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SBV REGULARITY FOR HAMILTON-JACOBI EQUATIONS WITH

HAMILTONIAN DEPENDING ON (T,X).

STEFANO BIANCHINI ∗ AND DANIELA TONON †

Abstract. In this paper we prove the SBV regularity of the gradient of a viscosity solution of
the Hamilton-Jacobi equation

∂tu+H(t, x,Dxu) = 0 in Ω ⊂ [0, T ]× R
n,

under the hypothesis of uniform convexity of the Hamiltonian H in the last variable. This result
extends the result of Bianchini, De Lellis and Robyr obtained for a Hamiltonian H = H(Dxu) which
depends only on the spatial gradient of the solution.
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1. Introduction. We consider a viscosity solution u to the Hamilton-Jacobi
equation

∂tu+H(t, x,Dxu) = 0 in Ω ⊂ [0, T ]× R
n.(1.1)

It is well known that even when the initial datum for (1.1) is extremely regular, the
viscosity solution of the Cauchy problem develops singularities of the gradient in finite
time. The structure of the non-differentiability set of the viscosity solution has been
studied by several authors, see for example Fleming [11], Cannarsa and Soner [8].
As a major assumption they restrict to the case where the Hamiltonian H(t, x, p) is
strictly convex with respect to p and smooth in all variables. Under this restriction
the viscosity solution of (1.1) can be represented as the value function of a classical
problem in calculus of variation and it is semiconcave, see [7]. The semiconcavity of
u ensures that u is twice differentiable almost everywhere and that its distributional
Hessian is a measure with locally bounded variation. However, deeper results on its
regularity have been proved. A significant result in our direction was obtained by
Cannarsa, Mennucci and Sinestrari in [6]: they proved the SBV regularity of the
gradient of the viscosity solution u, when u is the solution of the Cauchy problem
with a regular initial datum u(0, ·) = u0(·) belonging to W 1,∞(Rn)∩CR+1(Rn), with
R ≥ 1. Furthermore, they gave a sharper estimate on the set of regular conjugate
points, which implies in particular that this set has Hausdorff dimension less than
n − 1 if the initial datum is C∞. Thus in particular they proved that the closure of
the set of irregular points is Hn-rectifiable.

Motivated by the work of Bianchini, De Lellis and Robyr in [5], we prove the
SBV regularity for the gradient of the viscosity solution, reducing the regularity of
the initial datum. Indeed, in that paper, the authors proved that the gradient of a
viscosity solution of

∂tu+H(Dxu) = 0 in Ω ⊂ [0, T ]× R
n
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2 S. BIANCHINI AND D. TONON

belongs locally to SBV under the assumption of uniform convexity of the Hamiltonian.
This last assumption is stronger than the one of strict convexity used in [6], however
the regularity of the initial datum is required to be only bounded and Lipschitz.

To be more precise we prove the SBV regularity of Dxu and ∂tu under the fol-
lowing hypotheses

(H1) H ∈ C3([0, T ] × R
n × R

n) with bounded second derivatives and there exist
positive constants a, b, c such that for every t ∈ [0, T ], x ∈ R

n, p ∈ R
n

i) H(t, x, p) ≥ −c,
ii) H(t, x, 0) ≤ c,
iii) |Hpx(t, x, p)| ≤ a+ b|p|,

(H2) there exists cH > 0 such that

c−1
H Idn(p) ≤ Hpp(t, x, p) ≤ cHIdn(p)

for any t, x.
The main theorem of the paper is the following.

Theorem 1.1. Let u be a viscosity solution of (1.1), assume (H1), (H2) and set
Ωt := {x ∈ R

n| (t, x) ∈ Ω}. Then the set of times

S := {t | Dxu(t, ·) 6∈ [SBVloc(Ωt)]
n}

is at most countable. In particular Dxu ∈ [SBVloc(Ω)]
n, ∂tu ∈ SBVloc(Ω).

Moreover, under the hypotheses
(H1-bis) H ∈ C3(Rn × R

n) with bounded second derivatives and there exist positive
constants a, b, c such that for every x ∈ R

n, p ∈ R
n

i) H(x, p) ≥ −c,
ii) H(x, 0) ≤ c,
iii) |Hpx(x, p)| ≤ a+ b|p|,

(H2-bis) there exists cH > 0 such that

c−1
H Idn(p) ≤ Hpp(x, p) ≤ cHIdn(p)

for any x,
as a consequence of the theorem above, we have the following corollary.

Corollary 1.2. Under assumptions (H1-bis), (H2-bis), the gradient of any
viscosity solution u of

H(x,Du) = 0 in Ω ⊂ R
n,

belongs to [SBVloc(Ω)]
n.

When the Hamiltonian of the previous corollary depends also on u, we can expect
the SBV regularity of Du as long as the viscosity solution u is semiconcave. This hap-
pens for example when the Hamiltonian H = H(x, u, p) is semiconcave with respect
to x with constant independent from u and p, see [7].

The motivation for studying the SBV regularity of a function arises from problems
in Control Theory and from image segmentation and measure-theoretic questions. The
fact that the solution u does not have Cantor part in the second derivative implies
that its structure is much simpler: it can be thought as almost piecewise W 2,1, with
jumps in the gradient Du only along Lipschitz curves. In general, when studying
perturbations of the solution, the Cantor part of the gradient is an instable structure,
while the absolutely continuous part and the jump part do not disappear. Roughly
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speaking, this instability is the reason why the nonlinearity of H makes the Cantor
part to disappear.

In Section 2 we recall preliminary results and definitions necessary to understand
the main theorem. In Section 3 we show the properties of the unique viscosity solution
to our Hamilton-Jacobi equation, we define generalized backward characteristics and
we prove their no-crossing property. Finally in Section 4 we prove all the necessary
lemmas and the main theorem.

2. Preliminaries.

2.1. Generalized differentials. We begin with the definition of generalized
differential, see Cannarsa and Sinestrari [7] and Cannarsa and Soner [8].

Let Ω be an open subset of Rn.
Definition 2.1. Let u : Ω → R, for any x ∈ Ω the sets

D−u(x) =

{

p ∈ R
n| lim inf

y→x

u(y)− u(x)− 〈p, y − x〉

|y − x|
≥ 0

}

,

D+u(x) =

{

p ∈ R
n| lim sup

y→x

u(y)− u(x)− 〈p, y − x〉

|y − x|
≤ 0

}

,

are called, respectively, the subdifferential and superdifferential of u at x.
Definition 2.2. Let u : Ω → R be locally Lipschitz. A vector p ∈ R

n is called a
reachable gradient of u at x ∈ Ω if there exists a sequence {xk} ⊂ Ω \ {x} such that
u is differentiable at xk for each k ∈ N, and

lim
k→∞

xk = x, lim
k→∞

Du(xk) = p.

The set of all reachable gradients of u at x is denoted by D∗u(x).

2.2. BV and SBV functions. A detailed description of the spaces BV and SBV
can be found in Ambrosio, Fusco and Pallara [3], Chapters 3 and 4. For the reader
convenience, we briefly recall that, given u ∈ BV (Rn), it is possible to decompose the
distributional derivative of u, which by definition must be a measure with bounded
total variation, into three mutually singular measures:

Du = Dau+Dcu+Dju.

Dau is the absolutely continuous part with respect to the Lebesgue measure. Dju is
the part of the measure which is concentrated on the rectifiable n − 1 dimensional
set J , where the function u has jump discontinuities, thus for this reason it is called
jump part. Dcu, the Cantor part, is the singular part which satisfies Dcu(E) = 0 for
every Borel set E with Hn−1(E) < ∞. If this part vanishes, i.e. Dcu = 0, we say that
u ∈ SBV (Rn). When u ∈ [BV (Rn)]k the distributional derivative Du is a matrix
of Radon measures and the decomposition can be applied to every component of the
matrix.

2.3. Semiconcave functions. For a complete introduction to the theory of
semiconcave functions we refer to Cannarsa and Sinestrari [7], Chapter 2 and 3 and
Lions [14]. For our purpose we define semiconcave functions with a linear modulus
of semiconcavity. In general this class is considered only as a particular subspace of
the class of semiconcave functions with general semiconcavity modulus. The proofs
of the following statements can be found in the mentioned references.
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Definition 2.3. We say that a function u : Ω → R is semiconcave and we
denote with SC(Ω) the space of functions with such a property, if ∃C > 0 such that
for any x, z ∈ Ω such that the segment [x− z, x+ z] is contained in Ω

u(x+ z) + u(x− z)− 2u(x) ≤ C|z|2.

Proposition 2.4. Let u : Ω → R belongs to SC(Ω) with semiconcavity constant
C ≥ 0. Then the function

ũ : x 7→ u(x)−
C

2
|x|2

is concave, i.e. for any x, y in Ω such that the whole segment [x, y] is contained in Ω,
λ ∈ [0, 1]

ũ(λx+ (1− λ)y) ≥ λũ(x) + (1− λ)ũ(y).

Theorem 2.5. Let u : Ω → R belongs to SC(Ω). Then the following properties
hold.

i) (Alexandroff’s Theorem) u is twice differentiable Hn-a.e.; that is, for Hn-a.e.
x0 ∈ Ω, there exist a vector p ∈ R

n and a symmetric matrix M such that

lim
x→x0

u(x)− u(x0)− 〈p, x− x0〉+ 〈M(x− x0), x− x0〉

|x− x0|2
= 0.

ii) The gradient of u, defined a.e. in Ω, belongs to the class BVloc(Ω,R
n).

iii) Let x ∈ Ω then

D+u(x) = coD∗u(x),

where coA := min{B ⊂ R
n | B ⊃ A,B convex} is the convex hull of A ⊂ R

n.
Thus D+u is non empty at each point. Moreover D+u is upper semicontin-
uous. See [8].

iv) The function T (x) := −D+ũ(x) is a maximal monotone function, i.e.

〈y1 − y2, x1 − x2〉 ≥ 0 ∀xi ∈ Ω, yi ∈ T (xi), i = 1, 2;

and it is maximal in following sense

V ⊃ T, V monotone =⇒ V = T.

As stated in the above theorem at point ii), when u is semiconcave Du is a BV
map, hence the distributional Hessian D2u is a symmetric matrix of Radon measures
and can be split into the three mutually singular parts D2

au,D
2
ju,D

2
cu. Moreover the

following proposition holds.
Proposition 2.6. Let u be a semiconcave function. If D denotes the set of

points where D+u is not single-valued, then |D2
cu|(D) = 0.

Proof. Indeed, the set of points where D+u is not single-valued, i.e. the set of
singular points, is a Hn−1-rectifiable set.

Definition 2.7. We say that a function v : Ω → R is semiconvex if u := −v is
semiconcave.
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2.4. Viscosity solutions. A concept of generalized solutions to the equations

∂tu+H(t, x,Dxu) = 0 in Ω ⊂ [0, T ]× R
n,(2.1)

and

H(x,Du) = 0 in Ω ⊂ R
n,(2.2)

was found to be necessary since classical solutions break down and solutions which
satisfy (2.1) almost everywhere are not unique. Crandall and Lions introduced in [10]
the notion of viscosity solution to solve both these problems, see also Crandall, Evans
and Lions [9].

Definition 2.8. A bounded uniformly continuous function u : Ω → R is called a
viscosity solution of (2.1) (resp. (2.2)) provided that

i) u is a viscosity subsolution of (2.1) (resp. (2.2)): for each v ∈ C∞(Ω) such
that u− v has a maximum at (t0, x0) ∈ Ω (resp. x0 ∈ Ω),

∂tv(t0, x0) +H(t0, x0, Dxv(t0, x0)) ≤ 0 (resp. H(x0, Dv(x0)) ≤ 0);

ii) u is a viscosity supersolution of (2.1) (resp. (2.2)): for each v ∈ C∞(Ω) such
that u− v has a minimum at (t0, x0) ∈ Ω (resp. x0 ∈ Ω),

∂tv(t0, x0) +H(t0, x0, Dxv(t0, x0)) ≥ 0 (resp. H(x0, Dv(x0)) ≥ 0).

3. Properties of the viscosity solution of Hamilton-Jacobi equations.

The proofs of the following statements can be found in Cannarsa and Sinestrari [7],
Chapter 6. See also Fleming [11], Fleming and Rishel [12], Fleming and Soner [13]
and Lions [14].

We will consider here only viscosity solutions of equation (2.1), similar results
apply also to viscosity solutions of the Hamilton-Jacobi equation (2.2).

The convexity of the Hamiltonian in the p-variable relates Hamilton-Jacobi equa-
tions to a variational problem.

Let L be the Lagrangian of our system, i.e. the Legendre transform of the Hamil-
tonian H with respect to the last variable, for any t, x fixed

L(t, x, v) := sup
p
{〈v, p〉 −H(t, x, p)}.

The Legendre transform inherits the properties of H, in particular L is C3([0, T ] ×
R

n × R
n) and uniformly convex in the last variable.

In addition to the uniform convexity and C3 regularity of L, the hypotheses on
H, (H1) and (H2), ensure the existence of positive constants a, b, c such that for any
t ∈ [0, T ], x ∈ R

n, v ∈ R
n

i) L(t, x, v) ≥ −c,
ii) Lx(t, x, 0) ≤ c,
iii) |Lvx(t, x, v)| ≤ a+ b|v|.
Define the value function u(·, ·) associated the the bounded Lipschitz function

u0(·), for (t, x) ∈ Ω

u(t, x) := min

{

u0(ξ(0)) +

∫ t

0

L(s, ξ(s), ξ̇(s))ds
∣

∣

∣
ξ(t) = x, ξ ∈ [C2([0, t])]n

}

.(3.1)

Less regularity can be asked to ξ, but it is unnecessary since any minimizing curve
exists and is smooth, due to the regularity of L, see [7].

Theorem 3.1. Taken a minimizing curve ξ in (3.1), for the point (t, x), such that
ξ(s) ∈ Ωs for all s ∈ [0, t], the following holds. (Recall Ωs = {x ∈ R

n| (s, x) ∈ Ω}.)
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i) The map s 7→ Lv(s, ξ(s), ξ̇(s)) is absolutely continuous.
ii) ξ is a classical solution to the Euler-Lagrange equation

d

ds
Lv(s, ξ(s), ξ̇(s)) = Lx(s, ξ(s), ξ̇(s)),

and to the Du Bois-Reymond equation

d

ds
[L(s, ξ(s), ξ̇(s))− 〈ξ̇(s), Lv(s, ξ(s), ξ̇(s))〉] = Lt(s, ξ(s), ξ̇(s)),

for all s ∈ [0, t], where Lt(s, ξ(s), ξ̇(s)) is the derivative of L with respect to
the first variable.

iii) For any r > 0 there exists K(r) > 0 such that, if (t, x) ∈ [0, r]×Br(0), then

sup
s∈[0,t]

|ξ̇(s)| ≤ K(r).

iv) There exists a dual arc or co-state

p(s) := Lv(s, ξ(s), ξ̇(s)) s ∈ [0, t],(3.2)

such that ξ, p solve the following system
{

ξ̇(s) = Hp(s, ξ(s), p(s))
ṗ(s) = −Hx(s, ξ(s), p(s)).

v) (s, ξ(s)) is regular, i.e. for any 0 < s < t ξ is the unique minimizer for
u(s, ξ(s)), and u(s, ·) is differentiable at ξ(s).

vi) Let p be the dual arc associated to ξ as in (3.2) then we have

p(t) ∈ D+
x u(t, x),

p(s) = Dxu(s, ξ(s)), s ∈ (0, t).

Theorem 3.2. The value function u defined in (3.1) is a viscosity solution of
(2.1) with bounded Lipschitz initial datum

u(0, x) = u0(x).

We present below some properties of the unique viscosity solution to the Hamilton-
Jacobi equation (2.1), which follow from the representation formula we have just seen.
These properties are taken from [7].

Theorem 3.3 (Dynamic Programming Principle). Fix (t, x) ∈ Ω, then for all
t′ ∈ [0, t)

u(t, x) := min

{

u(t′, ξ(t′)) +

∫ t

t′
L(s, ξ(s), ξ̇(s))ds

∣

∣

∣
ξ(t) = x, ξ ∈ [C2([t′, t])]n

}

.

(3.3)
Moreover, if ξ is a minimizer in (3.1) it is a minimizer also in (3.3), for any t′ ∈
[0, t).

Theorem 3.4 (Semiconcavity Theorem). Suppose (H1), (H2) hold and u0 belongs
to Cb(R

n). Then for any t in (0, T ], u(t, ·) is locally semiconcave with semiconcavity
constant C(t) = C

t
. Thus for any fixed τ > 0 there exists a constant C = C(τ) such

that u(t, ·) is semiconcave with constant less than C for any t ≥ τ .
Moreover, u is also locally semiconcave in both the variables (t, x) in Ω.
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3.1. Minimizers and Generalized Backward Characteristics. We intro-
duce the definition of generalized backward characteristics.

Definition 3.5. Given x ∈ Ωt for t fixed in [0, T ], we call generalized backward
characteristic, associated to u starting from x, the curve s 7→ (s, ξ(s)), where ξ(·) and
its dual arc p(·) solve the system

{

ξ̇(s) = Hp(s, ξ(s), p(s))
ṗ(s) = −Hx(s, ξ(s), p(s))

(3.4)

with final conditions

{

ξ(t) = x

p(t) = p,
(3.5)

where p ∈ D+
x u(t, x).

If D+
x u(t, x) is single-valued then we call ξ a classical backward characteristic.

We state here some properties of minimizers which strictly relate them with clas-
sical and generalized characteristics, see [7].

Theorem 3.6. For any (t, x) ∈ Ω the map that associates with any (pt, px) ∈
D∗u(t, x) the curve ξ obtained by solving the system (3.4) with the final conditions

{

ξ(t) = x

p(t) = px

provides a one-to-one correspondence between D∗u(t, x) and the set of minimizers of
u(t, x).

Thus we can state the following theorem which follows from Theorem 3.1-(iv),
Theorem 3.6 and Definition 3.5.

Theorem 3.7. Let (t, x) in Ω be given, and let ξ be a C2 curve such that ξ(s) ∈ Ωs

for all 0 ≤ s ≤ t.
Then ξ is a minimizer if and only if ξ and its dual arc p are solutions of the

system (3.4), for any s ∈ [0, t], with the final conditions (3.5), where (−H(t, x, p), p)
belongs to D∗u(t, x).

A minimizer ξ is a generalized backward characteristic. In particular ξ is a clas-
sical backward characteristic if and only if ξ is the unique minimizer for u(t, x). The
set of minimizers for u(t, x) can be a proper subset of the set of generalized backward
characteristics emanated from (t, x).

Remark 3.8. Note that, the solutions ξ of the system (3.4) are in general curves
and not straight lines, as solutions were in the case H = H(p).

Remark 3.9. No-crossing property of minimizers. Fix a time t and consider a
minimizing curve ξ such that ξ(t) = x ∈ Ωt. For 0 < s < t the curve ξ is the unique
minimizer for u(s, ξ(s)), this ensures that any other minimizer cannot intersect ξ for
any 0 < s < t (otherwise uniqueness would be lost, see point (v) of Theorem 3.1).
As a consequence generalized backward characteristics which are also minimizers, i.e.
solution of (3.4), (3.5), where (−H(t, x, p), p) belongs to D∗u(t, x), cannot intersect
except at time 0 or t. Nothing can be said at this level for generalized backward
characteristics solution to (3.4) with

ξ(t) = x p(t) = p ∈ D+
x u(t, x) \D

∗
xu(t, x),

which are not minimizers. In general they cross and they are not regular.
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The introduction of a backward solution, as in Barron, Cannarsa, Jensen and
Sinestrari [4], will allow us to see that, at least for a small interval of time, all the
generalized backward characteristics share the no-crossing property.

Fix t in (0, T ] and define for 0 ≤ τ < t, y ∈ Ωτ the function

ũ(τ, y) := max

{

u(t, ξ(t))−

∫ t

τ

L(s, ξ(s), ξ̇(s))ds
∣

∣

∣ ξ(τ) = y, ξ ∈ [C2([τ, t])]n
}

.

(3.6)
Note that, as explained in [4], the function v(τ, y) := ũ(t− τ, y) is a viscosity solution
of

∂τv −H(t− τ, y,Dyv) = 0 in Ω ⊂ [0, T ]× R
n

with initial datum v(0, y) = ũ(t, y) = u(t, y), for this reason ũ is called backward
solution.

Proposition 3.10. In general

ũ(τ, y) ≤ u(τ, y)

and the equality holds if and only if the maximizer ξ in (3.6), defined for τ ≤ s ≤ t,
is part of a minimizing curve for u(t, ξ(t)).

Proof. Let ξ be a C2-curve which is a maximizer for ũ(τ, y), i.e.

ũ(τ, y) = u(t, ξ(t))−

∫ t

τ

L(s, ξ(s), ξ̇(s))ds.

Thanks to the Dynamic Programming Principle,

u(t, ξ(t)) ≤ u(τ, y) +

∫ t

τ

L(s, ξ(s), ξ̇(s))ds.

Hence,

ũ(τ, y) ≤ u(τ, y)

and the equality holds if and only if ξ is also a minimizer for u(t, ξ(t)), thusD+
x u(s, ξ(s))

is single-valued for any τ ≤ s < t.
Note that a curve ξ which is a minimizer for u(t, x) is also a maximizer for

ũ(τ, ξ(τ)) = u(τ, ξ(τ)) for any 0 ≤ τ < t.
With suitable modifications Theorems 3.1, 3.2, 3.3 and 3.4 still hold for ũ(τ, y)

and its maximizers, in particular ũ is semiconvex (rather than semiconcave) with
constant C

t−τ
.

Without adding any other assumption, the no-crossing property holds also for
maximizers.

However, if we restrict to a τ which is not too far from t, we can establish a one to
one correspondence between generalized backward characteristics, as in Definition 3.5,
and maximizers of (3.6), thus obtaining regularity and the no-crossing property for
generalized backward characteristics. Moreover the backward solution ũ(s, ·) belongs
to C1,1(Ωs) for every s ∈ (τ, t).

To prove the above fact let us first reduce to a simpler case which will be useful
also later on, during the proof of our main theorem.
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Lemma 3.11. Consider the solutions to the system (3.4) with final conditions

{

ξ(t) = x

p(t) = p ∈ K
(3.7)

where x is fixed in R
n and K is a compact set in R

n. For t − τ small enough there
exists a one to one correspondence between p in K and ξ(τ) when ξ(·) is a solution
of (3.4),(3.7).

Proof. Thanks to the Taylor expansion of the flow generated by (3.4), the solution
to that system, with (3.7) as final conditions, is equal to

ξ(τ) = x− (t− τ)Hp(t, x, p) +O((t− τ)2),

and differentiating in p

ξp(τ) = −(t− τ)Hpp(t, x, p) +O((t− τ)2).(3.8)

Note that ξp and pp satisfy

{

ξ̇p(s) = Hpx(s, ξ(s), p(s))ξp(s) +Hpp(s, ξ(s), p(s))pp(s)
ṗp(s) = −Hxx(s, ξ(s), p(s))ξp(s)−Hxp(s, ξ(s), p(s))pp(s)

with final conditions
{

ξp(t) = 0
pp(t) = Idn(p).

Since the coefficients are smooth, equation (3.8) is precisely the Taylor expansion of
ξp(τ).

Call ω := x−ξ(τ)
t−τ

. We have that ωp is uniformly different from zero since

ωp = Hpp(t, x, p) +O(t− τ).

Thus, restricting to t− τ small enough, we can locally invert this equation and obtain

pω = Lvv (t, x, ω) +O(t− τ).(3.9)

Moreover, from

ω = Hp(t, x, p) +O(t− τ),

integrating (3.9), we obtain

p = Lv (t, x, ω) +O(t− τ).

Thus we have reached a one to one correspondence between ξ(τ) and the value p

of its dual curve at time t.
Integrating (3.8) in p between p1 and p2 we obtain

ξ1(τ)− ξ2(τ)

τ − t
= Hp(t, x, p1)−Hp(t, x, p2) +O(t− τ)(p1 − p2)

where ξ1 and ξ2 are the generalized backward characteristics with initial data p1 and
p2 respectively.
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Proposition 3.12. Consider a solution ξ to the system (3.4) with final condi-
tions (3.7), let y := ξ(τ) and consider the straight line joining x to y

η(s) =
s− τ

t− τ
x+

t− s

t− τ
y.(3.10)

Then we have the following estimates

‖η − ξ‖[C0([τ,t])]n , ‖ηp − ξp‖[C0([τ,t])]n2 , ‖ηpp − ξpp‖[C0([τ,t])]n3 ≤ O((t− τ)2),

‖η̇ − ξ̇‖[C0([τ,t])]n , ‖η̇p − ξ̇p‖[C0([τ,t])]n2 , ‖η̇pp − ξ̇pp‖[C0([τ,t])]n3 ≤ O(t− τ).

Proof. As we saw in the previous proposition

y = ξ(τ) = x− (t− τ)Hp(t, x, p) +O((t− τ)2),

and for s ∈ [τ, t]

ξ(s) = x− (t− s)Hp(t, x, p) +O((t− s)2).

Compute now the difference

sup
s∈[τ,t]

|η(s)− ξ(s)| = sup
s∈[τ,t]

∣

∣

∣

∣

s− τ

t− τ
x+

t− s

t− τ
y − x+ (t− s)Hp(t, x, p) +O((t− s)2)

∣

∣

∣

∣

= sup
s∈[τ,t]

∣

∣

∣

∣

t− s

t− τ

(

x− (t− τ)Hp(t, x, p) +O((t− τ)2)
)

−
t− s

t− τ
x

+(t− s)Hp(t, x, p) +O((t− s)2)

∣

∣

∣

∣

≤ O((t− τ)2).

Moreover from

yp = ξp(τ) = −(t− τ)Hpp(t, x, p) +O((t− τ)2),

and from

ξp(s) = −(t− s)Hpp(t, x, p) +O((t− s)2)

for s ∈ [τ, t], we obtain

sup
s∈[τ,t]

|ηp(s)− ξp(s)| = sup
s∈[τ,t]

∣

∣

∣

∣

t− s

t− τ
yp + (t− s)Hpp(t, x, p) +O((t− s)2)

∣

∣

∣

∣

= sup
s∈[τ,t]

∣

∣

∣

∣

t− s

t− τ

(

−(t− τ)Hpp(t, x, p) +O((t− τ)2)
)

+(t− s)Hpp(t, x, p) +O((t− s)2)

∣

∣

∣

∣

≤ O((t− τ)2).

In an analogous way, from

ypp = ξpp(τ) = −(t− τ)Hppp(t, x, p) +O((t− τ)2),
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and from

ξpp(s) = −(t− s)Hppp(t, x, p) +O((t− s)2)

for s ∈ [τ, t], we obtain

sup
s∈[τ,t]

|ηpp(s)− ξpp(s)| ≤ O((t− τ)2).

Observe now that

η̇(s) =
x− y

t− τ
,

and

ξ̇(s) = −Hp(t, x, p) +O(t− s),

hence

sup
s∈[τ,t]

|η̇(s)− ξ̇(s)| = sup
s∈[τ,t]

∣

∣

∣

∣

x− y

t− τ
−Hp(t, x, p) +O(t− s)

∣

∣

∣

∣

= sup
s∈[τ,t]

∣

∣

∣Hp(t, x, p) +O(t− τ)−Hp(t, x, p) +O(t− s)
∣

∣

∣

≤ O(t− τ).

In the same way we obtain

sup
s∈[τ,t]

|η̇p(s)− ξ̇p(s)| ≤ O(t− τ),

and

sup
s∈[τ,t]

|η̇pp(s)− ξ̇pp(s)| ≤ O(t− τ).

Now, fix x ∈ R
n and a compact set K ⊂ R

n. Call ξ(τ,K) the subset of Rn defined
as

ξ(τ,K) := {ξ(τ)| ξ is a solution of (3.4) with final conditions (3.7)}.

For any y in ξ(τ,K) consider the function

φ(τ, y, t, x) := min

{∫ t

τ

L(s, ξ(s), ξ̇(s))ds
∣

∣

∣ ξ ∈ [C2([τ, t])]n, ξ(τ) = y, ξ(t) = x

}

,

and observe that for any y ∈ ξ(τ,K) there exists a unique ξ solution of (3.4) with
final conditions (3.7) such that y = ξ(τ, p). Thus we can see y as y = y(p) with a C2

dependence of y from p.
Proposition 3.13. It holds

∥

∥

∥

∥

φ(τ, y(p), t, x)− (t− τ)L

(

t, x,
x− y(p)

t− τ

)∥

∥

∥

∥

C2(K)

≤ O((t− τ)2).
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In particular for t− τ small enough y 7→ φ(τ, y, t, x) and x 7→ φ(τ, y, t, x) are convex
with constant cH

t−τ
, in the sense that ∂yyφ(τ, y, t, x) ≥

cH
t−τ

Idn and ∂xxφ(τ, y, t, x) ≥
cH
t−τ

Idn.
Proof. Note that, from the definition, y 7→ φ(τ, y, t, x) is automatically semicon-

cave.
Moreover, it is enough to consider the function y 7→ φ(τ, y, t, x) since there

is a symmetry between the definitions of the functions y 7→ φ(τ, y, t, x) and x 7→
φ(τ, y, t, x).

From the definition, the function y 7→ φ(τ, y, t, x) has a unique minimum ξ which
is the solution to system (3.4) with final conditions (3.7). Thus the C2 dependence
of y from p implies, for a small t− τ , that p 7→ φ(τ, y(p), t, x) belongs to C2(K).

Let ξ be the unique minimizer for φ(τ, y, t, x) and observe that x = η(t) and
x−y
t−τ

= η̇(t), where η is the straight line joining x to y as in (3.10).

sup
p∈K

∣

∣

∣

∣

φ(τ, y(p), t, x)− (t− τ)L

(

t, x,
x− y(p)

t− τ

)∣

∣

∣

∣

=

= sup
p∈K

∣

∣

∣

∣

∫ t

τ

L(s, ξ(s), ξ̇(s))ds−

∫ t

τ

L(t, η(t), η̇(t))ds

∣

∣

∣

∣

≤ sup
p∈K

{

∣

∣

∣

∣

∫ t

τ

L(s, ξ(s), ξ̇(s))ds−

∫ t

τ

L(t, ξ(s), ξ̇(s))ds

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ t

τ

L(t, ξ(s), ξ̇(s))ds−

∫ t

τ

L(t, η(t), ξ̇(s))ds

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ t

τ

L(t, η(t), ξ̇(s))ds−

∫ t

τ

L(t, η(t), η̇(t))ds

∣

∣

∣

∣

}

≤ sup
p∈K

{

C1

∫ t

τ

|s− t|ds+ C2

∫ t

τ

|ξ(s)− η(t)|ds+ C3

∫ t

τ

|ξ̇(s)− η̇(t)|ds

}

≤ sup
p∈K

{

−
C1

2
(t− τ)2 + C2Hp(t, x, p)

∫ t

τ

|t− s|ds

+C2

∫ t

τ

O((t− s)2)ds+ C3

∫ t

τ

O((t− s))ds

}

≤ O((t− s)2).

Moreover for the first derivative

sup
p∈K

∣

∣

∣

∣

∂p

[

φ(τ, y(p), t, x)− (t− τ)L

(

t, x,
x− y(p)

t− τ

)]∣

∣

∣

∣

=

= sup
p∈K

∣

∣

∣

∣

∫ t

τ

Lx(s, ξ(s), ξ̇(s))ξp(s)ds+

∫ t

τ

Lv(s, ξ(s), ξ̇(s))ξ̇p(s)ds

−

∫ t

τ

Lx(t, η(t), η̇(t))ηp(t)ds−

∫ t

τ

Lv(t, η(t), η̇(t))η̇p(t)ds

∣

∣

∣

∣

≤ sup
p∈K

{

∣

∣

∣

∣

∫ t

τ

Lx(s, ξ(s), ξ̇(s))(−(t− s)Hp(t, x, p) +O(t− s)2)ds

∣

∣

∣

∣
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+

∣

∣

∣

∣

∫ t

τ

Lv(s, ξ(s), ξ̇(s))(−Hpp(t, x, p) +O(t− s))

−Lv(t, η(t), η̇(t))(−Hpp(t, x, p) +O(t− τ))ds

∣

∣

∣

∣

}

≤ sup
p∈K

{

C1

∫ t

τ

|(s− t) +O(t− s)|ds

+

∣

∣

∣

∣

∫ t

τ

[Lv(s, ξ(s), ξ̇(s))− Lv(t, η(t), η̇(t))](C2 +O(t− τ))ds

∣

∣

∣

∣

}

≤ O((t− s)2).

Analogously for the second derivative

sup
p∈K

∣

∣

∣

∣

∂pp

[

φ(τ, y(p), t, x)− (t− τ)L

(

t, x,
x− y(p)

t− τ

)]∣

∣

∣

∣

≤ O((t− s)2).

The map p 7→ y(p) is C2(K), it has bounded derivative and the same holds true
also for its inverse, due to Proposition 3.12. Thus it follows that φ(τ, y, t, x) and

(t− τ)L
(

t, x, x−y
t−τ

)

are close in C2(K̃), where K̃ is the image of K through the map

p 7→ y(p). Therefore y 7→ φ(τ, y, t, x) is convex with constant cH
t−τ

, the same constant

of y 7→ (t− τ)L
(

t, x, x−y
t−τ

)

.

Remark 3.14. All the estimates found strictly depend on the compact set K,
however thanks to the finite speed of propagation of the minimizers ξ, see point (iii)
of Theorem 3.1, the estimates can be made uniform for our ũ.

Let us now come back to our case.
Proposition 3.15. For 0 ≤ τ < t consider the backward solution defined in (3.6)

for y in Ωτ . Then for t− τ small enough the maximum is unique for all y ∈ Ωτ .
Proof. The backward solution can be written in this equivalent way

ũ(τ, y) = max
x∈Ωt

{u(t, x)− φ(τ, y, t, x)} .(3.11)

Recalling that u(t, ·) is semiconcave with constant C
t
and that −φ(τ, y, t, ·) is strictly

concave with constant cH
t−τ

, we can rewrite (3.11) as

ũ(τ, y) = max
x∈Ωt

{

u(t, x)−
C

t
|x|2 − φ(τ, y, t, x) +

C

t
|x|2

}

.

Hence, since u(t, x) − C
t
|x|2 is concave and −φ(τ, y, t, x) + C

t
|x|2 remains strictly

concave, the function ũ(τ, y) is the maximum of a strictly concave function, hence
this maximum is unique. Thus there exists a unique x ∈ Ωt such that

ũ(τ, y) = u(t, x)− φ(τ, y, t, x),

i.e. there exists a unique curve ξ ∈ [C2([τ, t])]n such that ξ(τ) = y, ξ(t) = x and

ũ(τ, y) = u(t, ξ(t))−

∫ t

τ

L(s, ξ(s), ξ̇(s))ds.
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Corollary 3.16. For t − τ small enough and s ∈ (τ, t) the function ũ(s, ·) is
C1,1(Ωs).

Proof. From the above proposition we know that ũ(s, ·) is C1(Ωs) for every
s ∈ [τ, t). Consider now the forward solution defined from ũ(τ, ·)

û(s, x) := min

{

ũ(τ, ξ(τ)) +

∫ s

τ

L(l, ξ(l), ξ̇(l))dl
∣

∣

∣ ξ(s) = x, ξ ∈ [C2([τ, s])]n
}

.

Due to the fact that ũ(τ, y) has a unique maximizer for every y ∈ Ωτ we have that
û(s, x) = ũ(s, x) for every s ∈ [τ, t] and x ∈ Ωs. Thus for s ∈ (τ, t), ũ(s, ·) is both
semiconvex and semiconcave, hence C1,1(Ωs).

Remark 3.17. As a consequence of Proposition 3.15, for every y ∈ Ωτ there
exists only one curve which is a maximizer for the function ũ(τ, y) and a generalized
backward characteristic. Hence generalized backward characteristics which are also
maximizers do not intersect even at time τ . It remains to prove the following.

Proposition 3.18. Every generalized backward characteristic ξ(·), i.e. a solution
of (3.4) with final conditions (3.5) where p ∈ D+

x u(t, x), is a maximizer for ũ(τ, ξ(τ))
if t− τ is small enough.

Proof. Let ξ be a generalized backward characteristic with ξ(t) = x, p(t) =
p ∈ D+

x u(t, x) and ξ(τ) = y. Then ξ is a minimizer for φ(τ, t, y, x) and p = p(t) =
−Dyφ(τ, y, t, x).

Let ξ̃ be the unique maximizer for ũ(τ, y) and suppose by contradiction that ξ̃

differs from ξ, in particular ξ̃(t) = x̃ 6= x = ξ(t). Then by definition

ũ(τ, y) = u(t, x̃)− φ(τ, y, t, x̃) > u(t, x)− φ(τ, y, t, x).

Thus, for the differentiability and the convexity of φ(τ, y, t, ·)

u(t, x̃)− u(t, x) > φ(τ, y, t, x̃)− φ(τ, y, t, x)

≥ 〈Dyφ(τ, y, t, x), x̃− x〉+
cH

t− τ
|x̃− x|2.

On the other hand for the semiconcavity of u(t, ·)

u(t, x̃)− u(t, x) < 〈p, x̃− x〉+
C

t
|x̃− x|2.

Thus, recalling that p = −Dyφ(τ, y, t, x), for t− τ small enough we reach the absurd

C

t
>

cH

t− τ
.

From the above proposition it follows
Corollary 3.19. Generalized backward characteristics cannot intersect in [τ, t)

if t− τ is small enough.

3.2. Local property. Thanks to the time invariance of the equation and to the
following locality property, which is a generalization of the Proposition 3.5 found in
[5], it is enough to prove Theorem 1.1 for the unique viscosity solution of (1.1) with
a Lipschitz bounded initial datum

u(0, ·) = u0(·).(3.12)



SBV REGULARITY FOR HAMILTON-JACOBI EQUATIONS. 15

Proposition 3.20. Let u be a viscosity solution of (1.1) in Ω. Then u is locally
Lipschitz. Moreover for any (t0, x0) ∈ Ω, there exists a neighborhood U of (t0, x0), a
positive number δ and a Lipschitz function v0 on R

n such that u coincides on U with
the viscosity solution of

{

∂tv +H(t, x,Dxv) = 0 in [t0 − δ,∞)× R
n

v(t0 − δ, x) = v0(x).

Proof. The proof of Proposition 3.5, given in [5], still applies in our case where we
only lose the property that minimizers of (3.1) are straight lines which was unnecessary
for the argument.

4. Proof of the main theorem.

4.1. Preliminary remarks. Let u be a viscosity solution of (1.1). Applying
Proposition 3.20 we can assume without loss of generality that u is a solution of the
Cauchy Problem (1.1)-(3.12) over a bounded domain [0, δ] × U and with a bounded
and Lipschitz initial datum. Moreover assumptions (H1)-(H2) guarantee that the
Hamiltonian is convex and has super-linear growth in the last variable.

We will prove the SBV regularity over the smaller interval of time [τ, τ + ε] for a
fixed τ > 0, ε > 0 small enough and such that [τ, τ + ε] ⊂ [0, δ]. As we have already
seen, this is necessary to prevent intersections of generalized backward characteristics.

We consider a ball BR(0) ⊂ R
n and a bounded convex set Ω ⊂ [τ, τ + ε] × R

n

with the properties that
• {s} ×BR(0) ⊂ Ω for every s ∈ [τ, τ + ε];
• for any (t, x) ∈ Ω and for any C2 curve ξ which minimizes u(t, x) in (3.1),

the entire curve ξ(s) for s ∈ [τ, t] is contained in Ω.
Indeed, from the fact that ‖Du‖∞ < ∞, it is enough to choose

Ω := {(t, x) ∈ [τ, τ + ε]× R
n| |x| ≤ R+ C ′(τ + ε− t)}

with C ′ sufficiently large and depending only on ‖Du‖∞ and H.
The general idea of the proof is now standard, see [2], [5]. We construct a mono-

tone bounded functional F (t) defined on the interval [τ, τ + ε]. Then, we relate the
presence of a Cantor part in the matrix D2

xu(t, ·) for a certain t in [τ, τ + ε] with a
jump of the functional F in t. Since this functional can have only a countable number
of jumps, the Cantor part of D2

xu(t, ·) can be different from zero only for a countable
number of t’s.

Remark 4.1. Once we have formalized the above strategy and proved the SBV reg-
ularity for almost every t in [τ, τ+ε] the conclusion that Dxu belongs to [SBVloc(Ω)]

n

follows from the slicing theory of BV functions (see Theorem 3.108 of [3]). The local
SBV regularity of ∂tu follows instead from the Volpert chain rule.

4.2. Construction of the functional F . Consider t belonging to (τ, τ + ε] for
a fixed τ > 0 and ε > 0 small enough. For any τ ≤ s < t we define the set-valued
map

Xt,s(x) := {ξ(s)| ξ(·) is a solution of (3.4), with ξ(t) = x, p(t) = p ∈ D+
x u(t, x)}.

Moreover we will denote by χt,s the restriction of Xt,s to the points where it is single-
valued. According to Theorem 3.6, the domain of χt,s, dom(χt,s) =: Ut, consists of
those points where D+

x u(t, x) is single-valued, i.e. there exists a unique minimizer for
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u(t, x) in the representation formula (3.1). For that reason χt,s is clearly defined a.e.
in Ωt. We will sometimes write χt,s(Ωt) meaning χt,s(Ut).

Remark 4.2. In the definition of Xt,s we follow generalized backward charac-
teristics starting at time t > 0 till time s. As we have already seen, if t − s is small
enough, generalized backward characteristics cannot intersect except than at time t.
Thus if we choose ε > 0 small enough we have the injectivity of the set valued map
Xt,τ over the interval of time [τ, τ + ε].

Note that in the case H = H(Dxu) the authors of [5] were able, in Proposition
5.2, to prove the injectivity of Xt,0, as a set-valued map, for every t ∈ [0, ε] with ε

small enough.
Therefore, equivalently to Proposition 5.2 in [5], we can state
Proposition 4.3. Let t be fixed such that τ < t ≤ τ + ε, for an ε > 0 small

enough, which does not depend on t. Then taken any two solutions (ξ1, p1) and (ξ2, p2)
of the system (3.4) with final condition

ξi(t) = xi ∈ Ωt pi(t) ∈ D+
x u(t, xi) i = 1, 2,

and (ξ1(t), p1(t)) 6= (ξ2(t), p2(t)) it follows that ξ1(τ) 6= ξ2(τ). Hence, in particular,
the map x 7→ Xt,τ (x) is injective as a set-valued map.

Proof. It follows from Corollary 3.19.
For every τ < t ≤ τ + ε, we can now define the functional

F (t) := Hn(χt,τ (Ut)).(4.1)

Lemma 4.4. The functional F is non increasing,

F (s) ≥ F (t) for any s, t ∈ (τ, τ + ε] with s < t.

Proof. As in the proof of Lemma 4.1 in [5], the claim follows from the following
consideration:

χt,τ (Ωt) ⊂ χs,τ (Ωs) for every τ ≤ s ≤ t ≤ τ + ε.

Indeed, consider any y ∈ χt,τ (Ωt). Then there exists a [C2([τ, t])]n curve ξ and a
point x ∈ Ωt such that ξ is the unique minimizer in (3.1) with the following endpoints
conditions ξ(t) = x, ξ(τ) = y. Such a curve remains the unique minimizer also for
u(s, ξ(s)) for any τ ≤ s ≤ t ≤ τ + ε. Hence, setting z = ξ(s), we have that the point
y can be seen as y = χs,τ (z) and y ∈ χs,τ (Ωs).

4.3. Hille-Yosida transformation. Take a Borel set A ⊂ Ωt for a fixed time
t ∈ (τ, τ + ε]. In order to compute the measure Hn(Xt,τ (A)) we follow the evolution
of the set along generalized backward characteristics till the time τ .

Let us recall how the characteristics and their dual arc evolve in time. They are
solutions of the system (3.4), together with the final condition (3.5) where p belongs
to D+

x u(t, x).
We have to face the following problem: the function D+

x u(t, ·) is a multi-valued
function which is not Lipschitz in general. However it can be easily related to a
maximal monotone function whose graph can be parametrized in a Lipschitz way as
shown in Alberti and Ambrosio [1].

Let us consider the graph (A,D+
x u(t, A)) for a Borel set A ⊂ Ωt. Since u(t, x)

is semiconcave in x, v(x) := −(u(t, x) − 1
2C|x|2) is a convex function. Note that the
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semiconcavity constant should depend on t, i.e. C(t) = C
t
, however a uniform one

can be taken due to the fact that t belongs to (τ, τ + ε] where τ > 0. Moreover, as
seen in Theorem 2.5-(iv), the superdifferential of v is a maximal monotone function.
It can be proven, see for example [1], that the graph of a maximal monotone function
is a Lipschitz submanifold without boundary. Adapting the same procedure to our
case, we can parametrize the graph of the gradient of our semiconcave function with
a 1-Lipschitz function.

Indeed, we pass from our graph {(x,D+
x u(t, x))| x ∈ A} to the graph of a maximal

monotone function with the following transformation

{

x = x

y = Cx− p,

where C is the semiconcavity constant of u(t, ·). Then we apply an Hille-Yosida
transformation to have a 1-Lipschitz parametrization of it.

{

z = x+ y

w = y.

Call T (x) := Dxv(x) the maximal monotone function. Retracing the passages above,
we can express w as a 1-Lipschitz single-valued function of z. Taking z ∈ B :=
A+ T (A)

{

z = z

w = (Idn + (T )−1)−1(z).
(4.2)

Thus, coming back to our original coordinates, we can describe our graph with the
following Lipschitz parametrization

{

x(z) = z − w(z)
p(z) = Cz − (C + 1)w(z),

(4.3)

where z ∈ B, i.e. we have

ΓA := {(x,D+
x u(t, x))| x ∈ A} = {(z − w(z), Cz − (C + 1)w(z))| z ∈ B}.

Remark 4.5. As explained in [1] the 1-Lipschitz function w(·) is exactly the
gradient of the inf-convolution function of v(x) = −(u(t, x)− 1

2C|x|2)

f(z) = min
x∈Rn

{

v(x) +
|x− z|2

2

}

.

Thus we have w(z) = fz(z) where f is the convex function above.
When applying the flux backward in time, starting from our set ΓA, characteristics

ξ(·, z) and p(·, z) evolve according to

{

ξ̇(s, z) = Hp(s, ξ(s, z), p(s, z))
ṗ(s, z) = −Hx(s, ξ(s, z), p(s, z))

(4.4)

with final conditions
{

ξ(t, z) = x(z) = z − w(z)
p(t, z) = p(z) = Cz − (C + 1)w(z),

(4.5)
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for z in B. Since the flux is described by smooth equations and thanks to the fact
that the parametrization of our initial set is 1-Lipschitz, the solutions ξ(·, z), p(·, z)
are Lipschitz curves.

We can now rewrite Xt,τ in an equivalent way, for x in A

Xt,τ (x) = {ξ(τ) |ξ(·) is a solution of (3.4), with ξ(t) = x, p(t) = p ∈ D+
x u(t, x)}

= {ξ(τ, z) |ξ(·, z) is a solution of (4.4), with ξ(t, z) = z − w(z),
p(t, z) = Cz − (C + 1)w(z), z ∈ x+ T (x)}.

With an abuse of notation we will denote with ξ(τ, ·) : B → Ωτ the function Xt,τ (·)
when we are considering the Lipschitz parametrization; with this notation Xt,τ (A) =
ξ(τ,B). We can now apply the Area Formula to ξ(τ, ·)

∫

ξ(τ,B)

H0((ξ(τ, ·)−1(w))dw =

∫

B

| det(ξz(τ, z))|dz.(4.6)

Thanks to the injectivity of the map Xt,τ which is preserved when passing to the
Lipschitz parametrization, the left term of (4.6) is precisely the measure of the set
ξ(τ,B).

Hence, we have

∫

ξ(τ,B)

H0((ξ(τ, ·)−1(w))dw = Hn(ξ(τ,B)) = Hn(Xt,τ (A)).

To compute det(ξz(τ, z)) we differentiate in z the equations (4.4), (4.5) obtaining
that ξz and pz satisfy the system

{

ξ̇z(s, z) = Hpx(s, ξ(s, z), p(s, z))ξz(s, z) +Hpp(s, ξ(s, z), p(s, z))pz(s, z)
ṗz(s, z) = −Hxx(s, ξ(s, z), p(s, z))ξz(s, z)−Hxp(s, ξ(s, z), p(s, z))pz(s, z)

(4.7)

with the final conditions
{

ξz(t, z) = Idn(z)− wz(z)
pz(t, z) = CIdn(z)− (C + 1)wz(z),

(4.8)

for any z ∈ B.

4.4. Approximation. If we choose ε > 0 small enough we can approximate our
curves with straight lines for any t in (τ, τ + ε], i.e. we can write

ξ(τ, z) = ξ(t, z)− (t− τ)ξ̇(t, z) +O((t− τ)2).

Using this approximation and (4.7) we obtain

det(ξz(τ, z)) = det
(

ξz(t, z)− (t− τ)Hpx(t, x(z), p(z))ξz(t, z)

−(t− τ)Hpp(t, x(z), p(z))pz(t, z)
)

+O((t− τ)2).
(4.9)

Since we are now considering nearly straight lines, instead of more general curves, we
can expect that this approximation should allow us to adapt the techniques of [5] and
recover the lemmas needed.

Before going on, let us give an explicit formula for the spatial-Laplacian of our
solution. Thanks to the semiconcavity of u(t, ·) its spatial-Laplacian is a measure.
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Moreover, using the 1-Lipschitz parametrization given by Hille-Yosida, the spatial-
Laplacian can be seen as the push-forward of a particular measure.

Lemma 4.6. For any Borel set A, let {(x(z), p(z))| z ∈ A + T (A)} be the 1-
Lipschitz parametrization of the set {(x,D+

x u(t, x))| x ∈ A} as seen above in (4.3).
Then we have

∆u(t, A) = x(z)♯









∑

i,k

∂pi(z)

∂zk
[cof xz(z)]ik



Hn



 (A).

Here cof A is the cofactor matrix of the matrix A. This formula has been shown to
the authors by C. De Lellis.

Proof. Take any φ in C∞
c (Rn) and compute

∫

Rn

φ(x)d[D2
xu(t, x)]ij = −

∫

Rn

[Dxu(t, x)]i
∂φ(x)

∂xj

dx

= −

∫

Rn

pi(z)
∂φ(x(z))

∂xj

det(xz(z))dz

= −

∫

Rn

pi(z)
∑

k

(

∂φ(x(z))

∂zk

∂zk(x(z))

∂xj

)

det(xz(z))dz

= −

∫

Rn

pi(z)
∑

k

(

∂φ(x(z))

∂zk
[cof xz(z)]jk

)

dz

=

∫

Rn

φ(x(z))
∑

k

(

∂pi(z)

∂zk
[cof xz(z)]jk

)

dz

−

∫

Rn

∑

k

(

∂

∂zk
φ(x(z))pi(z)

)

[cof xz(z)]jkdz.

In the lines above we have used the 1-Lipschitz parametrization (4.3) of the set
{(x,D+

x u(t, x))| x ∈ A} and the fact that

∂zk(x(z))

∂xj

= [xz(z)]
−1
kj =

1

det(xz(z))
[cof xz(z)]jk.

Now, if T ε is a maximal monotone smooth function with strictly positive symmetric
derivative, such that its inverse (T ε)−1 has derivative ≥ εIdn and converges in W 1,1

to T−1: denote with wε the corresponding (1 − ε)-Lipschitz function converging in
W 1,1 to w (4.2), and with xε(·), pε(·) the corresponding functions given by (4.3).

Repeating upside down the passages starting from the last term with the function
T ε, one obtains that

∫

Rn

∑

k

(

∂

∂zk
φ(xε(z))pεi (z)

)

[cof xε
z(z)]jkdz = −

∫

Rn

∂

∂xj

(

φ(x)[Dxu
ε(t, x)]i

)

dx

which is equal to zero due to the fact that φ has compact support. Because of the
finite speed of propagation, we can assume that the supports of φ(xε) are uniformly
bounded, and thus by passing to the limit we conclude that the last term of (refecom-
putlapla) vanishes.

We are now able to prove an analogous of Lemma 4.3 in [5].
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Lemma 4.7. For ε small enough (depending only on the bound M for ‖Hpx‖),
let t ∈ (τ, τ + ε] and A ⊂ Ωt be a Borel set. Then

Hn(Xt,τ (A)) ≥ C1H
n(A)− C2(t− τ)

∫

A

d∆u(t, ·) +O((t− τ)2),

where C1, C2 are positive constants (depending on C, cH). ∆u(t, ·) is the spatial-
Laplacian of u(t, ·).

Proof. Let us start from (4.9).
For t− τ small enough the matrix

Idn(z)− (t− τ)Hpx(t, x(z), p(z))

is invertible. Indeed, since ∃M > 0 such that the norm ‖Hpx(·, ·, ·)‖ < M it is
sufficient to take ε < 1

2nM . This condition ensures that

det(Idn(z)− (t− τ)Hpx(t, x(z), p(z))) >
1

2
> 0.

Thus this determinant can be picked out in (4.9)

| det(ξz(τ, z))| = | det (Idn − (t− τ)Hpx) || det
(

ξz − (t− τ)(Idn − (t− τ)Hpx)
−1Hpppz

)

|

+O((t− τ)2)

>
1

2
| det (ξz − (t− τ)Hpppz) |+O((t− τ)2).

To lighten the computation above we have omitted the dependence of Hpx, Hpp from
t, x(z), p(z) and of ξz, pz from t, z. Moreover we used the fact that for t − τ small
enough it is possible to expand the inverse

(Idn − (t− τ)Hpx)
−1 = Idn + (t− τ)Hpx +O((t− τ)2).

We are then left to expand the determinant in series

det (ξz − (t− τ)Hpppz) = det (ξz)− (t− τ)tr
(

[cof ξz]
THpppz

)

+O((t− τ)2),

and use that w = fz as underlined in the Remark 4.5, so that, recalling (4.8),

ξz = Idn − wz = Idn − fzz, pz = CIdn − (C + 1)wz = CIdn − (C + 1)fzz.

Call λi, for i = 1, ..., n, the eigenvalues of the positive semidefinite matrix fzz. Hence
we can compute

det (ξz) =
∏

i

(1− λi) [cof ξz]ii =
∏

j 6=i

(1− λj).

The convexity of f and the 1-Lipschitzianity of fz imply that all the eigenvalues
are bounded from above and from below: 0 ≤ λi ≤ 1, for i = 1, . . . , n. Thus, for every
i = 1, . . . , n, we have 0 ≤ 1− λi ≤ 1 and −1 ≤ C − (C + 1)λi ≤ C, in particular this
last inequality suggests that we have to work a bit to bound our determinant, since
C − (C + 1)λi has no definite sign.

1

2

(

det (ξz)− (t− τ)tr
(

[cof ξz]
THpppz

))

+O((t− τ)2) =



SBV REGULARITY FOR HAMILTON-JACOBI EQUATIONS. 21

=
1

2





∏

i

(1− λi)− (t− τ)tr



diag





∏

j 6=i

(1− λj)



Hpp diag[C − (C + 1)λi]









+O((t− τ)2)

=
1

2





∏

i

(1− λi)− (t− τ)
∑

i

∏

j 6=i

(1− λj)[Hpp]ii(C − (C + 1)λi)



+O((t− τ)2)

=
1

2

∏

i

(1− λi)− (t− τ)
1

2

∑

i

∏

j 6=i

(1− λj)[Hpp]ii(C(1− λi)− λi) +O((t− τ)2)

=
1

2
(1− (t− τ)C tr Hpp)

∏

i

(1− λi) + (t− τ)
1

2

∑

i

λi[Hpp]ii
∏

j 6=i

(1− λj)

+O((t− τ)2).

Now that all the terms have positive sign for an ε small enough, we can use the
uniform convexity of H in p and the bounds on λi to show that there exist constants
C1, C2, all of them depending only on C, cH , such that

| det(ξz(τ, z))| ≥ C1

∏

i

(1− λi) + (t− τ)C2

∑

i

λi

∏

j 6=i

(1− λj) +O((t− τ)2)

≥ C1

∏

i

(1− λi) + (t− τ)C2

∑

i

λi

∏

j 6=i

(1− λj)

−n(t− τ)C2C
∏

i

(1− λj) +O((t− τ)2)

= C1

∏

i

(1− λi)− (t− τ)C2

∑

i

(C(1− λi)− λi))
∏

j 6=i

(1− λj) +O((t− τ)2)

= C1

∏

i

(1− λi)− (t− τ)C2

∑

i

(C − (C + 1)λi)
∏

j 6=i

(1− λj) +O((t− τ)2).

Therefore if we compute the area formula (4.6) we obtain
∫

B

| det(ξz(τ, z))|dz ≥

≥

∫

B



C1

∏

i

(1− λi)− (t− τ)C2

∑

i

(C − (C + 1)λi)
∏

j 6=i

(1− λj)



 dz +O((t− τ)2).

Applying Lemma 4.6 and recalling that 1−λi are the eigenvalues of ξz(t, z) we obtain
the thesis.

Hn(Xt,τ (A)) ≥ C1H
n(A)− C2(t− τ)

∫

A

d∆u(t, ·) +O((t− τ)2)

where C1, C2 are constants depending only on C, cH .

4.5. Area estimates. In order to complete the proof of the main theorem we
need to prove a Lemma which states the equivalent result of Lemma 5.1 in [5].

Lemma 4.8. If ε > 0 is small enough, for any t ∈ (τ, τ + ε], any δ ∈ [0, t − τ ]
and any Borel set A ⊂ Ωt we have

Hn(Xt,τ+δ(A)) ≥

(

1

2

)n (
t− (τ + δ)

t− τ

)n

Hn(Xt,τ (A)).
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Proof. Fix t in (τ, τ + ε], and let A be a Borel set A ⊂ Ωt. Without loss of
generality we can suppose A to be a compact set.

Consider an approximation of the vector field induced by our generalized back-
ward characteristics by taking a dense sequence of points {xi}

∞
i=1 in A. Fix an integer

I > 0, call AI := {xi| i = 1, . . . , I} and define for any s such that τ ≤ s < t and
y ∈ Xt,s(A)

ũI(s, y) : = max

{

u(t, ξ(t))−

∫ t

s

L(l, ξ(l), ξ̇(l))dl
∣

∣

∣ ξ is a [C2([s, t])]n curve,

ξ(s) = y, ξ(t) ∈ AI

}

.

We assume in addition that the sequence {xi}i∈I is big enough so that we can
uniformly bound the speed of propagation of every maximizer ξ.

Remark 4.9. All the properties which we stated for maximizers of the backward
solution and for the backward solution itself are preserved in each cone of propagation
for the maximizers of this approximated backward solution (Euler equation, systems for
maximizer and dual arc, no-crossing property, etc) and for ũI (a.e. differentiability,
dynamic programming principle, semiconvexity).

Through this approximation the set Es := Xt,s(A) is split into at most I open
regions Ei

s, i = 1, . . . , I, defined by

Ei
s := interior of {y ∈ Xt,s(A)| ∃ξ maximizer for ũI(s, y) such that ξ(t) = xi},

together with the set

JI
s :=

⋃

i 6=j

(

Ēi
s ∩ Ēj

s

)

of negligible Hn-measure. Indeed, even for ũI(s, ·) the set of points with more than
one maximum is the set of point of non differentiability and this set has Hn-measure
zero.

Call

XI
t,s(xi) := {ξ(s)| ξ is a maximizer for ũI(s, y) with y ∈ Ēi

s},

this is a multi-valued function defined on the set AI .
The set XI

t,s(AI) converges in the Hausdorff sense to the set Xt,s(A) as I tends

to infinity. Indeed, it follows from the strong convergence of the maximizers of ũI

to the maximizers of ũ which is ensured by their bound on the derivative (Theorem
3.1-(iii)). Thus

Hn(Xt,s(A)) ≥ lim sup
I→∞

Hn(XI
t,s(AI)).

Let us decompose Hn(XI
t,s(AI)) in the sum over i ∈ I of Hn(XI

t,s(xi)). Using the
one to one correspondence of Lemma 3.11

ξp(τ)

τ − t
= Hpp(t, xi, p) +O(t− τ)
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and

ξp(τ + δ)

τ + δ − t
= Hpp(t, xi, p) +O(t− τ).

Therefore
∣

∣

∣

∣

ξp(τ)

τ − t
−

ξp(τ + δ)

τ + δ − t

∣

∣

∣

∣

≤ O(t− τ),

and
∣

∣

∣

∣

(

t− (τ + δ)

t− τ

)

ξp(τ)(ξp(τ + δ))−1 − Id

∣

∣

∣

∣

≤ O(t− τ).

Thus, passing to the determinant,

det(ξp(τ + δ)) ≥

(

1

2

)n (
t− (τ + δ)

t− τ

)n

det(ξp(τ)).

From which it follows

Hn(XI
t,τ+δ(xi)) ≥

(

1

2

)n (
t− (τ + δ)

t− τ

)n

Hn(XI
t,τ (xi)).

Summing up all the terms

Hn(XI
t,τ+δ(AI)) ≥

(

1

2

)n (
t− (τ + δ)

t− τ

)n

Hn(XI
t,τ (AI)).

Finally using the fact that Hn(XI
t,τ (AI)) = Hn(Xt,τ (A)) and the Hausdorff conver-

gence we obtain

Hn(Xt,τ+δ(A)) ≥ lim sup
I→∞

Hn(XI
t,τ+δ(AI))

≥ lim sup
I→∞

(

1

2

)n (
t− (τ + δ)

t− τ

)n

Hn(XI
t,τ (AI))

=

(

1

2

)n (
t− (τ + δ)

t− τ

)n

Hn(Xt,τ (A)).

Hence the thesis is proved.
We can now prove the following Lemma. In the following we will denote the

Cantor part of D2
xu(t, ·) with D2

cu(t, ·).
Lemma 4.10. For ε small enough, for any t in (τ, τ+ε] such that |D2

cu(t, ·)|(Ωt) >
0 there exists a Borel set A ⊂ Ωt such that

i) Hn(A) = 0, |D2
cu(t, ·)|(A) > 0 and |D2

cu(t, ·)|(Ωt \A) = 0;
ii) Xt,τ is single-valued on A;
iii) and for any δ in (0, τ + ε− t],

χt,τ (A) ∩ χt+δ,τ (Ωt+δ) = ∅.

Proof. From Proposition 2.6 and the definition of Cantor part of a measure, there
exists a Borel set A such that

• D+
x u(t, x) is single-valued for every x ∈ A,
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• Hn(A) = 0,
• |D2

cu(t, ·)|(Ωt \A) = 0 and |D2
cu(t, ·)|(A) > 0.

By contradiction suppose there exists a compact set K ⊂ A such that

|D2
cu(t, ·)|(K) > 0

and there exists a δ > 0 such that

Xt,τ (K) = χt,τ (K) ⊂ χt+δ,τ (Ωt+δ).

Call ω := |D2
cu(t, ·)|(K).

Then there exists a Borel set K̃ ⊂ Ωt+δ such that χt,τ (K) = χt+δ,τ (K̃). Moreover,

thanks to the fact that we are considering classical characteristics starting from K̃,
we have

χt+δ,t(K̃) = K and χt+δ,s(K̃) = χt,s(K) ∀s ∈ [τ, t).

Using Lemma 4.8, for any s ∈ [τ, t),

Hn(K) = Hn(Xt+δ,t(K̃)) ≥

(

1

2

)n (
δ

t+ δ − s

)n

Hn(Xt+δ,s(K̃))

=

(

1

2

)n (
δ

t+ δ − s

)n

Hn(Xt,s(K)).

Hence

Hn(K) ≥

(

1

2

)n (
δ

t+ δ − s

)n

Hn(Xt,s(K)).(4.10)

Moreover if we choose s such that t− s is small enough

Hn(Xt,s(K)) ≥ C1H
n(K)− C2(t− s)

∫

K

d∆su(t, ·) +O((t− s)2)

≥ −C2(t− s)

∫

K

d∆cu(t, ·) +O((t− s)2)

≥ C2(t− s)ω +O((t− s)2)

≥
C2

2
ω2,

where we have used the fact that Hn(K) = 0, that ∆ju(t,K) ≤ 0, which is true due to
semiconcavity, implies ∆su(t,K) ≤ ∆cu(t,K), and −∆cu(t,K) ≥ |D2

cu(t, ·)(K)| = ω.

Thus

Hn(Xt,s(K)) ≥
C2

2
ω2.(4.11)

Combining (4.10) with (4.11) we obtain

Hn(K) ≥

(

1

2

)n (
δ

t+ δ − s

)n
C2

2
ω2 > 0.

This is in contradiction with our hypothesis.
We now have all the necessary Lemmas to prove the Theorem 1.1.
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Proof. For ε > 0 sufficiently small such that Lemmas 4.4, 4.7, 4.8, and 4.10 hold,
consider the functional F defined in (4.1) over the interval [τ, τ + ε]. F is bounded,
and, from Lemma 4.4, F is a monotone function. Thus its points of discontinuity are
at most countable.

We will prove that the presence of a Cantor part at a time t is related to a
discontinuity of the functional F in t, hence there must be only a countable number
of t’s in [τ, τ + ε] for which the Cantor part is negative.

Suppose there exists a t in (τ, τ + ε) such that

|D2
cu(t,Ωt)| > 0,

then let A be the set of Lemma 4.10. Using Lemma 4.10-(iii), for any δ > 0 we get

F (t+ δ) ≤ F (t)−Hn(Xt,τ (A))(4.12)

To compute Hn(Xt,τ (A)) call ω := |D2
cu(t, ·)|(A). As we saw in the previous lemma,

if we choose s ∈ [τ, t) such that t− s is small enough, we have

Hn(Xt,s(A)) ≥
C2

2
ω2.

Moreover for Lemma 4.8

Hn(Xt,τ (A)) ≥

(

1

2

)n (
t− τ

t− s

)n

Hn(Xt,s(A)).

Hence

Hn(Xt,τ (A)) ≥

(

1

2

)n (
t− τ

t− s

)n
C2

2
ω2 ≥ Cω2.

We can now use this estimate in (4.12) obtaining

F (t+ δ) ≤ F (t)− Cω2.

Letting δ → 0

lim sup
δ→0

F (t+ δ) < F (t).

Therefore t is a point of discontinuity for F , as we would like to prove.
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[8] P. Cannarsa and H.M. Soner, On the singularities of the viscosity solutions to Hamilton-

Jacobi equations, Indiana Univ. Math. J., 36 (1987), pp. 501–524.
[9] M.G. Crandall, L.C. Evans, and P.-L. Lions, Some properties of viscosity solutions of

Hamilton-Jacobi equations, Trans. Amer. Math. Soc., 282 (1984), pp. 487–502.
[10] M.G. Crandall and P.-L. Lions, Viscosity solutions of Hamilton-Jacobi equations, Trans.

Amer. Math. Soc., 277 (1983), pp. 1–42.
[11] W.H. Fleming, The Cauchy problem for a nonlinear first order partial differential equation,

J. Differential Equations, 5 (1969), pp. 515–530.
[12] W.H. Fleming and R.W. Rishel, Deterministic and stochastic optimal control, Springer, New

York, 1975.
[13] W.H. Fleming and H.M. Soner, Controlled Markov process and viscosity solutions, Springer,

Berlin, 1993.
[14] P.-L. Lions, Generalized solutions of Hamilton-Jacobi equations, Pitman, Boston, 1982.


