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Abstract. We show how it is possible to apply the SBV Regularity

Theorem for entropy solutions of one-dimensional scalar conservation

laws, proved by Ambrosio and De Lellis, to Convection Theory and

sticky particles. In the multi-dimensional case we present a counterex-

ample which prevent us from using the same approach.
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1 - Introduction

We present some simple applications of the SBV Regularity Theorem for
entropy solutions of one-dimensional scalar conservation laws presented in [?].
There, Ambrosio and De Lellis studied the regularity of entropy solutions of the
scalar conservation law

(1) ∂tu+Dx(H(u)) = 0 in Ω := (a, b),

and proved the following

T h e o r e m 1.1 (One-dimensional SBV Regularity Theorem, Ambrosio
and De Lellis). Let u ∈ L∞(Ω) be an entropy solution of (??) with H ∈ C2(R)
locally uniformly convex. Then u belongs to SBVloc(Ω).

For a detailed description of the spaces BV and SBV we refer to [?], Chap-
ters 3, 4. For completeness, we briefly recall that, given u ∈ BV (Rm,Rk), it is
possible to decompose its distributional derivative into three mutually singular
measures: Du = Dau + Dcu + Dju. Dau is the absolutely continuous part
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with respect to the Lebesgue measure. Dju is the part of the measure which
is concentrated on the rectifiable m − 1 dimensional set J , where the function
u has jump discontinuities, and for this reason is called jump part. Dcu, the
Cantor part, is the singular part which satisfies Dcu(E) = 0 for every Borel
set E with Hm−1(E) < ∞. If this part vanishes, i.e. Dcu = 0, we say that
u ∈ SBV (Rm,Rk).

Theorem ?? can be easily extended to one-dimensional Hamilton-Jacobi
equations. Indeed, the potential, given by

{

∂tU = −H(u)
DxU = u,

is a viscosity solution (in the sense of Crandall-Lions) of the Hamilton-Jacobi
equation

(2) ∂tU +H(DxU) = 0

if and only if u is an entropy solution to (??). Therefore, the SBV Regularity
Theorem applies also to the distributional derivative of a viscosity solution of
Hamilton-Jacobi equation (??) when H is C2(Ω) and locally uniformly convex.

A recent generalization to the multi-dimensional case has been proved by
Bianchini, De Lellis and Robyr in [?].

T h e o r e m 1.2 (Multi-dimensional SBV Regularity Theorem, Bianchini,
De Lellis, Robyr). Let U be a viscosity solution of (??) in Ω ⊂ [0, T ] × R

d,
assume H belongs to C2(Rd) and

c−1
H Idn ≤ D2H ≤ cHIdn

for some cH > 0. Then DxU, ∂tU belongs to SBVloc(Ω).

In Sections ?? and ?? we describe Generalized Hydrostatic Boussinesq (GHB)
equations and the model of sticky particles, then, in Section ??, we show how
the SBV Regularity Theorem applies to them in the one-dimensional case. In
the last section we present a counterexample which prevent us from using the
same approach for the multi-dimensional case. A similar counterexample was
shown by Vasseur in [?], but never published.

2 - Generalized Hydrostatic Boussinesq equations

Generalized Hydrostatic Boussinesq (GHB) equations can be seen as the
most degenerate version of Generalized Navier-Stokes Boussinesq (GNSB) equa-
tions, where both the inertia terms and the dissipative operator are neglected.
These equations rule the dynamic of a fluid under fast convection. In terms of
the temperature of the fluid they take the form

(3) y = x+∇p, ∇ · v = 0,
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(4) ∂ty + (v · ∇)y = G(x),

here, being D ⊂ R
d a smooth bounded domain where the fluid is placed, the

function y(t, x) : R+ ×D → R
d is the generalized temperature field of the fluid,

v(t, x) : R+ × D → R
d its velocity, p(t, x) : R+ × D → R the pressure, G(x) :

R
d → R

d the generalized heat source term, an L∞(Rd) function. Equation (??)
can be seen as a generalization of the hydrostatic balance in Convection Theory.

The fact that G depends only on the position of the fluid allows us to apply
the previous results. However, this is a very particular assumption since the
heat source can depend also on time and temperature G = G(t, x, y).

The complete description of this system can be found in [?], Chapter 3. Pass-
ing to Lagrangian coordinates, Brenier proved here that a generalized solution
can be found.

Since we need some concepts of Optimal Transport Theory let us recall some
preliminary definitions and results.

First, we introduce rearrangements and measure preserving maps.

D e f i n i t i o n 2.1. Given two [L2(D)]d maps Y and Z, we say that they
are rearrangement of each other if they define the same image measure, i.e. for
all continuous f on R

d, such that |f(y)| ≤ 1 + |y|2,
∫

D

f(Y (a))da =

∫

D

f(Z(a))da.

D e f i n i t i o n 2.2. We say that Y in [L2(D)]d is a measure preserving
map, when it is a rearrangement of the identity map, i.e. for all continuous f
on R

d, such that |f(y)| ≤ 1 + |y|2,
∫

D

f(a)da =

∫

D

f(Y (a))da.

Next we define the class of maps with convex potential.

D e f i n i t i o n 2.3. We say that an [L2(D)]d map Y belongs to the class
C of maps with a convex potential, if there is a lower semi-continuous convex
function p : Rd → (−∞,+∞] such that, for Ld-a.e. point x in D, the gradient
∇p(x) coincides with Y .

Then, looking for a rearrangement with convex potential, we have the fol-
lowing Brenier’s Theorem which can be found in [?]:

T h e o r e m 2.1 (Polar Factorization Theorem, Brenier). Let Y be a non
degenerate [L2(D)]d map. Then there is a unique polar factorization

Y = Y R ◦X,

where Y R belongs to C and X is a Lebesgue measure preserving map of D.
In this decomposition, Y R is the unique rearrangement of Y in C and X is

the unique measure preserving map of D that minimizes
∫

D

|X(a)− Y (a)|2da.
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In addition, X can be written:

X(a) = (∇φ)(Y (a)), a.e. a ∈ D,

where φ is a convex Lipschitz function defined on R
d.

Coming back to our problem and passing to Lagrangian coordinates the
system (??,??) looks like

(5) Y (t, a) = X(t, a) +∇p(t,X(t, a)),

(6) ∂tY (t, a) = G(X(t, a)),

where, for all t, D ∋ a 7−→ X(t, a) is a measure preserving map as a consequence
of the fact that v is a smooth divergence-free vector field. X(t, a) denotes the
position of a fluid parcel a at a time t, therefore its velocity and its temperature
are

(7) ∂tX(t, a) = v(t,X(t, a)), Y (t, a) = y(t,X(t, a)).

Note that, due to the above equations, parcels that collide, get stuck to-
gether. If parcels reach the same position they will have the same velocity, the
same temperature and will no more separate. In fact GHB equations are very
closed to systems of sticky particles as we can see in the next section.

Assuming a priori that the map x 7→ x +∇p(t, x) has convex potential, we
deduce from (??) that x 7→ x + ∇p(t, x) is the unique convex rearrangement
Y R(t, ·) of Y (t, ·), due to the fact that Y (t, a) = Y R(t, ·) ◦ X(t, a). Moreover
(??) implies that for all C1 function f compactly supported on R

d, Y R(t, ·)
satisfies

(8)
d

dt

∫

D

f(Y R(t, a))da =

∫

D

(∇f)(Y R(t, a)) ·G(a)da.

With these considerations Brenier naturally introduced a more general con-
cept of solution to GHB system.

D e f i n i t i o n 2.4. We say that Y CR in C0([0, T ], [L2(D)]d) is the convex
rearrangement (CR) solution to the GHB equations (??,??), if :

• Y CR(t, ·) belongs to the set C of all maps with convex potential, for all
t ∈ [0, T ],

• for all compactly supported C1 function f on R
d, Y CR(t, ·) satisfies (??).

In [?], he proved the following existence theorem.

T h e o r e m 2.2 (Brenier). For each initial condition Y 0 in [L2(D)]d, there

is at least one CR-solution Y CR(t, a) such that Y CR(0, ·) = (Y 0)
R
(·).
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This solution can be obtained as the limit in C0([0, T ], [L2(D)]d) as h → 0,
of a time discrete approximation Y h(t, a) defined, first at discrete times t = nh,
by:

Y h(nh+ h, a) = [Y h(nh, a) + hG(a)]
R
, n = 0, 1, 2, . . .

(where, as seen before, (·)
R

is the convex rearrangement operator) and then
linearly interpolated in t.

The time discrete approximation, given by the theorem above, tells us that
starting from an initial temperature data Y 0, the CR-solution evolves linearly

as (Y 0)
R
(a)+tG(a) as far as this function remains with convex potential. When

this is no more the case, it is rearranged in order to preserve the membership
to the space of maps with convex potential.

Note that CR-solutions are a.e. equal to functions with convex potential,
i.e. for all t there exists a convex function ψt : D → R such that

Y CR(t, a) = Dψt(a),

for a.e. a in D. Taking now the Legendre transform of this convex function

U(t, x) = sup
a∈D

x · a− ψt(a),

we obtain a function U(t, ·) which is again convex and its distributional deriva-
tive DxU(t, ·) is the generalized inverse of Y CR(t, ·). We are interested in the
regularity of DxU(t, ·). What we can say so far is that it is a function of bounded
variation.

2.1 - One-dimensional case

In the one-dimensional case it is possible to look at DxU(t, ·) as a solution
of a scalar conservation law.

First we can observe that, taking D = [0, 1], the convex rearrangement is
the monotone nondecreasing rearrangement defined by

Y R(s) = inf{t ∈ R | µY (t) > s},

for s in [0,1], where
µY (t) = |{Y < t}|,

is the distribution function. For a detailed description of monotone nondecreas-
ing rearrangement we refer to [?], Chapter 1.

One of the properties of monotone nondecreasing rearrangement is that it is
non expansive in L2([0, 1]), i.e.

∫

D

|Y R(a)− ZR(a)|2da ≤

∫

D

|Y (a)− Z(a)|2da.

This property guaranties the uniqueness of the solution of (??).
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Moreover, as explained in [?], the limit of the time discrete approximation,
defined in Theorem ??, satisfies the sub-differential inclusion:

(9) G(x) ∈ ∂tY + ∂Ψ[Y ],

where Ψ[Y ] = 0 if Y is a nondecreasing function of x in D, and Ψ[Y ] = +∞
otherwise.

The generalized inverse of the solution, in the one-dimensional case, can be
found using the Heaviside function. Looking at its behavior, Brenier proved in
[?], the following theorem. In the proof he used a Transport Collapse method,
which involves the same time discrete approximation scheme seen in Theorem
??.

T h e o r e m 2.3 (Brenier). Let Y R(t, a) be the CR-solution found in
Theorem ??, then the generalized inverse

u(t, y) =

∫ 1

0

H(y − Y R(t, a))da,

where H is the Heaviside function, is an entropy solution of the scalar conser-
vation law

∂tu+Dx(H(u)) = 0,

where H is the primitive of G, DpH(p) = G(p).

We are interested in the regularity of an entropy solution of a scalar conser-
vation law with nondecreasing initial conditions and Lipschitz flux function H.
Applying what we have already said, since we are in the one-dimensional case,
the entropy solution above can be seen as the derivative of the unique viscosity
solution of the following Hamilton-Jacobi equation

∂tU +H(DxU) = 0,

with a convex initial datum and Lipschitz Hamiltonian.

3 - Sticky particles

At a discrete level pressureless gases with sticky particles can be modeled by
a finite collection of particles that get stuck together right after they collide with
conservation of mass and momentum. On the other hand at a continuous level
the model is governed by the following one-dimensional system of conservation
laws in (0,+∞)× R

(10) ∂tρ+Dx(ρv) = 0,

(11) ∂t(ρv) +Dx(ρv
2) = 0,

where ρ(t, x) is the density field, while v(t, x) is the velocity one. This set of
equations can be viewed as the limit, when pressure goes to zero, of the usual
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Euler equations. In [?], Brenier and Grenier showed that the continuous model
can be fully described, in an alternative way, by scalar conservation laws, with
nondecreasing initial conditions, general flux functions and the usual Kruzhkov
entropy condition.

In particular they proved that if (ρ, v) is a solution corresponding to sticky
particles, then there exist H ∈ Lip(R) and u entropy solution of

∂tu+Dx(H(u)) = 0,

where u(tx) = DxU(t, x) is such that ρ(t, x) = DxxU(t, x) is a cumulative
distribution function associated to the probability measure ρ and DxH(x) =
v(0, x).

The proof uses a scheme in which a finite number of particles are described
by weight, position and velocity, under the assumption that the speed of a
particle is constant as long as it meets no new particles and it changes only
when shocks occur. Only a finite number of shocks can occur because particles
remain stuck together after a collision. Moreover particles having the same
position at a time t move together at the same speed and their total momentum
is the sum of their initial momentum. This scheme is strongly reminiscent
of Dafermos’s polygonal approximation methods for scalar conservation laws,
where each particle corresponds to a jump of an entropy solution of a scalar
conservation law with a piecewise linear continuous flux function. Thus, it is
reasonable to expect, as it is, that the continuous limit of the sticky particles
dynamics is properly described by a scalar conservation law.

The fact that the distribution function u is a nondecreasing entropy solution
of that scalar conservation law strictly relates sticky particle system to Convec-
tion Theory. Indeed if we take the generalized inverse of u, which is precisely
the monotone rearrangement of the measure ρ, it turns out that it is exactly
the limit of the time discrete approximation seen in Theorem ??.

As we did for GHB equations we can relate the nondecreasing entropy so-
lutions to the viscosity solution of an Hamilton-Jacobi equation with convex
initial data.

4 - Convex solutions of Hamilton-Jacobi equations in the multi-

dimensional case

Let us now consider the following Hamilton-Jacobi equation

∂tU +H(DxU) = 0,

with initial data U(0, x) = 1
2 |x|

2, and Lipschitz Hamiltonian H. Thus we are in
a particular case of the ones considered above. As proved in [?], by Bardi and
Evans, the unique viscosity solution to such an equation has the form

U(t, x) = sup
y

inf
z

{

1

2
|z|2 + y · (x− z)− tH(y)

}

.
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This representation formula is true even in the multi-dimensional case and an
analogous one works as well for general initial data but convex Hamiltonians.
Moreover it is equivalent to

(12) U(t, x) = sup
y

{

x · y −
1

2
|y|2 − tH(y)

}

.

Here the sup becomes a maximum under suitable hypotheses on H.
Note that equation (??) is equivalent to saying that U is the Legendre trans-

form of 1
2 |y|

2+ tH(y). On the other hand since U is, in the GHB equation case,
the Legendre transform of ψt(a), we have the following geometric representation
for the CR-solution, for a.e. a,

Y CR(t, a) = ∇convex(ψ0(a) + tH(a)),

where convex(f) = max{g ≤ f | g convex}.
Define

V (t, x) := −
1

t

(

U(t, x)−
1

2
|x|2

)

,

then

V (t, x) = min
y

{

H(y) +
|x− y|2

2t

}

is the unique viscosity solution of

∂tV +
|DxV |2

2
= 0

with Lipschitz initial data V0(x) = H(x).

Since the Hamiltonian |x|2

2 is uniformly convex we can use directly the result
obtained by Ambrosio and De Lellis in [?], to prove that DxV (t, ·) belongs to
SBV for a.e. t and the same is true also for DxU(t, ·).

R e m a r k 4.1. From what we have seen, in the one-dimensional case,
SBV regularity holds for the generalized inverse of a solution of GHB equation
with the identity as initial datum and for the cumulative distribution function
associated to the density of the pressureless gas.

5 - Multi-dimensional case

We wonder if Hamilton-Jacobi equations are a good model for GHB systems
or sticky particles models even in the multi-dimensional case. Are they able to
describe the behavior of our solution? If this was the case we could automatically
state SBV regularity applying Theorem ??. Unfortunately the answer to our
question is negative. In the following subsection we show a counterexample
in which a multi-dimensional solution of an Hamilton-Jacobi equation has a
behavior which is not allowed for GHB systems or sticky particles models, i.e.
Theorem ?? does not suit our problem. However, this does not mean that SBV
regularity cannot be proved in some other way.
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5.1 - Counterexample

A first counterexample was found by Vasseur in [?] but it was never pub-
lished. With that counterexample Vasseur showed a discrepancy between the
density distribution ρ̃(t, x) = detD2

xU(t, x), associated to the solution U of the
Hamilton-Jacobi equation ∂tU +H(DxU) = 0 with initial datum U(0, x) = 1

2 ,
and the density distribution ρ(t, x), generated from the identity ρ0(x) = 1 in a
sticky particles process with speed v = DxH(x). Indeed, he proved the existence
of a time t at which the two density distribution differ.

The following counterexample shows the same discrepancy, underlining in
addiction the cause of it. Hamilton-Jacobi equations allow separations of parti-
cles after collisions.

Consider the viscosity solution of the Hamilton-Jacobi equation

Vt +
1

2
|DxV |2 = 0,

in R
2, with initial datum

V (0, x) =







− |x|2

2 for x ∈ B(0, 1)

f(x) for x ∈ B(0, 2) \B(0, 1)
−|x1| for x ∈ R

2 \B(0, 2),

where f(x) joins smoothly − |x|2

2 to −|x1| and satisfies f(x) > − |x|2

2 in B(0, 2) \

B(0, 1), being B(x, r) the open ball with center in x and radius r > 0.
Note that following upside down the passages seen in Section ?? we can

recover from V a convex viscosity solution of the equation

∂tU +H(DxU) = 0, U(0, x) =
|x|2

2

where

U(t, x) = −tV (t, x) +
|x|2

2

and H(x) = V (0, x) is a smooth function. We are thus considering a viscosity
solution of Hamilton-Jacobi with convex initial datum. If Hamilton-Jacobi were
the good model for GHB and sticky particles systems, passing to the Legendre
transform of our viscosity solution we should recover the CR-solution limit of
the time-discrete approximation scheme.

Using the Hopf-Lax formula for convex Hamiltonians we recover the viscosity
solution for any time t

V (t, x) = min
y

{

V (0, y) +
(x1 − y1)

2 + (x2 − y2)
2

2t

}

.

Let us compute the value of V for t = 1 in the origin:

(13) V (1, (0, 0)) = min
y

{

V (0, y) +
y21 + y22

2

}

.
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Observe that for any y in B(0, 1) we have

V (0, y) +
y21 + y22

2
= 0.

For any y in B(0, 2) \B(0, 1)

V (0, y) +
y21 + y22

2
> 0.

For any y in R
2 \B(0, 2) we have

V (0, y) +
y21 + y22

2
= −|y1|+

y21 + y22
2

≥ −|y1|+
y21
2
,

hence we can restrict the minimum in the region R
2 \ B(0, 2) to points with

y2 = 0, moreover for that points we have

−|y1|+
y21
2

≥ 0,

and the equality occurs only for (−2, 0) and (2, 0).
Thus the minimum in (??) is obtained if and only if y belongs to the set

B(0, 1)∪{(−2, 0), (2, 0)}. The origin is therefore a point of non differentiability
for V (1, ·) with the convex hull of the set of all minima as super-differential.
This means that all the points in the set B(0, 1) ∪ {(−2, 0), (2, 0)}, which is of
positive H2-measure, are transported by the flux along straight line trajectories
which collide at time t = 1 in the position (0, 0).

However, for any δ > 0, we have to compute

(14) V (1 + δ, (0, 0)) = min
y

{

V (0, y) +
y21 + y22
2(1 + δ)

}

.

For any y in B(0, 1) we have

V (0, y) +
y21 + y22
2(1 + δ)

= −δ
y21 + y22
2(1 + δ)

≥ −
δ

2(1 + δ)
.

For any y in B(0, 2) \B(0, 1)

V (0, y) +
y21 + y22
2(1 + δ)

> −δ
y21 + y22
2(1 + δ)

> −
4δ

2(1 + δ)
.

Here we note that − 4δ
2(1+δ) < − δ

2(1+δ) .

For any y in R
2 \B(0, 2) we have

V (0, y) +
y21 + y22
2(1 + δ)

= −|y1|+
y21 + y22
2(1 + δ)

≥ −|y1|+
y21

2(1 + δ)
,
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hence we can restrict the minimum to the points in R
2 \ B(0, 2) with y2 = 0.

Moreover, for that points we have that the minimum value is reached for |y1| = 2
if 1 + δ < 2, for |y1| = 1 + δ otherwise.

In the first case

−|y1|+
y21

2(1 + δ)
= −

4δ

2(1 + δ)
.

In the second one

−|y1|+
y21

2(1 + δ)
= −

(1 + δ)2

2(1 + δ)
< −

4δ

2(1 + δ)
.

Thus (0,0) is a point of non differentiability even for t = 1+ δ for any δ > 0.
Moreover its super-differential is the set [(−2, 0), (2, 0)] for 0 < δ < 1, or the
set [(−(1 + δ), 0), ((1 + δ), 0)] for δ > 1. In any case it is a set of positive
H1 measure. This set has non-empty intersection with the super-differential
of V in the origin at time t = 1 but does not contain the whole of it. Recall
that, the super-differential of V in the origin contains, at time t = 1, the set
convex(B(0, 1) ∪ {(−2, 0), (2, 0)}) which is a set of positive H2-measure.

Points, being in B(0, 1)∪{(−2, 0), (2, 0)} at time t = 0, collide at time t = 1
and separate at time t = 1 + δ for any δ > 0.

We have thus shown an example of a viscosity solution in which a point of
non differentiability of zero codimension evolves in a point of non differentiability
of codimension one.

As we have already said, coming back to U(t, x) = −tV (t, x) + |x|2

2 and
passing to the Legendre transform of our viscosity solution, we should obtain
the CR-solution of the GSB equation. However for this function a flat part of
dimension two would evolve in a flat part of dimension one, in contrast with
propagation of flat parts. Particles stuck together could have different velocities
but this is not the case for GHB and the sticky particles model.

Hence GHB and the sticky particles model cannot be truly described by
Hamilton-Jacobi equation in the multidimensional case.

Ac k n ow l e d gm e n t s. The author is grateful to Professor Stefano Bian-
chini for proposing the subject and for the precious help given during discussions
about the the problem.

References

[1] L. Ambrosio and C. De Lellis, A note on admissible solutions of 1D
scalar conservation laws and 2D Hamilton-Jacobi equations, J. Hyperbolic
Differ. Equ. 1 (2004), no. 4, 813–826.

[2] L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Varia-
tion and Free Discontinuity Problems, Oxford Mathematical Monographs,
Oxford 2000.

11



[3] M. Bardi and L. C. Evans, On Hopf’s formulas for solutions of
Hamilton-Jacobi equations, Nonlinear Anal. 8 (1984), no. 11, 1373–1381.

[4] S. Bianchini, C. De Lellis and R. Robyr, SBV regularity for Hamilton-
Jacobi equations in R

n, to appear 2010.

[5] Y. Brenier, L2 formulation of multidimensional scalar conservation laws,
Arch. Ration. Mech. Anal. 193 (2009), no. 1, 1–19.

[6] Y. Brenier, On the Hydrostatic and Darcy limits of the convective Navier-
Stokes Equations, Chin. Ann. Math. 30 B (2009), no. 6, 683–689.

[7] Y. Brenier, Optimal transport, convection, magnetic relaxation and gen-
eralized Boussinesq equations, J. Nonlinear Sci. 19 (2009), no. 5, 547–570.

[8] Y. Brenier, Polar factorization and monotone rearrangement of vector-
valued functions, Comm. Pure Appl. Math. 44 (1991), no. 4, 375–417.

[9] Y. Brenier and E. Grenier, Sticky particles and scalar conservation
laws, SIAM J. Numer. Anal. 35 (1998), no. 6, 2317–2328.

[10] P. Cannarsa and C. Sinestrari, Semiconcave functions, Hamilton-
Jacobi equations, and optimal control, Birkhuser Boston, Boston 2004.

[11] J. Mossino, Inégalités isopérimétriques et applications en physique, Her-
mann, Paris 1984.
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