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AN INVERSE PROBLEM FOR SELF-ADJOINT POSITIVE

HANKEL OPERATORS

PATRICK GERARD AND ALEXANDER PUSHNITSKI

Abstract. For a sequence {αn}∞n=0, we consider the Hankel operator Γα, realised
as the infinite matrix in ℓ2 with the entries αn+m. We consider the subclass of such
Hankel operators defined by the “double positivity” condition Γα ≥ 0, ΓS∗α ≥ 0;
here S∗α is the shifted sequence {αn+1}∞n=0. We prove that in this class, the
sequence α is uniquely determined by the spectral shift function ξα for the pair
Γ2
α, Γ

2
S∗α

. We also describe the class of all functions ξα arising in this way and
prove that the map α 7→ ξα is a homeomorphism in appropriate topologies.

1. Introduction

1.1. Hankel operators. Let α = {αn}∞n=0 be a bounded sequence of complex num-
bers. The Hankel operator Γα in ℓ2 ≡ ℓ2(Z+) is formally defined by

(Γαx)n =
∞∑

m=0

αn+mxm, x = {xn}∞n=0 ∈ ℓ2.

In other words, Γα is the “infinite matrix”

Γα =




α0 α1 α2 . . .
α1 α2 α3 . . .
α2 α3 α4 . . .
...

...
...

. . .


 . (1.1)

Background information on Hankel operators can be found, e.g. in [11]. By Nehari’s
theorem, Γα is bounded on ℓ2 if and only if there exists a function f ∈ L∞(T) such

that f̂(n) = αn for all n ≥ 0; here f̂(n) is the n’th Fourier coefficient of f . We
denote by en, n ∈ Z+, the standard basis in ℓ2. Clearly, α = Γαe0; thus, if Γα is
bounded, then the sequence α is automatically in ℓ2. In what follows we will always
assume that Γα is bounded and that α is real-valued; in this case Γα is self-adjoint.

Let S be the (right) shift operator in ℓ2:

S : (x0, x1, x2, . . .) 7→ (0, x0, x1, x2, . . .);

we will also need its adjoint,

S∗ : (x0, x1, x2, . . .) 7→ (x1, x2, x3, . . .).
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Along with Γα, we will consider the Hankel operator ΓS∗α, corresponding to the
shifted sequence S∗α. In other words, the matrix of ΓS∗α is obtained from the
matrix of Γα by deleting the first row:

ΓS∗α =




α1 α2 α3 . . .
α2 α3 α4 . . .
α3 α4 α5 . . .
...

...
...

. . .


 . (1.2)

More formally, Γα and ΓS∗α are related by

ΓS∗α = S∗Γα = ΓαS. (1.3)

Another important relation between Γα and ΓS∗α is the formula

Γ2
S∗α = Γ2

α − (·, α)α, (1.4)

where (·, ·) is the standard inner product in ℓ2 (we follow the convention that the
inner product is linear in the first component and anti-linear in the second com-
ponent). Formula (1.4) is an elementary consequence of the matrix representations
(1.1), (1.2), or of identities (1.3).

1.2. The class ℓ1,∞++ . We will consider positive bounded Hankel operators:

Γα ≥ 0.

Here the positivity is understood, as usual, in the quadratic form sense: (Γαx, x) ≥ 0
for all x ∈ ℓ2. As a consequence of general results of [10], a positive bounded Hankel
operator can have any continuous spectrum of multiplicity ≤ 2 and any set of non-
zero eigenvalues of multiplicity one (also zero must be in the spectrum and if zero
is an eigenvalue, then it must have infinite multiplicity). In this paper, we make
some progress towards the description of isospectral sets, i.e. of the sets of all positive
Hankel operators with a given spectrum. To simplify the problem, we will consider a
special sub-class of positive Hankel operators, those that satisfy the double positivity
condition:

Γα ≥ 0 and ΓS∗α ≥ 0. (1.5)

In Section 2 we will prove that under this assumption the non-zero spectrum of Γα
is simple, i.e. has multiplicity one. (In fact, the same applies to ΓS∗α and to Γ(S∗)nα

for all n.) This property makes the spectral theory of this class of Hankel operators
particularly simple.

In order to set up some notation, we first recall that for positive Hankel operators
the operator norm ‖Γα‖ admits a very simple description in terms of the sequence
α. We denote by ℓ1,∞ the set of all sequences {xn}∞n=0 of complex numbers such that

‖x‖ℓ1,∞ = sup
n≥0

(n+ 1)|xn| <∞.

By [15, Theorem 3.1], under the positivity assumption Γα ≥ 0 one has

1
4
‖α‖ℓ1,∞ ≤ ‖Γα‖ ≤ π‖α‖ℓ1,∞ (1.6)
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(the constants are not written explicitly in [15] but are easy to work out from
the argument given there; for completeness we give the proof in Section 2). This
motivates the following definition.

Definition 1.1. Let ℓ1,∞++ be the class of all sequences α ∈ ℓ1,∞ such that the double
positivity conditions (1.5) are fulfilled.

The double positivity condition implies, in particular, that the diagonal elements
of the “matrices” Γα and ΓS∗α are non-negative; hence αn ≥ 0 for all n ∈ Z+. Notice
that, as will be observed in the proof in Section 2, the first inequality (1.6) can then
be improved as

1
2
‖α‖ℓ1,∞ ≤ ‖Γα‖ . (1.7)

1.3. Main results. In [6] for α ∈ ℓ1,∞++ and under the additional assumption that Γα
and ΓS∗α are compact, it was proven that the spectrum of Γα and the spectrum of
ΓS∗α together uniquely determine the sequence α. (In fact, the results of [6] are not
limited to the class ℓ1,∞++ .) In this paper, we consider this inverse spectral problem
without the assumption of compactness of Γα. In this case it turns out that the
spectra of Γα and ΓS∗α in general do not determine the sequence α (see Section 7).
We show that the correct way to parametrise the spectral data is to consider the
spectral shift function (SSF)

ξα(λ) = ξ(λ; Γ2
α,Γ

2
S∗α).

We refer to the Appendix for the background information on the SSF theory. In our
case, since (by (1.4)) the difference Γ2

α−Γ2
S∗α is a positive operator of rank one, the

SSF satisfies

0 ≤ ξα(λ) ≤ 1, a.e. λ ∈ R.

Further, since both Γ2
α ≥ Γ2

S∗α are non-negative bounded operators, the SSF is
supported on the compact interval [0, ‖Γα‖2].

We consider the map

α 7→ ξα;

this gives rise to a direct problem (study the properties of ξα for a given α) and to
an inverse problem (recover α from ξα). For convenience, let us introduce a piece of
notation for the space where ξα is going to live:

Definition 1.2. Let Ξ+ be the set of all functions ξ ∈ L∞(R) with compact support
in [0,∞) and with values in the interval [0, 1].

Our main result is

Theorem 1.3. The map

ℓ1,∞++ ∋ α 7→ ξα ∈ Ξ+ (1.8)

is a bijection between the sets ℓ1,∞++ and Ξ+.

Note that this theorem includes two distinct non-trivial statements: the injectivity
and the surjectivity of the map (1.8). Next, although the inverse map ξα 7→ α is
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rather complicated, some information about α can be obtained directly from ξα.
Indeed, we have two “trace formulas”

∫ ∞

0

ξα(λ)dλ =

∞∑

n=0

α2
n, (1.9)

2

π

∫ ∞

0

{
1− exp

(
−
∫ ∞

0

ξα(λ)

λ+ t2
dλ

)}
dt = α0,

see Theorem 3.1. We also have an explicit criterion that allows to decide whether
Ker Γα is trivial; this happens if and only if both

∫ 1

0

ξα(λ)

λ
dλ = ∞ and

∫ 1

0

1− ξα(λ)

λ
dλ = ∞,

see Theorem 3.2.
Finally, we prove that the map (1.8) is a homeomorphism with respect to appro-

priate weak topologies, which we now introduce.
Given R > 0, we define the convex subset

ℓ1,∞++ (R) := {α ∈ ℓ1,∞++ : ‖α‖ℓ1,∞ ≤ R},

which we endow with the weak topology relative to the evaluation linear forms
α 7→ αn. It is well known that ℓ1,∞++ (R) is a metrizable space, and that convergence of

a sequence {α(p)}∞p=1 to α in this space is equivalent to α
(p)
n → αn as p→ ∞ for all n.

Notice that, if R1 < R2, ℓ
1,∞
++ (R1) ⊂ ℓ1,∞++ (R2), and that the corresponding inclusion

is a homeomorphism. Since ℓ1,∞++ is the union of the increasing family {ℓ1,∞++ (R)}R>0,
we endow it with the inductive limit topology, which is the strongest topology such
that, for every R > 0, the inclusion of ℓ1,∞++ (R) into ℓ1,∞++ is continuous. A sequence

is convergent for this topology if, for some R, it is contained in ℓ1,∞++ (R), and if it is

convergent for the weak topology of ℓ1,∞++ (R). We note that, as it is straightforward

to see, the weak convergence α(p) → α in ℓ1,∞++ implies norm convergence of α(p) to
α in ℓr for any r > 1.

We do the same construction with the convex sets Ξ+(C), C > 0, corresponding to
those elements of Ξ+ which are supported on [0, C]. In this case, Ξ+(C) is endowed
with the L∞ weak* topology, which is known to be metrizable, the convergence of
a sequence {ξ(p)}∞p=1 to ξ being equivalent to

∫ ∞

0

ξ(p)(λ)ϕ(λ)dλ→
∫ ∞

0

ξ(λ)ϕ(λ)dλ

as p → ∞ for all continuous functions ϕ. Since Ξ+ is the union of the increasing
family {Ξ+(C)}C>0, we endow it with the inductive limit topology, for which a
sequence is convergent if and only if it is contained in some Ξ+(C) and if it is
convergent for the above weak topology of Ξ+(C).

Theorem 1.4. The map (1.8) is a homeomorphism with respect to the above weak
topologies.
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Finally, we would like to mention a number of open questions related to our
results:

• How to extend these results to the case of unbounded Hankel operators?
What are the appropriate topologies on the set of sequences α and on the
set of functions ξα in this case?

• How to extend these results to Hankel operators without the double positivity
assumption? The construction of [6] suggests that one needs to introduce
some additional spectral variables. An additional problem in this case is that
the multiplicity of the spectrum of Γα may be non-trivial.

1.4. Some ideas of the proof of Theorem 1.3. We introduce the spectral mea-
sure ρα of Γ2

α, corresponding to the element e0:

ρα(δ) = (χδ(Γ
2
α)e0, e0), δ ⊂ R; (1.10)

here and in what follows χδ stands for the characteristic function of the set δ ⊂ R.
The measure ρα is related to ξα by

z

∫ ∞

0

dρα(λ)

λ− z
= − exp

(
−
∫ ∞

0

ξα(λ)

λ− z
dλ

)
(1.11)

for all z not in the spectrum of Γα; this is an easy calculation given in Section 3.
The proof of injectivity proceeds as follows. Let ξα be given; the relation (1.11)
determines the measure ρα. Next, we derive a simple recurrence relation which
relates ρS∗α and ρα:

∫ ∞

0

dρS∗α(λ)

λ− z
=

∫ ∞

0

dρα(λ)

λ− z
− 1

z

(∫ ∞

0

dρα(λ)

λ− z

)−1
(∫ ∞

0

√
λdρα(λ)

λ− z

)2

. (1.12)

This relation allows one to inductively determine the measures ρ(S∗)nα for all n. This
determines the whole sequence α because

αn = (Γ(S∗)nαe0, e0) =

∫ ∞

0

√
λdρ(S∗)nα(λ), n ∈ N. (1.13)

We also give a second proof of injectivity, which follows the ideas of [5] and [6], and
is based on the use of the compressed shift operator.

Surjectivity is the hardest statement to prove in Theorem 1.3. We give two proofs
of surjectivity. The first one is based on approximating a general element ξ ∈ Ξ+

by elements corresponding to finite rank Hankel operators. This approach uses the
finite rank surjectivity result, which was proven in [5] — see also [6]. Since we
use approximation, this approach also relies on Theorem 1.4. The second proof
of surjectivity is based on the identity (1.11) and on constructing the measure ρα,
following the path of [10]. Finally, Theorem 1.4 (the continuity of the map (1.8))
has a surprisingly easy proof based on (1.11), (1.12), (1.13), on the equivalence of
norms (1.6), and on trace formula (1.9).
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1.5. Some notation. Given a sequence α, let

Pα : ℓ2 → RanΓα (1.14)

be the orthogonal projection. It is clear from (1.1) and (1.2) that Ker Γα ⊂ KerΓS∗α.
Thus, RanΓα is an invariant subspace for both operators Γα, ΓS∗α, and on the
orthogonal complement to this subspace both operators are equal to zero. We set

Γ̃α = Γα|RanΓα
, Γ̃S∗α = ΓS∗α|RanΓα

. (1.15)

It follows that
ξα(λ) = ξ(λ; Γ̃2

α, Γ̃
2
S∗α).

2. Operators Γα with double positivity condition

2.1. Description in terms of moment sequences. The second part of the fol-
lowing proposition is borrowed entirely from [15].

Proposition 2.1. Let α be a sequence of real numbers such that the corresponding
Hankel operator Γα is bounded. Then:

(i) The double positivity condition (1.5) holds true if and only if there exists a
finite positive measure ω supported on [0, 1] with ω({1}) = 0 such that αn can
be represented as

αn =

∫ 1

0

tndω(t), n ≥ 0. (2.1)

(ii) If Γα ≥ 0, then the estimates (1.6) hold true. If moreover ΓS∗α ≥ 0, then (1.7)
holds true.

Proof. (i) Assume that the representation (2.1) holds with some ω. Then it is evident
that

(Γαx, x) =
∞∑

n,m=0

∫ 1

0

tn+mxnxm dω(t) =

∫ 1

0

∣∣∣∣∣

∞∑

n=0

tnxn

∣∣∣∣∣

2

dω(t) ≥ 0,

thus Γα ≥ 0. Further, we have

αn+1 =

∫ 1

0

tn+1dω(t) =

∫ 1

0

tndω1(t), where dω1(t) = tdω(t). (2.2)

Thus, by the same reasoning we also have ΓS∗α ≥ 0.
Next, assume that the double positivity condition holds true and Γα is bounded.

By the solution to the classical Hamburger moment problem (see e.g. [13, Section
X.1, Example 3]), condition Γα ≥ 0 implies that there exists a measure ω ≥ 0 on R

such that

αn =

∫ ∞

−∞
tndω(t), n ≥ 0.

The boundedness of Γα implies that α ∈ ℓ2 and then the measure ω is unique (see
e.g. [13, Section X.6, Example 4]). By considering even n, it is easy to see that the
boundedness of Γα implies that suppω ⊂ [−1, 1] and ω({−1}) = ω({1}) = 0. As
the same argument applies to ΓS∗α, we get that the measure ω1, given by (2.2), is
also positive. Thus, suppω ⊂ [0, 1].



INVERSE PROBLEM FOR HANKEL OPERATORS 7

(ii) Assume that Γα ≥ 0. The second estimate in (1.6) follows directly from
Hilbert’s inequality: ∣∣∣∣∣

N∑

n,m=0

xnxm
n +m+ 1

∣∣∣∣∣ ≤ π

N∑

n=0

|xn|2.

Let us prove the first estimate in (1.6). By the proof of (i), we have

αn =

∫ 1

−1

tndω(t), n ≥ 0

with some finite positive measure ω such that ω({−1}) = ω({1}) = 0. Fix τ ∈ (0, 1)
and let x ∈ ℓ2 be the element given by xn = τn, n ≥ 0. We have

(Γαx, x) =

∞∑

n,m=0

τnτm
∫ 1

−1

tn+mdω(t) =

∫ 1

−1

dω(t)

(1− tτ)2

≥
∫ 1

τ

dω(t)

(1− tτ)2
≥ 1

(1− τ 2)2

∫ 1

τ

dω(t),

and therefore

ω([τ, 1)) ≤ (1− τ 2)2(Γαx, x) ≤ (1− τ 2)2‖Γα‖‖x‖2

≤ (1− τ 2)2‖Γα‖
1

1− τ 2
= (1− τ 2)‖Γα‖ ≤ 2(1− τ)‖Γα‖.

Then
∫ 1

0

tndω(t) = ω((0, 1))− n

∫ 1

0

tn−1ω((0, t))dt = n

∫ 1

0

tn−1ω([t, 1))dt

≤ 2‖Γα‖n
∫ 1

0

tn−1(1− t)dt =
2

n+ 1
‖Γα‖.

In the same way, one proves that
∫ 0

−1

tndω(t) ≤ 2

n+ 1
‖Γα‖,

and so

αn =

∫ 1

−1

tndω(t) ≤ 4

n+ 1
‖Γα‖.

This proves the first estimate in (1.6). The same proof yields (1.7) in the case of
the double positivity condition. �

Remark 2.2. By inspection of the “matrix” (1.1) of Γα we see that Γ(S∗)2α is a
submatrix obtained by deleting the first row and the first column. It follows that
the condition Γα ≥ 0 implies Γ(S∗)2α ≥ 0 and then, by iteration, Γ(S∗)2nα ≥ 0.
Similarly, ΓS∗α ≥ 0 implies Γ(S∗)2n+1α ≥ 0 for all n ∈ Z+. Thus, the double positivity
condition implies that Γ(S∗)nα ≥ 0 for all n ∈ Z+. This can be rephrased as

α ∈ ℓ1,∞++ ⇒ (S∗)nα ∈ ℓ1,∞++ for all n ∈ N.

This property also follows directly from Proposition 2.1.
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Remark 2.3. The sequences (αn) given by (2.1), for a positive measure ω on [0, 1],
are clearly completely monotonic, namely

∀k ≥ 0, ∀n ≥ 0, ((I − S∗)kα)n ≥ 0 .

In the classical paper [7], Hausdorff proved that this property is in fact equivalent to
the representation (2.1). Hence elements of ℓ1,∞++ are special solutions of the classical
Hausdorff moment problem, precisely those which belong to ℓ1,∞.

2.2. The simplicity of the spectrum. We recall that an element ψ of a Hilbert
space H is called a generating element of a bounded self-adjoint operator A in H, if

H = clos span{Anψ | n = 0, 1, 2, . . . }.
If A has a generating element, then it has a simple spectrum, i.e. it is unitarily
equivalent to the operator of multiplication by an independent variable in some L2

space of scalar valued functions. More precisely: let ρψ be the measure on R defined
by

ρψ(δ) = (χδ(A)ψ, ψ), δ ⊂ R, (2.3)

and let Uψ be the operator

Uψ : L2(R, dρψ) → H, f 7→ f(A)ψ. (2.4)

Then Uψ is unitary and

U∗
ψAUψ =Mx, Uψ1 = ψ, (2.5)

where Mx is the operator of multiplication by the independent variable x,

(Mxf)(x) = xf(x), x ∈ R, f ∈ L2(R, dρψ), (2.6)

and 1 is the function identically equal to 1.

Theorem 2.4. Let α ∈ ℓ1,∞++ . Denote

Mα = clos span{Γnαα | n = 0, 1, 2, . . . },
MS∗α = clos span{ΓnS∗αα | n = 0, 1, 2, . . . }.

Then:

(i) The subspaces Mα and MS∗α coincide and will henceforth be denoted by M.

(ii) RanΓα = M; the operator Γ̃α (see (1.15)) has a simple spectrum and a gen-
erating element Pαe0.

(iii) RanΓS∗α ⊂ M; the operator Γ̃S∗α has a simple spectrum and a generating
element α.

Remark. (1) The inclusion RanΓS∗α ⊂ M may be strict. For example, for
α = e0 it is easy to see that Ker Γα 6= Ker ΓS∗α, and so RanΓS∗α 6= RanΓα.
For a description of when this situation occurs, see [6].

(2) By Remark 2.2, the spectra of all operators Γ(S∗)nα are simple.

In order to prove Theorem 2.4, first we need a general operator theoretic lemma
which in some form goes back at least to Kato [8] but is probably much older:
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Proposition 2.5. Let A1 and A0 be bounded self-adjoint operators in a Hilbert space
such that the difference A1 −A0 is a rank one operator:

A1 = A0 + (·, ψ)ψ. (2.7)

Denote

Mj = clos span{Anjψ | n = 0, 1, . . . }, j = 0, 1.

Then:

(i) The subspaces M0 and M1 coincide and will henceforth be denoted by M.
(ii) M is an invariant subspace both for A0 and for A1.
(iii) A0|M⊥ = A1|M⊥.

Proof. (i) Let f = An1ψ ∈ M1. Using (2.7) and expanding, we see that f ∈ M0.
Thus, M1 ⊂ M0; similarly one obtains M0 ⊂ M1. (ii) It is immediate that
A0(M0) ⊂ M0 and A1(M1) ⊂ M1. (iii) If f ⊥ M, then in particular f ⊥ ψ. Now
apply (2.7). �

Proof of Theorem 2.4. Since Γα ≥ 0, one can approximate (in the operator norm)
odd powers Γ2n+1

α by polynomials involving only even powers of Γα. The same
consideration of course applies to ΓS∗α. It follows that Mα, MS∗α can be rewritten
as

Mα = clos span{Γ2n
α α | n = 0, 1, 2, . . . },

MS∗α = clos span{Γ2n
S∗αα | n = 0, 1, 2, . . . }.

Now let us apply Proposition 2.5 with A0 = Γ2
S∗α, A1 = Γ2

α, ψ = α. Part (i) of the
Theorem immediately follows from Proposition 2.5(i).

Next, let f ⊥ M; by Proposition 2.5(iii), we have Γ2
αf = Γ2

S∗αf and therefore, by
the double positivity condition, we get Γαf = ΓS∗αf . By (1.3), this can be rewritten
as

ΓS∗αf = S∗Γαf = Γαf.

Since Ker(S∗ − I) = {0}, we obtain Γαf = 0 and ΓS∗αf = 0. Thus,

M⊥ ⊂ Ker Γα and M⊥ ⊂ Ker ΓS∗α,

and therefore

RanΓα ⊂ M and RanΓS∗α ⊂ M.

Since α = ΓαPαe0, we also have M ⊂ RanΓα. Thus, we get parts (i) and (ii) of the
Theorem. �

3. Direct spectral problem

3.1. The perturbation determinant and the trace formulas. Let α ∈ ℓ1,∞++ .
For z /∈ [0,∞), consider the perturbation determinant (see Appendix) for the pair
of operators Γ2

α, Γ
2
S∗α:

∆(z) = ∆Γ2
α/Γ

2
S∗α

(z) = det((Γ2
α − z)(Γ2

S∗α − z)−1).
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By (1.4), it can be explicitly computed as follows:

∆(z)−1 = det((Γ2
S∗α − z)(Γ2

α − z)−1) = det(I + (Γ2
S∗α − Γ2

α)(Γ
2
α − z)−1)

= det(I − (·, (Γ2
α − z)−1α)α) = 1− ((Γ2

α − z)−1α, α). (3.1)

Recalling that α = Γαe0 and using (A.5), we obtain

(Γ2
α(Γ

2
α − z)−1e0, e0) = 1− exp

(
−
∫ ∞

0

ξα(λ)

λ− z
dλ

)
, z /∈ [0,∞). (3.2)

This is one of the key formulas in our construction. It can be alternatively written
as

z((Γ2
α − z)−1e0, e0) = − exp

(
−
∫ ∞

0

ξα(λ)

λ− z
dλ

)
, z /∈ [0,∞). (3.3)

Let ρα be the measure on R defined by (1.10), i.e.

ρα(δ) = (χδ(Γ
2
α)e0, e0), δ ⊂ R.

Using the measure ρα, we may rewrite (3.2) as
∫ ∞

0

λdρα(λ)

λ− z
= 1− exp

(
−
∫ ∞

0

ξα(λ)

λ− z
dλ

)
. (3.4)

This gives a one-to-one correspondence between ξα and ρα. (In fact, ρα is in some
respects a more convenient functional parameter than ξα.)

It will be also convenient to use the following modification of the measure ρα:

ρ̃α(δ) = (χδ(Γ̃
2
α)Pαe0, Pαe0) (3.5)

(see (1.14), (1.15)). Of course, the difference between the measures ρα and ρ̃α is
only in the weight at zero:

ρ̃α(δ) = ρα(δ)− ρα(δ ∩ {0}).
By Theorem 2.4(ii), the operator Γ̃2

α is unitarily equivalent to the operator Mx

of multiplication by x in L2(R, dρ̃α); thus, ρ̃α contains all information about the

spectrum of Γ̃α.

Theorem 3.1. Let α ∈ ℓ1,∞++ . Then the identities
∫ ∞

0

ξα(λ)dλ =
∞∑

n=0

α2
n, (3.6)

2

π

∫ ∞

0

{
1− exp

(
−
∫ ∞

0

ξα(λ)

λ+ t2
dλ

)}
dt = α0. (3.7)

hold true.

Proof. Formula (3.6) is a direct consequence of (A.2) and of the identity

Tr((·, α)α) = (α, α) =
∞∑

n=0

α2
n.
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In order to prove (3.7), we first notice that α0 = (Γαe0, e0). We also use the integral
representation for the square root:

Γα =
√
Γ2
α =

2

π

∫ ∞

0

Γ2
α(Γ

2
α + t2)−1dt.

Putting this together and combining with (3.2), we obtain (3.7). �

3.2. The kernel of Γα. We recall that (due to the Beurling theorem, see [2]) the
kernel of a Hankel operator is either trivial or infinite dimensional. Further, by (1.4),
the kernel of Γα is infinite dimensional if and only if the kernel of ΓS∗α is infinite
dimensional. Below we give a concrete criterion for this to happen.

Theorem 3.2. Let α ∈ ℓ1,∞++ ; then the kernels of Γα, ΓS∗α are trivial if and only if
both of the following conditions hold true:

∫ 1

0

ξα(λ)

λ
dλ = ∞,

∫ 1

0

1− ξα(λ)

λ
dλ = ∞. (3.8)

Of course, the integral
∫ 1

0
in (3.8) can be replaced by

∫ a
0
for any a > 0.

Proof. Exactly as in Theorem 4 of [6], we have

Ker Γα = {0} ⇐⇒ e0 ∈ RanΓα \ RanΓα.
Let us express the latter condition in terms of the function in the l.h.s. of (3.3).
Using the spectral theorem for self-adjoint operators, it is easy to see that the strong
limit

s-lim
ε→0+

ε(Γ2
α + ε)−1

exists and is equal to the orthogonal projection onto Ker Γα. Thus, using (3.3),

e0 ∈ RanΓα ⇐⇒ lim
ε→0+

ε((Γ2
α + ε)−1e0, e0) = 0

⇐⇒ lim
ε→0+

∫ ∞

0

ξα(λ)

λ+ ε
dλ = ∞ ⇐⇒

∫ ∞

0

ξα(λ)

λ
dλ = ∞,

so we obtain the first of the conditions (3.8). Next,

e0 ∈ RanΓα ⇐⇒ ‖Γ−1
α e0‖2 <∞ ⇐⇒ lim

ε→0+
((Γ2

α + ε)−1e0, e0) <∞

and therefore, using (3.3),

e0 ∈ RanΓα ⇐⇒ lim
ε→0+

1

ε
exp

(
−
∫ ∞

0

ξα(λ)

λ+ ε
dλ

)
<∞.

Finally,

1

ε
exp

(
−
∫ ∞

0

ξα(λ)

λ+ ε
dλ

)
= exp

(∫ 1

0

1− ξα(λ)

λ+ ε
dλ

)
1

1 + ε
exp

(
−
∫ ∞

1

ξα(λ)

λ+ ε
dλ

)
,

and therefore

e0 ∈ RanΓα ⇐⇒
∫ 1

0

1− ξα(λ)

λ
dλ <∞.

This yields the second condition (3.8). �
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Remark 3.3. In [6, Theorem 2] it was proven that in the case of the compact
operators Γα, ΓS∗α with the eigenvalues {λj}∞j=1 and {µj}∞j=1, the kernel of Γα is
trivial if and only if both of the following conditions hold:

∞∑

j=1

(
1−

µ2
j

λ2j

)
= ∞, sup

N

1

λ2N+1

N∏

j=1

µ2
j

λ2j
= ∞. (3.9)

In this case we have

ξα(λ) =

{
1, µ2

j ≤ λ ≤ λ2j for some j,

0, otherwise.

Using this formula and some elementary manipulations, it is not difficult to check
that (3.9) is in fact equivalent to (3.8).

4. Inverse spectral problem: uniqueness

Theorem 4.1. The map

ℓ1,∞++ ∋ α 7−→ ξα ∈ Ξ+

is injective, i.e. the sequence α is uniquely determined by the function ξα.

First proof. Let us derive a recurrence relation for ρS∗α in terms of ρα. ¿From (1.4)
by the resolvent identity (A.6), (A.7) we get

(Γ2
S∗α − z)−1 − (Γ2

α − z)−1 =
1

Dα(z)
(·, (Γ2

α − z)−1α)(Γ2
α − z)−1α, (4.1)

where

Dα(z) = 1− ((Γ2
α − z)−1α, α) = 1− ((Γ2

α − z)−1Γαe0,Γαe0)

= −z((Γ2
α − z)−1e0, e0) = −z

∫ ∞

0

dρα(λ)

λ− z
.

Evaluating the quadratic form of both sides of (4.1) on the element e0, we obtain

∫ ∞

0

dρS∗α(λ)

λ− z
−
∫ ∞

0

dρα(λ)

λ− z
= −1

z

(∫ ∞

0

dρα(λ)

λ− z

)−1
(∫ ∞

0

√
λdρα(λ)

λ− z

)2

. (4.2)

Now we can complete the proof. It is well known that a finite measure on R is
uniquely determined by its Cauchy transform. Thus, by (3.4), the SSF ξα uniquely
determines the measure ρα. Identity (4.2) allows one to determine ρ(S∗)nα iteratively
for all n ∈ Z+. Finally, identity (1.13) uniquely determines the whole sequence
α. �

Second proof. Let ρ̃α be the measure given by (3.5). By (3.4), the measure ρ̃α is
uniquely determined by ξα; thus, it suffices to prove that the sequence α is uniquely
determined by the measure ρ̃α.

For a given sequence α, let the unitary operator Uα be given by

Uα : L2(R, dρ̃α) → RanΓα, f 7→ f(Γ̃2
α)Pαe0. (4.3)
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We have (cf. (2.3)–(2.6))

U∗
αΓ̃

2
αUα =Mx, (4.4)

whereMx is the operator of multiplication by the independent variable in L2(R, dρ̃α).
Applying the unitary transformation Uα to (1.4), we get

U∗
αΓ̃

2
S∗αUα =Mx − (·,M1/2

x 1)M 1/2
x 1. (4.5)

The r.h.s. is an operator in L2(R, dρ̃α) given by an explicit formula independent of α.

Thus, the operator U∗
αΓ̃

2
S∗αUα (and therefore its square root U∗

αΓ̃S∗αUα) is uniquely
determined by the measure ρ̃α.

We will use the the compressed shift operator PαSP
∗
α. Denote

Σ = U∗
αPαSP

∗
αUα.

By (1.3), we have

Σ∗M1/2
x = U∗

αΓ̃S∗αUα,

and therefore the operator Σ∗ is uniquely determined by ρ̃α.
By inspection of (1.1), we find

αn = ((S∗)nΓαe0, e0) = ((PαS
∗P ∗

α)
nΓ̃αPαe0, Pαe0).

Applying Uα, we get

αn = ((Σ∗)nM1/2
x 1, 1);

the r.h.s. is uniquely determined by ρ̃α, and therefore by ξα. �

5. Continuity of the map α 7→ ξα and its inverse

Here we prove Theorem 1.4. It will be useful for us to rephrase it in a slightly
different way; the statement below also includes that the range of α 7→ ξα is closed.
We refer to the introduction for the definition of weak convergence in ℓ1,∞++ and

Ξ+. Notice that property (1.6) implies that ℓ1,∞++ (R) is mapped into Ξ+(π
2R2).

Conversely, if α belongs to the inverse image of Ξ+(C), using (3.4), it is easy to see
that the support of ρα is contained in [0, C]. Since e0 is a generating element of Γα,

we infer that ‖Γα‖ ≤
√
C, and, by (1.7), that α ∈ ℓ1,∞++ (2

√
C). In order to prove

continuity, it is therefore enough to deal with sequences in ℓ1,∞++ (R) and in Ξ+(C).

Theorem 5.1. (i) Let α(p) be a sequence of elements in ℓ1,∞++ (R) and let α be a

sequence of real numbers. Assume that α
(p)
n → αn as p → ∞ for all n. Then

α ∈ ℓ1,∞++ and ξα(p) → ξα weakly in Ξ+.

(ii) Let α(p) be a sequence of elements of ℓ1,∞++ . If ξα(p) → ξ weakly in Ξ+, then there

exists α ∈ ℓ1,∞++ such that α(p) → α weakly in ℓ1,∞++ as p→ ∞, and ξ = ξα.

Proof. (i) Let α(p), α be as in the hypothesis. As we already mentioned, the supports
of ξα(p) all lie in the compact set [0, π2R2].

Next, it is straightforward to see that the weak convergence implies that α ∈ ℓ1,∞

and therefore Γα is a bounded operator. Further, since ℓ1,∞ ⊂ ℓr for any r > 1, it
is easy to see that α ∈ ℓ2 and we have the norm convergence ‖α(p) − α‖ℓ2 → 0 as
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p→ ∞. We conclude that if f is a finite linear combination of the elements {en}∞n=0,
then

‖Γα(p)f − Γαf‖ℓ2 → 0 as p→ ∞.

Using the uniform boundedness of the norms ‖Γα(p)‖, we obtain that Γα(p) → Γα in
strong operator topology. Similarly, ΓS∗α(p) → ΓS∗α strongly. It follows that Γα ≥ 0
and ΓS∗α ≥ 0 and so α ∈ ℓ1,∞++ .

The strong convergence of operators yields (see e.g. [12, Theorem VIII.24(a)]) the
strong convergence of resolvents. Thus,

(Γ2
α(p)(Γ

2
α(p) − z)−1e0, e0) → (Γ2

α(Γ
2
α − z)−1e0, e0), as p→ ∞,

for all Im z 6= 0. By (3.2), we get
∫ ∞

0

ξα(p)(λ)

λ− z
dλ→

∫ ∞

0

ξα(λ)

λ− z
dλ as p→ ∞;

this yields the weak convergence ξα(p) → ξα.
(ii) Let α(p) be as in the hypothesis. By our definition of weak convergence in Ξ+,

we have supp ξα(p) ⊂ [0, C] for all p and some C > 0. As we already observed, ρα(p)

is supported on [0, C] and α(p) belongs to ℓ1,∞++ (2
√
C). Consequently, by a diagonal

argument, there exists a subsequence α(p′) such that α
(p′)
n → αn as p′ → ∞ for all n.

Using part i) of the theorem, we infer that α ∈ ℓ1,∞++ and that ξα(p′) → ξα weakly in
Ξ+, so that ξ = ξα. By the uniqueness Theorem 4.1, we conclude that α is unique,
thus the whole sequence α(p) weakly converges to α in ℓ1,∞++ . �

Remark 5.2. Using the same arguments as in the above proof, one could similarly
describe the weak continuity of the map α 7→ ρα.

6. Inverse spectral problem: surjectivity

Here we prove that the map (1.8) is surjective. We give two proofs.

6.1. First proof. The first proof is based on the following result of [5] — see also
[6] — about the finite rank Hankel operators:

Proposition 6.1 ([5], Corollary 3). Let N ∈ N and let {λn}Nn=1 and {µn}Nn=1 be two
finite sequences of real numbers such that

0 < µN < λN < µN−1 < · · · < µ1 < λ1.

Then there exists α ∈ ℓ1,∞++ such that the non-zero eigenvalues of Γα coincide with
{λn}Nn=1 and the non-zero eigenvalues of ΓS∗α coincide with {µn}Nn=1.

Note that under the hypothesis of the proposition, we have

ξα =
N∑

n=1

χ∆n
, ∆n = [µ2

n, λ
2
n].

This follows from (A.3).
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First proof of surjectivity. Let ξ ∈ Ξ+, supp ξ ⊂ [0, C].
Step 1: let us show that there exists a sequence ξ(p) ∈ Ξ+, p ∈ N, with the

following properties:

(i) ξ(p) → ξ weakly in Ξ+;
(ii) for each p, the function ξ(p) has the following structure:

ξ(p) =
N∑

n=1

χ∆n
,

where {∆n}Nn=1 is a finite collection of disjoint closed intervals in (0, C].

First note that finite linear combinations of characteristic functions of intervals
are dense in L1(0, C). Approximating ξ by such functions, we can obtain a weakly
convergent sequence in Ξ+. Thus, it suffices to show that if ξ = Aξ∆, where 0 <
A ≤ 1 and ∆ ⊂ (0,∞) is a compact interval, then a sequence ξ(p) as above can
be constructed. The latter statement is easy to check directly, and is known in
signal processing as the pulse width modulation method. Indeed, let ∆ = [a, b]; set
L = b− a and

∆n =
[
a + n−1

N
L, a + n−1+A

N
L
]
, 1 ≤ n ≤ N,

and let ξ(N) =
∑N

n=1 χ∆n
. Then it is easy to see that ξ(N) → Aχ∆ in Ξ+.

Step 2: Let ξ(p) be as constructed at the previous step. For any fixed p, let us
write the intervals ∆n as ∆n = [µ2

n, λ
2
n] and let us use Proposition 6.1. We obtain an

element α(p) ∈ ℓ1,∞++ such that ξα(p) = ξ(p). Thus, we obtain a sequence of elements

α(p) ∈ ℓ1,∞++ such that ξα(p) → ξ weakly in Ξ+.

By Theorem 5.1(ii), there exists α ∈ ℓ1,∞++ such that ξ = ξα, as required. �

6.2. Second proof. The second proof of surjectivity is heavily based on the con-
struction of [10].

Step 1: Let ξ ∈ Ξ+, supp ξ ⊂ [0, C]. Consider the analytic function

∆(z) = exp

(∫ ∞

0

ξ(λ)

λ− z
dλ

)
, z /∈ [0,∞). (6.1)

For z in the upper half-plane set z = x + iy, y > 0; then, using the assumption
0 ≤ ξ ≤ 1, we have

0 ≤ y

∫ ∞

0

ξ(λ)

(λ− x)2 + y2
dλ ≤ π,

and therefore

Im∆(x+ iy) = exp

(∫ ∞

0

(λ− x)ξ(λ)

(λ− x)2 + y2
dλ

)
sin

(
y

∫ ∞

0

ξ(λ)

(λ− x)2 + y2
dλ

)
≥ 0.

Thus, ∆(z) is a Herglotz function (analytic function with a positive imaginary part
in the upper half-plane). Further, one has

∆(z) = 1− 1

z

∫ ∞

0

ξ(λ)dλ+O(|z|−2), |z| → ∞.
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It follows that 1−∆(z)−1 is also a Herglotz function which satisfies

1−∆(z)−1 = −1

z

∫ ∞

0

ξ(λ)dλ+O(|z|−2), |z| → ∞.

By a Herglotz representation theorem (see e.g. [9, Section 14]), we obtain

1−∆(z)−1 =

∫ ∞

−∞

dν(λ)

λ− z
, (6.2)

where ν ≥ 0 is a finite measure on R. Since ∆(z) is analytic in C \ [0, C], we get
that supp ν ⊂ [0, C]. Let z = −ε:

∫ ∞

0

dν(λ)

λ+ ε
= 1−∆(−ε)−1 = 1− exp

(
−
∫ ∞

0

ξ(λ)

λ+ ε
dλ

)
< 1.

It follows that ∫ ∞

0

dν(λ)

λ
≤ 1.

In particular, this means that ν({0}) = 0. Set dρ̃(λ) = λ−1dν(λ). Then ρ̃ is a non-
negative finite measure with a compact support in [0,∞) and ρ̃(R) ≤ 1. Rewriting
the integral representation (6.2) for ∆ in terms of ρ̃, we obtain (cf. (3.4))

1−∆(z)−1 =

∫ ∞

0

λdρ̃(λ)

λ− z
. (6.3)

Step 2: Consider the Hilbert space L2(R, dρ̃) and the operator Mx of multiplica-
tion by the independent variable in this space. It what follows, it is important that
ρ̃({0}) = 0 and therefore KerMx is trivial. Set

H0 =M1/2
x , H = (H2

0 − (·, H01)H01)1/2 .
Below we prove that there exists a bounded Hankel operator Γα in ℓ2 with Γα ≥ 0,
ΓS∗α ≥ 0 and an isometry

U : L2(R, dρ̃) → ℓ2 with RanU = RanΓα (6.4)

such that

H0 = U∗Γ̃αU, H = U∗Γ̃S∗αU (6.5)

(compare with (4.3), (4.4), (4.5)).
Assume that such operators Γα and U have already been found. By (6.3), we

have

∆(z)−1 = 1− ((H2
0 − z)−1H01, H01),

and therefore, reversing the steps in calculation (3.1),

∆(z) = det((H2
0 − z)(H2 − z)−1) = ∆H2

0/H
2(z).

Thus, from (6.1) and (A.5), we find

ξ(λ) = ξ(λ;H2
0 , H

2).

By (6.5), this yields ξ = ξα, as required.
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Step 3: Now we need to construct Γα and U satisfying (6.4) and (6.5). The rest
of the proof repeats almost verbatim the arguments of [10, Section III.3]. ¿From the
definition of H , we have

‖Hf‖2 = (H2f, f) ≤ (H2
0f, f) = ‖H0f‖2

for any f . Thus, there exists a contraction Σ0 such that Σ0H0 = H . Let Σ = Σ∗
0;

then
H0Σ = H.

¿From here we get
H2

0 − (·, H01)H01 = H0ΣΣ
∗H0,

and therefore we obtain
ΣΣ∗ = I − (·, 1)1.

For any f ∈ L2(R, dρ̃) we have

‖f‖2 = |(f, 1)|2 + ‖Σ∗f‖2.
Iterating this, we obtain

‖f‖2 =
∞∑

n=0

|(f,Σn1)|2 + lim
n→∞

‖(Σ∗)nf‖2, (6.6)

where the limit necessarily exists and the series necessarily converges. In order to
complete the proof, we need

Lemma 6.2. For any f ∈ L2(R, dρ̃), we have

lim
n→∞

‖(Σ∗)nf‖ = 0.

This lemma will be proven at the end of the section.
Step 4: Assuming Lemma 6.2, let us complete the proof of the theorem. Consider

the map U : L2(R, dρ̃) → ℓ2 given by

f 7→ {(f,Σn1)}∞n=0 .

By (6.6) and Lemma 6.2, this map is an isometry. Set

αn = ((Σ∗)nH01, 1).
If {en}∞n=0 is the standard basis in ℓ2, we have (by the definition of U)

U∗en = Σn1.
Thus,

(UH0U
∗en, em) = (H0Σ

n1,Σm1).
Using H0Σ = Σ∗H0, we get

(H0Σ
n1,Σm1) = ((Σ∗)nH01,Σm1) = αn+m.

Similarly, we get

(UHU∗en, em) = (HΣn1,Σm1) = (H0Σ
n+11,Σm1) = αn+m+1 = (S∗α)n+m.

Thus, we obtain
UH0U

∗ = Γα, UHU∗ = ΓS∗α. (6.7)
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Since H0 ≥ 0 and H ≥ 0, the double positivity condition for Γα holds true. Since U
is an isometry, multiplying (6.7) by U∗ on the left and by U on the right gives (6.5).
Finally, since KerH0 = {0}, from (6.7) we obtain Ker Γα = KerU∗. This gives the
condition RanU = RanΓα. �

Proof of Lemma 6.2. This is borrowed almost verbatim from [10].
By definition, we have H2 ≤ H2

0 . By the Heinz inequality (see e.g. [3, Sec-

tion 10.4]) H1/2 ≤ H
1/2
0 , and therefore there exists a (unique) contraction Q in

L2(R, dρ̃) with

H1/2 = QH
1/2
0 .

Let us prove that
Ker(Q∗Q− I) = {0}. (6.8)

We have

H2 = (H
1/2
0 Q∗QH

1/2
0 )2 = H

1/2
0 Q∗QH0Q

∗QH
1/2
0 ,

H2 = H2
0 − (·, H01)H01 = H

1/2
0 (H0 − (·, H1/2

0 1)H1/2
0 1)H1/2

0 .

It follows that
Q∗QH0Q

∗Q = H0 − (·, H1/2
0 1)H1/2

0 1, (6.9)

and so
(H0Q

∗Qf,Q∗Qf) = (H0f, f)− |(f,H1/2
0 1)|2 (6.10)

for any f ∈ L2(R, dρ̃). We claim that Ker(Q∗Q− I) is an invariant subspace of H0.

Indeed, if Q∗Qf = f , then by (6.10) we have f ⊥ H
1/2
0 1 and so by (6.9)

Q∗QH0f = H0f,

i.e. H0f ∈ Ker(Q∗Q− I). Thus, Ker(Q∗Q− I) is an invariant subspace of H0 which

is orthogonal to H
1/2
0 1. Then it is orthogonal to the minimal invariant subspace of

H0 that contains H
1/2
0 1. Recalling that H0 = M

1/2
x we see (by an approximation

argument based on the Weierstrass theorem) that such minimal subspace coincides
with the whole space L2(R, dρ̃). Thus we get (6.8).

Since 0 ≤ Q∗Q ≤ I and Ker(Q∗Q − I) = {0}, by the spectral theorem for self-
adjoint operators we get

lim
n→∞

‖(Q∗Q)nf‖ = 0 ∀f ∈ L2(R, dρ̃). (6.11)

Next, we have

H = H
1/2
0 Q∗QH

1/2
0 = Σ∗H

1/2
0 H

1/2
0 ,

and therefore
H

1/2
0 Q∗Q = Σ∗H

1/2
0 .

Iterating the last identity, we obtain

H
1/2
0 (Q∗Q)n = (Σ∗)nH

1/2
0 ,

and so (6.11) implies that

lim
n→∞

‖(Σ∗)nf‖ = 0 ∀f ∈ RanH
1/2
0 .
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Since ‖Σ∗‖ ≤ 1, by the density argument we obtain that the last relation in fact
holds true for all f ∈ L2(R, dρ̃). �

7. Example

Fix a parameter γ > −1/2. Let

αn =
1

n + 1 + γ
, n = 0, 1, 2, . . . (7.1)

This sequence corresponds to the choice dω(t) = tγdt in (2.1). Consider the Hankel
operator Γα. An explicit diagonalisation of Γα was given by M. Rosenblum in
[14]. This diagonalisation shows, in particular, that the spectrum of Γα (for any
γ > −1/2) coincides with the interval [0, π], is purely absolutely continuous and
has multiplicity one. Since S∗α also has the form (7.1) with γ incremented by 1,
this yields a whole class of Hankel operators Γα with identical spectra of Γα and
ΓS∗α. This shows that, unlike in the case of compact Hankel operators, in general
the spectra of Γα and ΓS∗α together do not determine α.

Below we give an explicit formula for the measure ρα corresponding to the se-
quence (7.1). In order to do this, let us recall Rosenblum’s diagonalisation of Γα.
For k < 1

2
+ Rem, let Wk,m be the Whittaker function (see e.g. [1, Chapter 6]):

Γ(m− k + 1
2
)Wk,m(x) = xm+ 1

2 e−x/2
∫ ∞

0

e−xt(t + 1)m+k− 1
2 tm−k− 1

2dt. (7.2)

For s > 0 and f ∈ L2(R+), set

(Uf)(s) = lim
ε→+0

∫ ∞

ε

1

x
W−γ,i

√
s(x)f(x)dx.

Then U is a unitary operator from L2(R+, dx) onto L
2(R+, dµ(s)), where

dµ(s) =
1

2π2
sinh(2π

√
s)|Γ(1

2
+ γ − i

√
s)|2ds.

Further, for n = 0, 1, 2, . . . , let Ln be the Laguerre polynomial normalised such that
the functions φn(x) = e−x/2Ln(x) form an orthonormal basis in L2(R+). Define a
map V : ℓ2 → L2(R+, dµ(s)) by setting

(V a)(s) = U(
∑∞

n=0 anφn), ∀a = {an}∞n=0 ∈ ℓ2.

Then (see [14] for the proof) V is unitary and V transforms Γα into a multiplication
operator:

(V ΓαV
−1g)(s) =

π

cosh(π
√
s)
g(s).

Thus, we obtain

ρα(δ) = (χδ(Γ
2
α)e0, e0) =

∫ ∞

0

χδ

(
π2

(cosh(π
√
s))2

)
|(V e0)(s)|2dµ(s), (7.3)

where

(V e0)(s) = (Uφ0)(s) = lim
ε→+0

∫ ∞

ε

1

x
W−γ,i

√
s(x)e

−x/2dx. (7.4)
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The measure ρα is purely absolutely continuous and is supported on the interval
[0, π2]. Formula (7.3) can be rewritten as

dρα(λ) =
1

π
|(V e0)(s)|2|Γ(12 + γ − i

√
s)|2

√
s

λ2
dλ, 0 < λ < π2,

where the variables s and λ are related by

λ =

(
π

cosh(π
√
s)

)2

.

In the case γ = 0, the measure ρα and even the corresponding function ξα can be
computed explicitly.

Lemma 7.1. Let α be defined by (7.1) with γ = 0. Then supp ρα = supp ξα = [0, π2].
For λ ∈ (0, π2) we have

dρα(λ) =
1

π2
√
λ
cosh−1

(
π√
λ

)
=

1

π2
√
λ
log

(
π√
λ
+

√
π2

λ
− 1

)
dλ (7.5)

and

ξα(λ) =
1
π
tan−1

(
2
π
cosh−1

(
π√
λ

))
= 1

π
tan−1

(
2
π
log

(
π√
λ
+

√
π2

λ
− 1

))
. (7.6)

Proof. Substituting the integral representation (7.2) into (7.4), we find

(V e0)(s) =
1

Γ(1
2
+ i

√
s)

∫ ∞

0

xi
√
s− 1

2 e−x
∫ ∞

0

e−xt(t+ 1)i
√
s− 1

2 t−i
√
s− 1

2dt dx

=
1

Γ(1
2
+ i

√
s)

∫ ∞

0

(t+ 1)i
√
s− 1

2 t−i
√
s− 1

2

∫ ∞

0

xi
√
s− 1

2 e−x(t+1)dx dt

=

∫ ∞

0

(t+ 1)−1t−i
√
s− 1

2dt =
π

cosh(π
√
s)
.

Further, by the reflection formula for Gamma function, we have

|Γ(1
2
− i

√
s)|2 = π

cosh(π
√
s)
.

Thus, we obtain (7.5).
Next, for arg z ∈ (0, 2π), denote

ζ =
π√
−z ,

where the branch of the square root is defined so that
√
−z > 0 for z < 0. Let us

prove the formula

exp

(
−
∫ ∞

0

ξα(λ)

λ− z
dλ

)
=

sinh−1(ζ)

ζ
=

log(ζ +
√
ζ2 + 1)

ζ
. (7.7)



INVERSE PROBLEM FOR HANKEL OPERATORS 21

By (3.3), we have

∆(z)−1 = exp

(
−
∫ ∞

0

ξα(λ)

λ− z
dλ

)
= −z((Γ2

α − z)−1e0, e0)

= −z
∫ ∞

0

(λ− z)−1dρα(λ) = − z

π2

∫ π2

0

1

(λ− z)
√
λ
cosh−1(π/

√
λ)dλ.

By a change of variable x = cosh−1(π/
√
λ), this transforms into

∆(z)−1 =
2

π

∫ ∞

0

x sinh(x)

(cosh(x))2 − π2

z

dx =
1

π

∫ ∞

−∞

x sinh(x)

(cosh(x))2 + ζ2
dx.

In order to compute the last integral, we write

π∆(z)−1 =

∫ ∞

−∞
f(x)dx, f(x) =

x sinh(x)

(cosh(x))2 + ζ2
,

and regard it as an integral of the complex variable. The function f(x), x ∈ C,
has poles at x = i(π/2) ± sinh−1(ζ) + 2πin, n ∈ Z. Let us move the contour of
integration from R to iπ + R. We notice that∫ ∞

−∞
f(x+ πi)dx = −

∫ ∞

−∞
f(x)dx.

Moving the contour, we pick up the residues of f at x± = i(π/2) ± sinh−1(ζ), and
so by a direct calculation we obtain

2

∫ ∞

−∞
f(x)dx = 2πi(Res

x−
f(x) + Res

x+
f(x)) = 2π

sinh−1(ζ)

ζ
,

which yields (7.7).
Now let us prove formula (7.6) for ξα. Since supp ρα ⊂ [0, π2], we also have

supp ξα ⊂ [0, π2]. Denote

F (z) =

∫ π2

0

ξα(λ)

λ− z
dz.

By (7.5), we have

F (z) = − log
sinh−1(ζ)

ζ
, ζ =

π√
−z .

Fix λ0 ∈ (0, π2) and let z = λ0 + i0. Then

ζ = iζ0, where ζ0 =
π√
λ0

and
√
λ0 > 0.

We have

ξα(λ0) =
1

π
ImF (λ0 + i0) = −1

π
arg

sinh−1(iζ0)

iζ0
.

Now it remains to compute the r.h.s.:

ξα(λ0) = −1

π
arg

i(π/2) + cosh−1(ζ0)

iζ0
=

1

π
arg((π/2) + i cosh−1(ζ0)),

which yields (7.6). �
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Appendix A. Background information on the SSF theory

Here, for the reader’s convenience, we collect key formulas of the SSF theory
without proofs or references or much discussion. For the details and history we refer
to the survey [4] or the book [16].

Let A, B be bounded self-adjiont operators in a Hilbert space. Assume that B−A
is a trace class operator. Then there exists a real valued function ξ ∈ L1(R) such
that the Lifshits-Krein trace formula holds true:

Tr(ϕ(B)− ϕ(A)) =

∫ ∞

−∞
ξ(λ)ϕ′(λ)dλ, ∀ϕ ∈ C∞

0 (R). (A.1)

(It is easy to prove that for any ϕ ∈ C∞
0 (R), the difference ϕ(B)− ϕ(A) is a trace

class operator.) This function is called the spectral shift function (SSF) for the pair
A, B; notation: ξ(λ) = ξ(λ;B,A). The SSF has the following properties:

(i) If ±(B −A) ≥ 0, then ±ξ(λ;B,A) ≥ 0 for a.e. λ ∈ R.
(ii) If rank(B −A) ≤ n, then |ξ(λ;B,A)| ≤ n for a.e. λ ∈ R.
(iii) In particular, if B−A = (·, x)x for some element x, then ξ(λ;B,A) ∈ [0, 1] for

a.e. λ ∈ R.
(iv) One has the estimate

∫ ∞

−∞
|ξ(λ;B,A)|dλ ≤ ‖B − A‖1,

where ‖·‖1 is the trace norm.
(v) One has the identity

∫ ∞

−∞
ξ(λ;B,A)dλ = Tr(B − A). (A.2)

Finally, the SSF is compactly supported; this is a consequence of the boundedness
of B and A.

If A, B are compact operators, then the SSF can be expressed in terms of the
eigenvalue counting functions of A, B. Denote

N+(λ;A) = Tr(χ(λ,∞)(A)), λ > 0;

then

ξ(λ;B,A) = N+(λ;B)−N+(λ;A), λ > 0, (A.3)

with a similar formula for λ < 0. This is a direct consequence of the trace formula
(A.1).

The SSF for the pair A, B is closely related to the perturbation determinant ∆B/A

for this pair. The perturbation determinant is defined by

∆B/A(z) = det(I + (B − A)(A− z)−1), (A.4)

where z is a complex number outside the spectrum of A. The perturbation determi-
nant is an analytic function of z, with poles at isolated eigenvalues of A and zeros
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at isolated eigenvalues of B (and may have more complicated singularities at the
essential spectra of A, B). One has

∆B/A(z) = exp

{∫ ∞

−∞

ξ(λ)

λ− z
dλ

}
. (A.5)

Finally, we would like to display a resolvent formula for rank one perturbations.
Let B = A + γ(·, x)x, where x is an element of the Hilbert space and γ ∈ R. Then
for all z with Im z 6= 0 we have

(B − z)−1 = (A− z)−1 − γ

D(z)
(·, (A− z)−1x)(A− z)−1x, (A.6)

D(z) = 1 + γ((A− z)−1x, x). (A.7)
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