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Some advances towards a better understanding of
wave propagation in civil engineering multi-wire
strands

Laurent Laguerre! and Fabien Treyssede’

Abstract Steel members of civil engineering structures undergo degradations
mainly due to corrosion and mechanical fatigue. In this context, non-destructive
inspection techniques using mechanical guided waves have potential to monitor
these structures. Even if wave propagation is not yet fully understood in these
structures, useful results can be derived for inspection methodology by using wave
modeling in cylindrical waveguide, embedded or not. However, further improve-
ment can be expected from the development of wave propagation simulation tools
for real-life structures. Indeed, several difficulties arise in the understanding of
guided ultrasonic waves in such structures, partly due to the helical geometry and
the inter-wire coupling effects. Moreover, these structures are pre-stressed and can
be free or embedded in solid material. This paper shows some recent research re-
sults at LCPC. A first part deals with experimental results on the guided wave
propagation in a commonly used steel member, the seven wire strand (i.e one
straight single cylindrical wire surrounded by six helical wires). The second part
aims at numerically investigating the propagation of elastic waves in free helical
waveguides. A numerical method is chosen based on a semi-analytical finite ele-
ment technique that relies on a specific non-orthogonal curvilinear coordinate sys-
tem. This system is shown to be translationally invariant along the helix centerline
so that a spatial Fourier transform can be explicitly performed along the axis to re-
duce the problem to two dimensions. The method can thus readily be used for the
analysis of helical structures by considering the special case of no curvature. Re-
sults for single straight and helical wires are first computed. A dispersion analysis
for a seven wire strand with simplified contact conditions is then performed.
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1 Introduction

Multi-wire strands are commonly used as structural members in the field of civil
engineering, in bridges constructions (suspended, cable-stayed and prestressed
ones) as well as in geotechnics for retaining walls applications. These civil engi-
neering structures suffer from ageing and degradation due to corrosion and fatigue
of structural steel members. Guided ultrasonic waves are potentially attractive
tools for non destructive assessment of their integrity. They generally combine the
ability to inspect, in a single measurement, the whole width of the structure over
an appreciable length along the guiding direction. Moreover, they provide a mean
to access hidden parts of the structure, such as sections of strand partially or to-
tally grouted in grease or cement. Guided wave non-destructive methodologies of
inspection using magnetostrictive or piezoelectric devices are generally proposed,
depending on the desired applications.

The goal of this paper is to show some recent advances performed at LCPC deal-
ing with the development of a numerical model for the guided wave propagation
in a free seven-wire strand. This common strand configuration is composed of a
straight cylindrical wire of 5.4 mm in diameter surrounded by six helical wires of
5.22 mm in diameter. These works come within the scope of developing tools to
provide a better insight in the interpretation of guided wave propagation in such
complicated waveguides for further optimised inspection strategy.

The simplest and classical way to approach the wave propagation in the seven-
wire strand is to use the approximation of the infinite cylinder. In particular, ex-
perimental studies have been performed in the literature for both a cylindrical bar
and a seven wire strand, trying to find analogies between both behaviours that
could be interpreted from Pochhammer-Chree solutions, for the bare waveguide
case (Kwun et al. 1998, Laguerre et al. 2002, 2003, Lanza di Scalea et al. 2003
and Rizzo and Lanza di Scalea 2004) or the embedded one (Pavlakovic et al.
1999, 2001 and Beard et al. 2003). Even if the non-destructive inspection strategy
of a seven-wire strand with guided ultrasonic waves has gained from this ap-
proach, the authors point out the limits of Pochhammer-Chree solution for the ac-
curate interpretation of experimental data for the seven wire strand. The theoreti-
cal understanding of guided ultrasonic waves in multi-wire strands is still
challenging because of the complexity of this structure, i.e. the helical geometry of
peripheral wires surrounding the straight inner wire, the inter-wire coupling and
contact effects, and the presence of applied loads.

In order to deal with complex geometry, some of the most popular and efficient
numerical techniques are based on finite element (FE) methods. The so-called
semi-analytical finite element (SAFE) method is a first approach that has been
used to study uniform waveguides of arbitrary cross-section — see for instance,
(Gavric 1995, Hayashi et al. 2003, Damljanovic and Weaver 2004). (Demma et al.
2005) and (Finnveden and Fraggstedt 2008) investigated toroidal waveguides.



(Onipede and Dong 1996) extended SAFE methods to study uniformly pretwisted
waveguides along a straight axis.

A second approach is based on the theory of wave propagation in periodic struc-
tures from Floquet’s principle. A review on the topic can be found in Mead 1996.
Based on a general theory presented by Mead 1973, some periodic FE approaches
and procedures have then been developed — see for instance (Gry and Gontier
1997, Mace et al. 2005).

For modelling a single helical wire, which is a uniform waveguide, both SAFE or
periodic FE approaches can be applied. (Treyssede 2007) has proposed a numeri-
cal procedure based on a periodic FE approach combined with a specific helical
mapping in order to arbitrarily reduce the periodic cell length. (Treyssede 2008)
has also recently developed a SAFE method extended to helical waveguides. The
weak variational formulation is written in terms of a non-orthogonal curvilinear
coordinate system that is translationally invariant along the helix centreline, so
that a Fourier transform can be explicitly performed. In this paper, it is shown how
this SAFE method can also be readily used to study some more general helical
structures, made of both straight and helical wires such as multi-wire strands.

The first part of this paper is devoted to show, from experimental data, the analogy
and discrepancies existing between the guided ultrasonic wave propagation into a
cylindrical bar and the seven-wire strand in the low frequency regime. This is
done through spectrogram analyses of time history signals generated and detected
using a longitudinally polarized non-contact magnetostrictive device.

In the second part, one proposes a numerical method allowing the study of elastic
guided waves inside helical multi-wire strands. Inter-wire coupling effects are in-
cluded in the analysis through simplified contact conditions. Prestress and em-
bedment are not considered.

2 Experimental results

Magnetostrictive transducers were used herein for the generation and detection of
guided ultrasonic waves into steel cylindrical bars and seven-wire strands. The
major advantage of non-contact electromagnetic magnetic transducers (EMAT)
such as magnetostrictive transducer is in the greater transduction efficiency at low
bias fields contrary to Lorentz force based EMATS. Conversely, magnetostrictive
EMATS are rather low-frequency transducers (typically <500kHz). These trans-
ducers uses the property of ferromagnetic materials to mechanically strain under a
variation of their magnetic state (magnetostrictive Joule’s effect). The magnetic
excitation is though produced by a dynamic electrical current feeding a driving
coil. This in turn generated the mechanical wave. The mechanical wave while
propagating produces magnetic field variation (magnetostrictive Villari’s effet)
that can be detected using and inducting coil. Bias magnetic fields are superim-
posed at the generation and detection to linearize and enhance the transduction.



The selected bias field longitudinal orientation makes the generation and detection
predominantly sensitive to longitudinal guided waves.

In this study, various through-transmissions experimentations were performed for
free cylindrical bars and a free seven-wire strand or under applied tensile loads.
Time excitation is a gaussian-shaped low radiofrequency burst of bandwidth Af

centered at f;, and such that Af/f, =1 at -20 dB. Detected guided ultrasonic

time waveforms are then studied using a short time Fourier transform (STFT). Ac-
cording to the positioning of transducers (the transmitter and detector locations are
at L/4 from the left-end side of the specimen and L/2 respectively, with L the

specimen length, see for instance Laguerre et al. 2003), the first wave arrival is the
incident wave propagating to the right, the second arrival is the incident wave
propagating to the left after one reflection, and the third one is the incident wave
propagating to the right after one reflection (and so on for the next arrivals). Ac-
cording to their intrinsic dispersive behaviours in this frequency range, the
wavepacket arrivals (Fig. 1) can be identified from Pochhammer-Chree theory as
the first and second longitudinal modes L(0,1) and L(0,2) respectively. Similar
measurements performed in the same frequency range for a lower diameter show
that the waveguide behaviour is limited to the fundamental L(0,1) longitudinal
mode, in its weak dispersive region as a consequence of the frequency-to-diameter
conservation.
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Fig. 1 Fourier spectrograms of magnetostrictive time history signals for (a) a steel cylindrical bar
of 6-m length and 15.5mm in diameter, and (b) a single central cylindrical wire of 4-m and 5.22
mm in diameter excited at fy=150 kHz and 130 kHz respectively.

These expected above-mentioned results are only quoted here to point out the dis-
crepancies existing between a cylindrical bar and a free seven-wire strand. The
Fourier spectrograms associated to the free seven-wire strand are shown in Fig. 2.
In the low-frequency region (lower than 50 kHz), the pulse propagates without
significant dispersion, at the bar celerity, while the higher frequency trends cannot
be explained at all by the Pochhammer-Chree theory, neither by considering a bar
of the same diameter as the strand nor by considering a bar of the same diameter



as the single central wire. One of the major differences between the cylinder and
the strand arises mainly from a frequency band from 60 to 80 kHz, electrically ex-
cited, but which disappears from the Fourier spectrogram for all wave arrivals.
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Fig. 2 Fourier spectrograms of magnetostrictive time-history signals for a free seven-wire strand
of 10-m length and 15.9 mm in diameter excited at fp=130kHz.

This phenomenon which was first observed by (Kwun et al. 1998) who called it
“missing notch-frequency” seems to exhibit a similar pattern as the one of a cut-
off frequency. It was confirmed later by (Laguerre et al. 2003, Rizzo and Lanza di
Scalea 2004) but still remains unexplained. The “missing notch-frequency” re-
veals the influence of the seven-wire geometrical structure on the guided wave
propagation. Indeed, the origin of this missing notch-frequency can solely be un-
derstood, as will be shown in Sect. 3.3, by considering the whole assembling of
helical wires around the central cylindrical straight with inter-wire coupling condi-
tions. So this missing notch-frequency phenomenon will be retrieved from the
seven-wire strand theoretical propagation model derived in the following section.
Moreover, the influence of prestress and inter-wire contacts on the wave propaga-
tion is confirmed by the results obtained for a seven wire strand under different
tensile loading strengths varying from 2% (5.8kN) to 60% (141kN) of the break-
ing load. The non-contact magnetostrictive transducers are particularly well-suited
for this loaded strand experimental arrangement since they allow to work on the
first wave arrival whose propagation path did not interact with the clamped ends,
by positioning them between the anchorages. The Fourier spectrograms Fig. 3
clearly show the modification in the missing notch frequency with load, i.e. an in-
crease in the loading strength leads to the increase in the missing notch frequency
(from 60-t0-80 kHz at 2% to 80-to-100 kHz at 60% of the breaking load). This
demonstrates the influence of prestress and inter-wire contact conditions on
guided wave propagation in a seven-wire strand.
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Fig. 3 Fourier spectrograms of magnetostrictive time-history signals for a seven-wire strand of
10-m length and 15.9 mm in diameter excited at fp=130kHz at different tensile load strengths.

3 Numerical model

3.1 The SAFE method

One assumes a linearly elastic material, small strains and displacements and a time
harmonic dependence. There is no external force. The 3D variational formulation
governing elastodynamics is given by:

j&TC.st—wszauTudV =0 (3.1)
Q Q

for any kinematically admissible trial displacement field du. € denotes the vir-
tual strain vector [0, Jt,, Oe, 20¢, 20¢, 20€,| . The superscript T
denotes the matrix transpose. Subscripts i =1,2,3 are the respective components
in the considered coordinate system, denoted (x, y,s) — which might be different
from the Cartesian coordinate system denoted (X Y, Z ) . C is the matrix of mate-
rial properties. p is the material density and Q is the structural volume. In the
remainder of this paper, s will denote the waveguide axis (not necessarily
straight).

The strain-displacement relation can be written as follows:

e=(L,, +L, 9/dsh (3.2)



where L is the operator containing all terms that do not contain derivatives with

respect to the axis s. Now we further assume a ¢™ dependence, k being the axial

wavenumber. The problem is hence reduced from three to two dimensions (from
the volume Q to the cross-section S of the waveguide). Then, the FE discretisa-
tion of Eq.(3.1) finally leads to the following eigenvalue problem:
K oM +ik(K, -KI )+ kK, Ju=0 (3.3)
with the following elementary matrices:
K{ = [N“L[ CL N‘dS, K= [N"L[ CLNdS
s¢ s¢
K{ = [NTLICL NS, M‘= [ pNNdS @4
s¢ s¢

where N° is a matrix containing nodal interpolating functions of the element. The
solution of Eq. (3) yields the propagation modes. At fixed real &, the eigenproblem
Eq. (3.3) is linear for finding @ . This simpler approach is useful only if interest
is restricted to propagating modes in undamped systems. Given @ and finding £,
the eigenproblem is quadratic. It can be recast into a generalized linear eigensys-
tem written for [u ku]T in order to be solved by standard numerical solvers — see

(Tisseur and Meerbergen 2001) for instance.

3.2 Helical coordinate system

In the previous section, we have assumed a e” dependence. This is equivalent to

perform a spatial Fourier analysis in the s direction. This dependence indeed im-
plies the following assumptions:
- the cross-section of the waveguide does not vary along s (condition 1);
- the material properties do not vary along s (condition 2, which is as-
sumed to be satisfied throughout this work);
- the (x, y,s) coordinate system is so that s does not appear explicitly in

the coefficients of the equilibrium equations (condition 3)
Verifying this last condition (condition 3) is somewhat more technical than the
first two.
First, the helix centerline curve must be described by the following position vector
in the Cartesian orthonormal basis:

R(s) =R cos(zTﬂ-s]eX +R sin(zTﬂsjey + ésez (3.5

where /=+L* +47°R* . R and L are respectively the radius of the centreline in
the (X Y ) Cartesian plane and the helix step along the Z axis. The unit tangent,



normal and binormal vectors to the centreline are respectively obtained from
T=dR/ds and the Serret-Frenet formulae, dT/ds =N and dN/ds=1mB—kT.

Both curvature k= 471'2R/ I’ and tortuosity 7= 27[L/ I’ are constant. For clarity,
Fig.4 exhibits one helix step and its Serret-Frenet basis.

Fig. 4. Helix step and its Serret-Frenet basis with (x, y) the helical cross-section coordinates.

Now, a new coordinate system is constructed from the orthonormal basis
(N,B,T) as follows:

X(x, y,s)= R(s)+ xN(s)+ yB(s) (3.6)
yielding the covariant basis (g,,g,,g,)=(0X/dx,0X/dy,0X/ds) (non-
orthogonal). It could be checked that the metric tensor, defined by (g)y =¢8>

does not depend on the third curvilinear coordinate s. One consequence is that the
coefficients of the partial differential equilibrium equations are not dependent
upon s either (condition 3 is satisfied).

In Egs. (3.3) and (3.4), covariant components have been chosen for £ while com-
ponents with respect to (N,B,T) have been preferred for u. Also, the compo-
nents of C should be understood as contravariant. Assuming an isotropic mate-
rial, C can be obtained from the following tensor expression:

ik _ VE i K E ik _jl ik 37
T e e G0

where g’ is the contravariant metric tensor, v and E denotes Poisson coefficient
and Young modulus — for more details, see (Treyssede 2008).



Now, consider a single helical wire of circular cross-section. The cross-section
obviously does not change along the helical axis s (condition 1 is fulfilled) so that
the proposed approach is valid. The analysis of a straight wire can also be readily
performed, the cylinder corresponding to the special case x =7=0.

However, a question arises about the choice of the invariant coordinate system to
be used when considering helical structures made of both straight and helical
wires. Of course, the choice x =7=0 (resp. k¥ #0,7 #0) cannot be applied be-
cause condition 1 would not be satisfied for helical (resp. straight) wires.

The adequate system is indeed given by k¥ =0, 7 =27x/L (R=0), corresponding to
a rotating coordinate system around the Z axis (s = Z). With this system, a central
straight wire (cylinder) has an invariant circular cross-section along Z (“a rotating
circle remains a circle”). Furthermore, the cross-sections of peripheral helical
wires do not change either along Z (but their shape in the (x, y) plane is not circu-

lar any more).

3.3 Numerical results

The material is assumed to be isotropic, with no material damping. For a steel
wire, a typical value of 0.30 will be chosen for the Poisson coefficient. We con-
sider waveguides with a circular cross-section of radius a. The adimensionalized
angular frequency is given by wa/c, , with ¢, the shear velocity. Six-node trian-

gles meshes will be used. FE computations are held at fixed real wavenumbers £.
As a preliminary result, one single wire is first considered. Both cylindrical
(k=7=0) and helical geometries ( k #0,7#0) are analysed. For the helical

waveguide, a small lay angle of ¢ = tan'1(27£R/L)= 7.5° with R=2a has been

chosen (typical values for civil engineering seven wire strands). Figure 5 exhibits
the dispersion curves for both cases. Few differences are observed. For the helical
waveguide, flexural modes do not occur in pairs of equal wavenumbers, while
wavenumbers of compressional and torsional modes remain nearly unchanged
(Treyssede 2007). It could be checked that the rotating system (k =0,7=27/L)

yields some physically equivalent results, thus demonstrating its adequacy (not
shown in this paper for conciseness).

The wave modes propagating inside a typical seven-wire strand are now studied.
Stick contact conditions are assumed for simplicity (no slip, no separation and no
friction are considered). @ denotes the central wire radius (¢=2.7mm). Peripheral
wires radii are chosen as 0.97a, with the same lay angle as before. The coordinate
system to be used is (ku = 0,7 = 0.0668) .



Fig. 5 Plot of frequency versus wavenumber. Black: helical, gray: cylindrical waveguides

The FE mesh, corresponding to a (X, Y) plane cut, is given in Fig. 6.

e ‘TLYA iy
2 R,
AL, , ARSI
SRR AR,
4&‘5;.?3%:{#%%%?%
3 st s
A
55 KEA

Fig. 6 (X, Y) plane cross-section FE mesh used for the seven-wire strand (¢ = 7.5°)

Figure 7 exhibits the energy velocity curves for the adimensional frequency range
[0;2]. Single wire curves are also given for comparison (for both central and pe-
ripheral wires). Due to a strong inter-wire coupling, a far more complex behaviour
is observed for the seven wire strand. The most striking phenomenon is a seem-
ingly cut-off of the fastest mode (compressional-like £L(0,1) mode) around
wa/c, = 0.4, corresponding to about 75kHz, which is in agreement with experi-

ments where a mean frequency of 70 kHz is deduced from the spectrogram (and
associated to group velocities). In fact, this apparent cut-off is due to some strong
bifurcations occurring near 0.4 as clearly shown by Fig.8.

The upper curve of Fig.7 is composed of two distinct branches, describing the be-
haviour of two distinct wave modes.
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Fig. 7 Plot of energy velocity (a) single wire (black: peripheral, gray: central, (b) seven-wire

strand (¢ =7.5°)

Fig. 8 Plot of frequency vs wavenumber for the seven-wire strand. Circle: bifurcation zone

Finally, Fig. 9 shows modeshapes computed foraa/c, =0.03 and 0.38 (left
branch), @a/c, =0.52 and 0.81 (right branch).

Fig. 9 Modeshapes computed for: © @a/c, = 0.03,” 0.38,7 0.52, 081 (symbols of Fig. 7)
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4. Conclusions

Elastic wave propagation inside helical wires has been analysed through a SAFE
method based on a translationally invariant helical coordinate system. The special
case of no curvature yields an adequate coordinate system to be used for the
analysis of helical structures made of a straight core and peripheral helical wires.
Dispersion inside a typical 6+1 strand has been investigated by assuming stick
contact conditions. A far more complex behaviour than for single wires has been
observed. However, it is worth noting, that the fastest compressional-like mode of
the seven-wire strand dispersion behaviour looks like the £(0,1) one for a single
wire, excepted in a frequency region typically around 75kHz where an apparent
band-cut zone is observed. This intrinsic seven-wire strand low-frequency disper-
sion behaviour agrees well the experimental results obtained with encircling longi-
tudinally-polarized magnetostrictive transducers on a seven-wire strand. Thus, the
proposed seven-wire propagation model allows a novel interpretation, through the
strong bifurcation between two distinct modes, of the missing notch frequency ex-
perimentally observed here and in the literature. Future works will be devoted to
the numerical modelling of the loading effect.
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