the
right-hand side of (36). Using the Cauchy–Schwarz and triangle inequalities followed by the
inverse and Poincaré’s inequalities on PTF and using mesh regularity, it is inferred for the
first term that

|T1| ¤
�
}∇�CkTτ }PTF

� }Dk
Tτ }PTF

	
}v}PTF

À
�
Cinvh

�1
T }CkTτ }PTF

� }Dk
Tτ }PTF

	
CPhT }∇v}PTF

À λ
�1{2
5,T

�
}CkTτ }PTF

� hT }D
k
Tτ }PTF

	
}K

�1{2
T w}PTF

.

For the second term, the Cauchy–Schwarz, triangle, discrete trace, and Poincaré’s inequalities
on PTF yield

|T2| ¤ λ
�1{2
5,T

�
h

1{2
F }τF }F � }CkTτ }PTF

	
}K

�1{2
T w}PTF

.

Collecting the above results leads to

λ
1{2
5,T }K

�1{2
T JkTFτ }PTF

� λ
1{2
5,T sup

wPΓk
TF zt0u

T1 � T2

}K
�1{2
T w}PTF

À }CkTτ }PTF
� hT }D

k
Tτ }PTF

� h
1{2
F }τF }F .

The continuity of JkT in the |||�|||T -norm then follows squaring the above inequality, summing
over the element faces, and concluding with the discrete Cauchy–Schwarz inequality.

Remark 7 (Penalty coefficient). A more general form for the residual can be obtained intro-
ducing a scalar penalty coefficient µ ¡ 0 and defining JkTF as follows:

µ�1pK�1
T JkTFτ ,wqPTF

� pp∇�CkT �Dk
T qτ , vqPTF

� εTF pC
k
Tτ �nF � τF , vqF . (42)

2.5 Discrete problem and well-posedness

We consider the following discretization of (2) based on the spaces Σk
h and Ukh defined by (8)

and (12), respectively: Find pσh, uhq P Σk
h � Ukh such that

Hpσh, τ hq � puh, D
k
hτ hq � 0 @τ h P Σk

h, (43a)

�pDk
hσh, vhq � pf, vhq @vh P U

k
h , (43b)
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with bilinear form H defined by (20). Owing to the choice for Ukh , equation (43b) can be
alternatively written, letting fh :� πkhf ,

�Dk
hσh � fh. (44)

Lemma 8 (Well-posedness). There exists β ¡ 0 independent of h and K such that, for all
vh P U

k
h , the following holds:

β}vh} ¤ sup
τhPΣ

k
hzt0u

pDk
hτ h, vhq

|||τ h|||
. (45)

Additionally, problem (43) is well-posed.

Proof. The surjectivity of the operator Dk
h expressed by (45) is a classical consequence of the

existence of an interpolation operator satisfying the commuting property of Proposition 1 and
uniformly continuous in the sense that, for all τ P Σ�, |||Ikhτ ||| ¤ C}τ }Σ� holds with C ¡ 0 in-
dependent of the meshsize. The well-posedness of problem (43) then results from (45) together
with the |||�|||-coercivity of the bilinear form H on kerpDk

hq, a consequence of (26a). Further
details can be found in the book of Brezzi and Fortin [11], cf. in particular Section IV.1.2.

3 Convergence analysis

In this section we prove an error estimate and, under regularity assumptions for the exact
solution, identify convergence rates for the flux and potential approximations.

3.1 Basic error estimate

Lemma 9 (Basic error estimate). Let ps, uq P Σ � U denote the unique solution to (2) and
assume the additional regularity s P Σ� with Σ� defined in Section 2.3. Let pσh :� Ikhs andpuh :� πkhu where Ikh is the interpolator defined by (17) and πkh is the L2-orthogonal projector
on P

k
dpThq. Denoting by pσh, uhq P Σk

h � Ukh the unique solution to (43), the following holds:

max
�

1
2βpηλ5q

1{2}puh � uh}, }pσh � σh}H	 ¤ sup
τhPΣ

k
h, }τh}H�1

Ehpτ hq. (46)

with consistency error Ehpτ hq :� Hppσh, τ hq � ppuh, Dk
hτ hq.

Proof. We denote by $ the supremum on the right-hand side of (46). By virtue of (43a), the
following holds for all τ h P Σk

hzt0u:

Hppσh � σh, τ hq � ppuh � uh, D
k
hτ hq � Ehpτ hq � Eh

�
τ h

}τ h}H



}τ h}H ¤ $}τ h}H .

Hence, letting τ h � pσh � σh in the above expression and using ppσh � σhq P kerpDk
hq on the

left-hand side, we obtain
}pσh � σh}H ¤ $ (47)

Let us now estimate the error on the potential. Using (43a) together with the definition of
the consistency error yields for all τ h P Σk

h,

pDk
hτ h, puh � uhq � pDk

hτ h, puhq � pDk
hτ h, uhq � Hpσh � pσh, τ hq � Ehpτ hq.

13



Using the inf-sup condition (45) together with the above relation, the Cauchy–Schwarz in-
equality, and (26b), it is inferred that

βpηλ5q
1{2}puh � uh} ¤ sup

τhPΣ
k
hzt0u

pDk
hτ h, puh � uhq

pηλ5q�
1{2|||τ h|||

¤ }σh � pσh}H � $,

and the conclusion follows using (47).

Corollary 10 (|||�|||-error estimate). The following holds:

pη{λ7q
1{2|||pσh � σh||| ¤ sup

τhPΣ
k
h, }τh}H�1

Ehpτ hq.

To estimate the convergence rate, we need to work with the unpatched space of flux DOFs

qΣk

h :�
¡
TPTh

Σk
T . (48)

The restriction operator LT , for all T P Th, can be extended to qΣk

h and stills maps onto Σk
T .

Theorem 11 (Convergence rate). Under the assumptions of Lemma 9, and assuming the
additional regularity u P H1

0 pΩq XHk�2pThq, the following holds:

βpηλ5q
1{2}puh � uh} � }pσh � σh}H ¤ C

� ¸
TPTh

ρK,Tλ7,Th
2pk�1q
T }u}2Hk�2pT q

�1{2

, (49)

with C independent of h and K and anisotropy ratio ρK,T :� λ7,T {λ5,T .

Proof. We extend the bilinear form H defined by (20) to qΣk

h �
qΣk

h. With quh :� πk�1
h u andqσh P qΣk

h such that LT qσh � IkT pK∇quhq|T for all T P Th, we infer that, for all τ h P Σk
h,

Ehpτ hq � Hppσh � qσh, τ hq � ppuh � quh, Dk
hτ hq �

!
Hpqσh, τ hq � pquh, Dk

hτ hq
)

:� T1 � T2 � T3.

We estimate the terms on the right-hand side.
(i) Estimate of T1. Using the Cauchy–Schwarz inequality leads to

|T1| ¤

# ¸
TPTh

}LT pσh � LT qσh}2H,T
+1{2

}τ h}H . (50)

Owing to the local continuity assumption expressed by (25b), and recalling (11), we infer
that, for all T P Th,

λ5,T }LT pσh � LT qσh}2H,T À }pσT � qσT }2T � ¸
FPFT

hF }pσF � pK∇quhq|T �nF }2F
� h2

T }D
k
T pLT pσh � LT qσhq}2T , (51)

with σF � πkF pK∇uq. To estimate the first term on the right-hand side of (51), we observe
that

}pσT � qσT }T � }$k
T pKT∇pu� quhqq}T ¤ λ7,T }∇pu� quhq}T À λ7,Th

k�1
T }u}Hk�2pT q,
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where we have used the approximation properties of πk�1
h and, recalling the definition (16)

of $k
T , the fact that }$k

T t}T ¤ λ
1{2
7,T }K

�1{2
T $k

T t}T ¤ λ
1{2
7,T }K

�1{2
T t}T ¤ λ7,T }K

�1
T t}T for all

t P L2pT qd. For the square root of the second term on the right-hand side of (51), a similar
estimate can be obtained after using the trace inequality (5) together with the continuity and
approximation properties of πkF and (3). Finally, using the commutativity of the left diagram
in Proposition 1 and the continuity and approximation properties of πkT , it is inferred that

hT }D
k
T pLT pσh � LT qσhq}T � hT }π

k
T r∇�pKT∇pu� quhqqs }T

¤ hT }∇�pKT∇pu� quhqq}T À λ7,Th
k�1
T }u}Hk�2pT q.

Using the above results to bound the right-hand side of (51) and recalling (50), we conclude
by the discrete Cauchy–Schwarz inequality that

|T1| À
¸
TPTh

!
ρK,Tλ7,Th

2pk�1q
T }u}2Hk�2pT q

)1{2
}τ h}H . (52)

(ii) Estimate of T2. For all T P Th, we obtain

|ppuh � quh, Dk
TLTτ hqT | ¤ }πkT pu� quhq}T }Dk

TLTτ h}T

À hk�1
T }u}Hk�2pT q |||LTτ h|||T eq. (11)

À λ
1{2
7,Th

k�1
T }u}Hk�2pT q}LTτ h}H,T , eq. (25a)

where in the first line we have used }πkT pu� quhq}T ¤ }u� quh}T À hk�2
T }u}Hk�2pT q. Hence, the

discrete Cauchy–Schwarz inequality yields,

|T2| À
¸
TPTh

!
λ7,Th

2pk�1q
T }u}2Hk�2pT q

)1{2
}τ h}H . (53)

(iii) Estimate of T3. Letting uh :� π0
hu and observing that, for all T P Th, ∇uh|T � 0

and pquh � uhq|T P P
k�1,0
d pT q, we infer that

T3 �
¸
TPTh

p∇pquh � uhq,C
k
TLTτ hqT � pquh, Dk

hτ hq eq. (29)

�
¸
TPTh

#
�pquh � uh, D

k
TLTτ hqT �

¸
FPFT

ppquh � uhq|T , τF εTF qF

+
� pquh, Dk

hτ hq eq. (32)

�
¸
TPTh

#
�pquh � uh, D

k
TLTτ hqT �

¸
FPFT

pquh|T , τF εTF qF � puh, D
k
TLTτ hqT

+
eq. (10)

� pquh, Dk
hτ hq

�
¸
TPTh

¸
FPFT

pquh|T � u, τF εTF qF , eq. (13)

where in the last line we have used
°
TPTh

°
FPFT

pu, τF εTF qF � 0, a consequence of the
fact that u has single-valued traces on interfaces and vanishes on BΩ. Hence it is inferred,
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using the Cauchy–Schwarz inequality, (11) and (14) together with (25a), the continuous trace
inequality (5), the approximation properties of πk�1

h , and mesh regularity, that

|T3| ¤

# ¸
TPTh

¸
FPFT

λ7,Th
�1
F }quh|T � u}2F

+1{2

�

# ¸
TPTh

¸
FPFT

λ�1
7,ThF }τF }

2
F

+1{2

À

# ¸
TPTh

λ7,Th
2pk�1q
T }u}2Hk�2pT q

+
}τ h}H .

(54)

The estimate (49) follows from Lemma 9, together with the bounds (52), (53), (54), and
1 ¤ ρK,T .

Remark 12. The above proof of the bound on T1 shows that, for all T P Th,

}LT ppσh � qσhq}H,T � }LT pσh � IkTKT∇quh}H,T À ρK,Tλ7,Th
k�1
T }u}Hk�2pT q. (55)

3.2 Supercloseness of the potential

For the sake of simplicity, we assume throughout this section that

K � Idd, (56)

where Idd denotes the identity matrix in R
d�d. The estimate of the error on the potential

can be refined if elliptic regularity holds in the following form: For all g P L2pΩq, the unique
solution z P H1

0 pΩq to
p∇z,∇vq � pg, vq @v P H1

0 pΩq, (57)

satisfies the a priori estimate

}z}H2pΩq � }w}H1pΩqd ¤ Cell}g}, w :�∇z, (58)

with Cell only depending on Ω.

Theorem 13 (Supercloseness of the potential). Under the assumptions of Theorem 11, (56)
and elliptic regularity, the following holds:

}puh � uh} ¤ Chk�2}u}Hk�2pΩq, (59)

with C ¡ 0 independent of h.

Proof. We sketch the proof. Let z solve (57) with g � uh � puh. We let pσh and puh be defined
as in Lemma 9 and set sh :� Rk

hσh, psh :� Rk
hpσh, quh :� πk�1

h u, zh :� πk�1
h z, υh :� Ikhw, and

wh :� Rk
hυh. Owing to Proposition 1, and since, by definition, ∇�w � puh � uh P P

k
dpThq, the

equality Dk
hυh �∇�w holds. Hence, taking τ h � υh in (43a) and recalling (56),

�p∇�w, uhq � �pDk
hυh, uhq � Hpσh,υhq � psh,whq.

Using the above relation and denoting by ∇h the broken gradient on Th leads to

}puh � uh}
2 � ppuh � uh,∇�wq � pu� uh,∇�wq

� �ps,wq � psh,whq

� psh � s,w �∇hzhq � psh �∇quh,wh �wq

� psh � s,∇hzhq � p∇quh,wh �wq :� T1 � . . .� T4,

(60)
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where in the second line we have used s � ∇u. Using the Cauchy–Schwarz inequality, it is
inferred that

|T1| ¤ }sh � s}}w �∇hzh} À hk�2}u}Hk�2pΩq}z}H2pΩq, (61)

since }sh � s} ¤ }sh �∇quh} � }∇quh � s}, the first term is bounded using (55) (observing
that }sh � s}T � }Rk

TLT pσh � ∇quh}T � }LT pσh � IkT∇quh}H,T ) and the second using the
approximation properties of πk�1

h , while }w�∇hzh} À h}z}H2pΩq. Proceeding similarly, it is
inferred that

|T2| ¤ }sh�∇quh}}wh�w} ¤ p}sh � psh} � }psh �∇quh}q }wh�w} À hk�2}u}Hk�2pΩq}w}H1pΩqd .
(62)

The estimate on T3 deserves being treated in more detail. Letting zh :� π0
hzh, so that

pzh � zhq|T P ΓkT for all T P Th, it is inferred that

psh,∇hzhq � psh,∇hpzh � zhqq �
¸
TPTh

pCkTLTσh,∇pzh � zhqqT eq. (29)

�
¸
TPTh

#
�pzh � zh, D

k
TLTσhqT �

¸
FPFT

ppzh � zhq|T , σF εTF qF

+
eq. (32)

�
¸
TPTh

#
�pzh, D

k
TLTσhqT �

¸
FPFT

pzh|T , σF εTF qF ,

+
, eq. (10)

where LT is the restriction operator defined in Section 2.2. Hence, upon element-by-element
integration by parts of the term ps,∇hzhq, we obtain

T3 � pzh,∇�s�Dk
hσhq �

¸
TPTh

¸
FPFT

εTF pzh|T , σF � s�nF qF :� T3,1 � T3,2.

Observing that the function ∇�s�Dk
hσh has zero average inside each element, we infer that

T3,1 � pzh�zh,∇�s�Dk
hσhq. Hence, using the approximation properties of the L2-orthogonal

projector leads to
|T3,1| À hk�2}s}Hk�1pΩqd}z}H1pΩq.

Using the fact that both the trace of z and the normal trace of s are single-valued at interfaces
and that z vanishes on BΩ it is inferred that

T3,2 �
¸
TPTh

¸
FPFT

εTF pzh|T � z, σF � s�nF qF .

As a consequence, using the Cauchy–Schwarz inequality followed by the approximation prop-
erties of the L2-orthogonal projector and Corollary 10 together with (46) yields |T3,2| À
hk�2}s}Hk�1pΩqd}z}H2pΩq. Hence,

|T3| ¤ |T3,1| � |T3,2| À hk�2}s}Hk�1pΩqd}z}H2pΩq. (63)

Proceeding in a similar manner as for T3 it is inferred that

|T4| �

����� ¸
TPTh

¸
FPFT

εTF pquh|T � u, υF �w�nF qF

����� À hk�2}u}H2pΩq}w}H1pΩq. (64)

The desired result is then obtained using (61)–(64) to estimate the right-hand side of (60),
using (58) with g � puh�uh to infer that }z}H2pΩq�}w}H1pΩqd ¤ Cell}puh�uh}, and simplifying
by }puh � uh}.
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Remark 14 (Elliptic regularity assumption). Elliptic regularity holds if, e.g., Ω is convex. If
this is not the case, since Ω is polyhedral, one still has the additional regularity u P H1�tpΩq
and s P HtpΩqd with 1{2   t ¤ 1. Proceeding as in the above proof shows that the estimate (59)
becomes }puh � uh} ¤ Chk�t�1}u}Hk�2pΩq.

4 Variations

We consider in this section several variations of the method (43) and establish links with
other methods in the lowest-order case.

4.1 Virtualization

We first discuss a modification of (43) that does not require to solve (36) inside each pyramid.
As for VE methods, this can be interpreted as not specifying the basis functions underlying
the reconstruction. Throughout this section, it is assumed that the bilinear form H is defined
by (20) with reconstruction operator given by Rk

T � CkT �JkT . We consider a bilinear form HV

on Σk
h � Σk

h defined from local symmetric and nonnegative bilinear forms HV
T on Σk

T � Σk
T

such that, for all σh, τ h P Σk
h,

HVpσh, τ hq �
¸
TPTh

HV
T pLTσh, LTτ hq. (65)

We formulate the following requirements:

(V1) Consistency. The following holds, for all T P Th and all t P ΓkT , letting τ :� IkT t:

HV
T pτ ,υq � HT pτ ,υq @υ P Σk

T .

(V2) Stability and continuity. There exists γ ¡ 1 independent of h and K such that, denoting
for all T P Th by }�}HV,T the (semi-)norm induced on Σk

T by the bilinear form HV
T , the

following holds:

@T P Th, γ�1}τ }HV,T ¤ }τ }H,T ¤ γ}τ }HV,T , @τ P Σk
T . (66)

This implies, in particular, denoting by }�}HV the (semi-)norm induced by the bilinear
form HV on Σk

h, and recalling (65),

γ�1}τ h}HV ¤ }τ h}H ¤ γ}τ h}HV , @τ h P Σk
h. (67)

Remark 15 (Consequence of (V1)). Extend the bilinear forms H and HV to qΣk

h�
qΣk

h (withqΣk

h defined by (48)). For all t P L2pΩqd such that t|T P ΓkT for all T P Th, and letting τ h P qΣk

h

be such that its restrictions satisfy LTτ h � IkT t|T for all T P Th, we infer from (V1) that

HVpτ h,υhq � Hpτ h,υhq @υh P Σk
h. (68)

We consider the following variation of (43): Find pσV
h , u

V
h q P Σk

h � Ukh such that

HVpσV
h , τ hq � puV

h , D
k
hτ hq � 0 @τ h P Σk

h, (69a)

�pDk
hσ

V
h , vhq � pf, vhq @vh P U

k
h . (69b)

The well-posedness of problem (69) is an immediate consequence of (67) and (26a) together
with (45).
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Theorem 16 (Convergence rate for the virtual version). Denote by ps, uq P Σ � L2pΩq the
exact solution to (2) and assume the additional regularity u P H1

0 pΩq X Hk�2pThq. Then,
letting pσV

h , u
V
h q P Σk

h � Ukh denote the unique solution to (69) and with ppσh, puhq P Σk
h � Ukh

defined as in Lemma 9, the following holds with C ¡ 0 independent of h and K and with ρK,T

defined as in Theorem 11:

βpηλ5q
1{2}puh � uV

h } � }pσh � σV
h }HV ¤ C

� ¸
TPTh

ρK,Tλ7,Th
2pk�1q
T }u}2Hk�2pT q

�1{2

. (70)

Proof. We sketch the proof. As a consequence of (43b) and (69b), we infer thatDk
hpσh�σ

V
h q �

0. Hence, letting τ h � pσh � σ
V
h q in (43a) and in (69a), respectively, it is inferred that

Hpσh,σh � σ
V
h q � HVpσV

h ,σh � σ
V
h q � 0. (71)

We extend both bilinear forms H and HV to qΣk

h �
qΣk

h, and the corresponding norms to qΣk

h.

Letting qσh P qΣk

h be defined as in the proof of Theorem 11, and using (68), we obtain

HVpqσh,σh � σV
h q �Hpqσh,σh � σV

h q � 0 � HVpσV
h ,σh � σ

V
h q. (72)

Now we can proceed as follows:

}σh � σ
V
h }

2
HV � HVpσh,σh � σ

V
h q �HVpσV

h ,σh � σ
V
h q

� HVpσh � qσh,σh � σV
h q �Hpqσh,σh � σV

h q eq. (72)

� HVpσh � qσh,σh � σV
h q �Hpqσh � σh,σh � σV

h q eq. (71)

¤ }σh � qσh}HV }σh � σ
V
h }HV � }qσh � σh}H }σh � σ

V
h }H Cauchy–Schwarz

¤ 2γ}σh � qσh}H }σh � σ
V
h }HV . eq. (67)

Hence, }σh�σ
V
h }HV ¤ 2γ}σh�qσh}H . Therefore, using the triangle inequality and again (67),

it is inferred that

}pσh � σV
h }HV ¤ }pσh � σh}HV � }σh � σ

V
h }HV

¤ γ}pσh � σh}H � 2γ}σh � qσh}H ¤ 3γ}pσh � σh}H � 2γ}pσh � qσh}H .
The estimate for }pσh � σV

h }HV in (70) follows using (49) to estimate the first term on the
right-hand side and using (55) for the second. The bound for }puh � uV

h } can be proved as in
Lemma 9.

A supercloseness result analogous to Theorem 13 can be proved also for the virtual
method (69). The details are omitted for the sake of conciseness.

Example 17. Assume that K is isotropic, i.e., KT � λT Idd. A possible choice for HV is to
let, for all T P Th and all σ, τ P Σk

T ,

HV
T pσ, τ q :� pK�1

T CkTσ,C
k
Tτ qT � JV

T pσ, τ q, (73)

with stabilization bilinear form

JV
T pσ, τ q :�

¸
FPFT

λ�1
T hF pC

k
Tσ�nF � σF ,C

k
Tτ �nF � τF qF .
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Proposition 18. Assume that K is isotropic. Properties (V1)–(V2) hold for the bilinear
form HV

T defined by (73).

Proof. Property (V1) is readily verified since the second term on the right-hand side of (73)
vanishes if σ � IkT t with t P ΓkT . The bound γ�1}τ }HV,T ¤ }τ }H,T in (66) is an immediate
consequence of (41) together with (38). Let us prove the second bound }τ }H,T ¤ γ}τ }HV,T .

Using (34) where we can take any v P PkdpT q, we infer that

hT }p∇�CkT �Dk
T qτ }T � sup

vPPk
dpT q,}v}T�1

hT pp∇�CkT �Dk
T qτ , vqT

� sup
vPPk

dpT q,}v}T�1

¸
FPFT

hT εTF pC
k
Tτ �nF � τF , vqF

À sup
vPPk

dpT q,}v}T�1

¸
FPFT

h
1{2
F }CkTτ �nF � τF }F }v}PTF

¤ λ
1{2
T J

V
T pτ , τ q

1{2,

where we have used the Cauchy–Schwarz, mesh regularity, discrete trace inequalities on the
pyramid PTF , and the discrete Cauchy–Schwarz inequality to conclude. Recalling (36) and
using discrete trace and Poincaré inequalities, we infer that, for all τ P Σk

T and all F P FT ,

}K
1{2
T JkTFτ }PTF

¤ sup
vPPk�1,0

d pT q

pp∇�CkT �Dk
T qτ , vqPTF

}K
1{2
T ∇v}PTF

� sup
vPPk�1,0

d pT q

pCkTτ �nF � τF , vqF

}K
1{2
T ∇v}PTF

À λ
�1{2
T

!
hT }p∇�CkT �Dk

T qτ }PTF
� h

1{2
F }CkTτ �nF � τF }F

)
.

Hence, the above bounds together with the discrete Cauchy–Schwarz inequality imply }K
1{2
T JkTτ }T À

JV
T pτ , τ q

1{2. The desired result then follows using this bound to estimate the second term on
the right-hand side of (38) and using (3). This concludes the proof of (V2).

4.2 Lowest-order variations and links with other methods

In this section we derive explicit formulæ for the reconstruction of Section 2.4 in the lowest-
order case k � 0 and discuss a variation leading to the methods of [22, 23, 14, 6].

4.2.1 An explicit formula for the lowest-order reconstruction

Let T P Th and let w P Γ0
T be fixed. There exists a unique v P P1,0

d pT q such that w � KT∇v
and, setting z :� K�1

T w � ∇v leads to vpxq � z�px� xT q for all x P T with xT barycenter
of T since v has zero mean in T . Hence, identifying constant functions with their value on T ,
and denoting by xF the barycenter of F P FT , formula (32) yields

|T |dpC
0
Tτ q�z � �|T |dvpxT qD

0
Tτlooooooooomooooooooon

�0

�
¸
FPFT

|F |d�1z�pxF � xT qτF εTF ,

where |�|d and |�|d�1 denote the d- and pd�1q-dimensional Lebesgue measures, respectively.
Since the vector z is arbitrary, we infer the following explicit formula for the consistent part
of the reconstruction:

C0
Tτ �

1

|T |d

¸
FPFT

|F |d�1pxF � xT qτF εTF , (74)
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which is precisely [22, eq. (9)] when the barycenter is chosen as the cell center (the measure
of the face appears in (74) since we have interpreted face unknowns as average rather than
integral values). Similarly, for all F P FT , the general form of the pyramidal residual (42) is
such that, for all τ P Σ0

T and all w P Γ0
TF ,

J0
TFτ � µ

d

dTF
εTF pτF � C0

Tτ �nF qpxF � xTF q, (75)

where xTF denotes the barycenter of PTF and dTF � pxF � xT q�nTF as defined in (M3).

4.2.2 Link with Mixed Finite Volumes

We assume, for the sake of simplicity, that for all T P Th, we can take xT � xT , the barycenter
of T , in (M3). Observing that xF � xTF � d

d�1pxF � xT q, (75) can be rewritten as

J0
TFτ � rµ d

dTF
εTF pτF � C0

Tτ �nF qpxF � xT q, (76)

with rµ � µ d
d�1 . This is the “weak” flux stabilization suggested in [23, Section 2.3] for a

diagonal penalty matrix. The generalization corresponding to the inner product [23, eq. (2.31)]
can be interpreted as a virtualization of the above method.

4.2.3 Link with the Discrete Geometric Approach

We next consider the Discrete Geometric Approach of [14], see also [6], for which the basis
functions tϕTF uFPFT

for the flux reconstruction are piecewise constant on the pyramidal
subdivision of T and such that, for all F,G P FT ,

ϕTG|PTF
�
pxG � xT q

dTG|G|d�1
δFG �

�
1

|T |d
Idd �

pxF � xT q b nTF
|T |ddTF



pxG � xT q ,

where Idd is the identity matrix of Rd�d and δFG is equal to 1 if F � G, 0 otherwise. For
all τ P Σk

T , the corresponding flux reconstruction t is piecewise constant on the pyramidal
subdivision of T and such that, for all F P FT ,

t|PTF
�

¸
GPFT

τGεTG |G|d�1ϕTG|PTF

� C0
Tτ �

1

dTF

#
τF εTF �

�
1

|T |d

¸
GPFT

|G|d�1 pxG � xT q τGεTG

�
�nTF

+
pxF � xT q

� C0
Tτ �

1

dTF
pτF εTF � C0

Tτ �nTF q pxF � xT q .

The second term on the right-hand side allows us to identify the residual. Comparing its
expression with (76) shows that the two residuals coincide provided the penalty coefficient
in (76) is selected as rµ � 1{d.
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4.2.4 Link with lowest-order Raviart–Thomas finite elements

Consider a simplicial mesh. For all T P Th, consider the lowest-order Raviart–Thomas finite
element space RT0

dpT q � P
0
dpT q

d�xP0
dpT q with local basis functions ϕTF pxq �

1
d|T |d

px�xvpF qq

for all F P FT , where vpF q is the vertex of T opposite to F . Define the consitent part of the
reconstruction by (74), and define a residual attached to each face F P FT as follows:

pJ0
TFτ qpxq � |F |d�1εTF pτF � pC0

Tτ q�nF qϕTF pxq, @x P T. (77)

Observe that the residuals are now supported on T and no longer on the pyramid PTF
attached to the corresponding F . Then, set J0

T :�
°
FPFT

J0
TF , which matches the consistency

property (22) by construction. The orthogonality property (23) follows from the fact that,
for all pτ ,wq P Σ0

T � Γ0
T ,

pK�1
T J0

Tτ ,wqT �

# ¸
FPFT

|F |d�1εTF pτF � pC0
Tτ q�nF qpxF � xT q

+
�K�1

T w,

since
³
T ϕTF � xF � xT . The term between braces is equal to

|T |dC
0
Tτ �

# ¸
FPFT

|F |d�1pxF � xT q b nTF

+
C0
Tτ � 0

since
°
FPFT

|F |d�1pxF�xT qbnTF � |T |dIdd. This yields the orthogonality property. Finally,
the stability property (25a) results from classical properties of the mass matrix of Raviart–
Thomas finite element functions, while the continuity property (25b) is straightforward to
verify.

5 Implementation and numerical example

For the sake of completeness, we discuss some implementation aspects and present a numerical
example to confirm the theoretical results. An essential step in the implementation consists
in selecting suitable bases for the polynomial spaces that appear in the construction. Let
T P Th. An appropriate choice for the basis BlT of the polynomial space PldpT q (the values
l � k and l � k � 1 are used) is, letting Al :� tα � pαiq1¤i¤d P R

d | }α}`1 ¤ lu,

BlT :�

#
d¹
i�1

ξαi
T,i

��� α P Al, ξT,i :�
xi � xT,i
hT

@1 ¤ i ¤ d

+
, (78)

i.e., the basis BlT is spanned by monomials in the translated and scaled coordinate variables
pξT,iq1¤i¤d. Equation (78) defines hierarchical bases, so that we can construct and evaluate
Bk�1
T at quadrature nodes and obtain BkT (used to solve (10)) by simply discarding the higher-

order functions. Additionally, replacing the zero-average condition with the requirement that
functions vanish at xT (cf. Remark 4), a basis for the polynomial space Pk�1,�

d pT q used in (33)

is obtained by simply discarding the constant function in Bk�1
T . The choice (78) performs

well for moderate polynomial degrees and isotropic elements. For higher orders or anisotropic
elements, one possibility is to perform an orthonormalization as described in [1] (in this case,
the zero-average condition is the appropriate one). Orthonormalization was not necessary in
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Figure 1: Triangular, skewed quadrangular, and hexagonal meshes for the numerical example
of Section 5

the numerical example presented hereafter. Similarly, for the spaces PkdpF q, F P Fh, we have
chosen the basis of monomial functions that vanish at the face barycenter.

Concerning numerical integration, one possibility in the two-dimensional case is to exploit
the decomposition of elements into pyramids and use standard quadrature rules inside each
pyramid. In three space dimensions, this is also possible provided the faces of the elements are
triangles or quadrangles yielding pyramidal subelements for which standard cubature rules are
available. If this is not the case, a simplicial decomposition of the element can be considered
at the price of increasing the number of quadrature nodes. Similarly, numerically integrating
on the mesh faces is straightforward in two space dimensions and for elements with triangular
or quadrangular faces in three space dimensions. For more general polygonal faces in three
space dimensions, triangulating the face may be required.

To close this section, we present a numerical example for the homogeneous Dirichlet prob-
lem (2) on the unit square Ω � p0, 1q2 with unit diagonal diffusion tensor K and exact solution
u � sinpπx1q sinpπx2q. We consider the virtual bilinear form HV defined by (65) and (73) and
use mesh families obtained by homogeneous refinement of the meshes depicted in Figure 1.
The convergence results of Figure 2 confirm the predicted orders of convergence. Further
numerical experiments including the non-virtual version of the method will be presented in
future work.
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