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This work aims at reconstructing Petri net models for biological systems from experimental time-series data. The reconstructed models shall reproduce the experimentally observed dynamic behavior in a simulation. For that, we consider Petri nets with priority relations among the transitions and control-arcs, to obtain additional activation rules for transitions to control the dynamic behavior.

An integrative reconstruction method, taking both priority relations and controlarcs into account, was proposed by Favre and Wagler in 2013. Here, we detail the aspect of choosing priorities and control-arcs such that dynamic conicts can be resolved to nally arrive at the experimentally observed behavior.

Introduction

Systems biology aims at the integrated experimental and theoretical analysis of molecular or cellular networks to achieve a holistic understanding of biological systems and processes. To gain the required insight into the underlying biological processes, experiments are performed and experimental data are interpreted in terms of models. Depending on the biological aim, the type and quality of the available data, dierent types of mathematical models are used and corresponding reconstruction methods have been developed. Our work is dedicated to Petri nets which turned out to coherently model both static interactions in terms of networks and dynamic processes in terms of state changes, see e.g. [START_REF] Koch | Petri nets[END_REF][START_REF] Pinney | Petri net representations in systems biology[END_REF].

In fact, a network P = (P, T, A, w) reects the involved components by places p ∈ P and their interactions by transitions t ∈ T , linked by weighted directed arcs (p, t), (t, p) ∈ A. Each place p ∈ P can be marked with an integral number x p of tokens dening a system state x ∈ Z |P | + , i.e., we obtain X := {x ∈ Z |P | : x p ≥ 0} as set of potential states. A transition t ∈ T is enabled in a state x if x p ≥ w(p, t) for all p with (p, t) ∈ A, we denote the set of all such transitions by T (x). Switching t ∈ T (x) yields a successor state succ(x) = x with x p = x pw(p, t) for all (p, t) ∈ A and x p = x p + w(t, p) for all (t, p) ∈ A. Dynamic processes are represented by sequences of such state changes.

Our central question is to reconstruct models of this type from experimental time-series data by means of an exact, exclusively data-driven approach. This approach takes as input a set P of places and discrete time-series data X given by sequences (x 0 , x 1 , . . . , x k ) of experimentally observed system states. The goal is to determine all Petri nets (P, T, A, w) that are able to reproduce the data, i.e., that perform for each x j ∈ X the experimentally observed state change to x j+1 ∈ X in a simulation. Hence, in contrast to the normally used stochastic simulation, we require that for states where at least two transitions are enabled, the decision between the alternatives is not taken randomly, but a specic transition is selected. Thus, (standard) Petri nets have to be equipped with additional activation rules to force the switching of special transitions (to reach x j+1 from x j ), and to prevent all others from switching. For that, dierent types of additional activation rules are possible.

On the one hand, in [START_REF] Durzinsky | Reconstruction of extended Petri nets from time-series data by using logical control functions[END_REF] the concept of control-arcs is used to represent catalytic or inhibitory dependencies. An extended Petri net P = (P, T, (A ∪ A R ∪ A I ), w) is a Petri net which has, besides the (standard) arcs in A, two additional sets of so-called control-arcs: the set of read-arcs A R ⊂ P × T and the set of inhibitor-arcs A I ⊂ P × T ; we denote the set of all arcs by A = A ∪ A R ∪ A I . Here, a transition t ∈ T (x) coupled with a read-arc (resp. an inhibitor-arc) to a place p ∈ P can switch only if at least w(p, t) tokens (resp. less than w(p, t) tokens) are present in p; we denote by T A (x) the set of all such transitions.

On the other hand, in [START_REF] Marwan | A mathematical approach to solve the network reconstruction problem[END_REF][START_REF] Torres | Encoding the dynamics of deterministic systems[END_REF][START_REF] Wagler | Prediction of network structure[END_REF] priority relations among the transitions of a network are employed to reect the rate of the corresponding reactions, where the fastest reaction has highest priority and, thus, is taken. In Marwan et al. [START_REF] Marwan | A mathematical approach to solve the network reconstruction problem[END_REF] it is proposed to model such priorities with the help of partial orders O on the transitions. We call (P, O) an (extended) Petri net with priorities, if P = (P, T, A, w) is an (extended) Petri net and O a priority relation on T . Priorities can prevent enabled transitions from switching: For each state x, a transition t ∈ T A (x) is allowed to switch only if there is no other enabled transition in T A (x) with higher priority; we denote by T A,O (x) the set of all such transitions.

To enforce a deterministic behavior, T A,O (x) must contain at most one element for each x ∈ X to enforce that x has a unique successor succ X (x), see [START_REF] Torres | Encoding the dynamics of deterministic systems[END_REF] for more details. For our purpose, we consider a relaxed condition, namely that T A,O (x) contains at most one element for each experimentally observed state x ∈ X , but T A,O (x) may contain several elements for non-observed states

x ∈ X \ X . We call such Petri nets X -deterministic.

Based on earlier results in [START_REF] Durzinsky | Reconstruction of extended Petri nets from time-series data by using logical control functions[END_REF][START_REF] Durzinsky | A combinatorial approach to reconstruct Petri nets from experimental data[END_REF][START_REF] Durzinsky | An algorithmic framework for network reconstruction[END_REF][START_REF] Marwan | A mathematical approach to solve the network reconstruction problem[END_REF][START_REF] Wagler | Prediction of network structure[END_REF], we proposed in [START_REF] Favre | Reconstructing X -deterministic extended Petri nets from experimental time-series data X (extended abstract)[END_REF] an integrative method to reconstruct all X -deterministic extended Petri nets with priorities tting given experimental time-series data X (see Section 2). The contribution of this paper is to detail the aspect of choosing priorities and control-arcs: we discuss the mathematical structures and underlying combinatorial problems which allow us to eectively resolve dynamic conicts in order to nally arrive at the experimentally observed dynamic behavior (see Section 3). We close with some concluding remarks and lines of future research.

Reconstructing extended Petri nets with priorities

We describe the input, the main ideas, and the output of our approach from [START_REF] Favre | Reconstructing X -deterministic extended Petri nets from experimental time-series data X (extended abstract)[END_REF].

Input. A set of components P (standing for proteins, enzymes, genes, receptors or their conformational states, later represented by the set of places) is chosen which is expected to be crucial for the studied phenomenon.

To perform an experiment, one rst triggeres the system in some state x 0 (by external stimuli like the change of nutrient concentrations or the exposition to some pathogens), to generate an initial state x 1 . Then the system's response to the stimulation is observed and the resulting state changes are measured for all components at certain time points. This yields a sequence of (discrete or discretized) states x j ∈ Z |P | reecting the time-dependent response of the system to the stimulation in x 1 , which typically terminates in a terminal state x k where no further changes are observed. The corresponding experiment is

X (x 1 , x k ) = (x 0 ; x 1 , . . . , x k ).
Several experiments starting from dierent initial states in a set X ini ⊆ X , reporting the observed state changes for all components p ∈ P at certain time points, and ending at dierent terminal states in a set X term ⊆ X describe the studied phenomenon, and yield experimental time-series data of the form

X = {X (x 1 , x k ) : x 1 ∈ X ini , x k ∈ X term }.
Thus, the input of the reconstruction approach is given by (P, X ).

Example 1. As running example, we will consider experimental biological data from the light-induced sporulation of Physarum polycephalum as in [START_REF] Favre | Reconstructing X -deterministic extended Petri nets from experimental time-series data X (extended abstract)[END_REF][START_REF] Wagler | Prediction of network structure[END_REF]. In P. polycephalum plasmodia, the photoreceptor involved in the control of sporulation Spo is a protein which occurs in two stages P F R and P R . The developmental decision of starving P. polycephalum plasmodia to enter the sporulation pathway is controlled by environmental factors like visible light [START_REF] Starostzik | Functional mapping of the branched signal transduction pathway that controls sporulation in Physarum polycephalum[END_REF]. If the darkadapted form P F R absorbs far-red light F R, the receptor is converted into its red-absorbing form P R , which causes sporulation [START_REF] Lamparter | Spectroscopic detection of a phytochrome-like photoreceptor in the myxomycete physarum polycephalum and the kinetic mechanism for the photocontrol of sporulation[END_REF]. If P R is exposed to red light R, it is photoconverted back to the initial stage P F R , which prevents sporulation. The experimental setting consists of

P = {F R, R, PF R, PR, Spo}, X (x 1 , x 3 ) = (x 0 ; x 1 , x 2 , x 3 ), X ini = {x 1 , x 4 }, X (x 4 , x 0 ) = (x 2 ; x 4 , x 0 ), X term = {x 3 , x 0 }
as input for the algorithm, we present all observed states schematically in Fig 1 .   x

      x F R x R x PF R x PR x Spo       x 0       0 0 1 0 0       x 1       1 0 1 0 0       x 2       0 0 0 1 0       x 3       0 0 0 1 1             0 1 0 1 0       x 4 FR R d 1 d 2 d 4
Fig. 1. A scheme illustrating the experimental time-series data described in Exp. 1 concerning the light-induced sporulation of Physarum polycephalum, where the entries of the state vectors are interpreted as shown on the left (dashed arrows represent stimulations x 0 → x 1 , solid arrows responses x j → x j+1 ).

For a successful reconstruction, the data X need to satisfy two properties: reproducibility and monotonicity.

The data X are reproducible if for each x j ∈ X there is a unique observed successor state succ X (x j ) = x j+1 ∈ X .

Reproducibility is obviously necessary and can be ensured by a preprocessing step [START_REF] Wagler | Preprocessing for network reconstruction: Feasibility test and handling infeasibilty[END_REF].

Note that a state x j ∈ X and its observed successor succ X (x j ) = x j+1 ∈ X are not necessarily also consecutive system states (this depends on the chosen time points to measure the states in X ). Instead, x j+1 may be obtained from x j by a switching sequence of some length, where the intermediate states are not reported in X . The data X are monotone if for each pair (x j , x j+1 ) ∈ X , the values of the elements do not oscillate in the possible intermediate states between

x j and x j+1 . It was shown in [START_REF] Durzinsky | A combinatorial approach to reconstruct Petri nets from experimental data[END_REF] that monotonicity has to be required, too (which is equivalent to demand that all essential responses are indeed reported in X ).

Output. An extended Petri net with priorities (P, O) with P = (P, T, A, w) ts the given data X when it is able to perform every observed state change from

x j ∈ X to x j+1 ∈ X . This can be interpreted as follows. With P, an incidence matrix M ∈ Z |P |×|T | is associated, where each row corresponds to a place p ∈ P of the network, and each column M •t to the update vector r t of a transition t ∈ T :

r t p = M pt :=      -w(p, t) if (p, t) ∈ A, +w(t, p) if (t, p) ∈ A, 0 otherwise.
Reaching x j+1 from x j by a switching sequence using the transitions from a subset T ⊆ T is equivalent to obtain the state vector x j+1 from x j by adding the corresponding columns M •t of M for all t ∈ T :

x j + t∈T M •t = x j+1 .
T has to contain enough transitions to perform all experimentally observed switching sequences. The underlying standard network P = (P, T, A, w) is conformal with X if, for any two consecutive states x j+1 ∈ X , the linear equation system x j+1x j = M λ has an integral solution λ ∈ N |T | such that λ is the incidence vector of a sequence (t 

(P, O) is X -deterministic if {t l } = T A,O (y l )
holds for all y l .

The desired output of the reconstruction approach consists of the set of all X -deterministic extended Petri nets (P, O) (all having the same set P of places as part of the input).

Example 2. We represent in Fig. 3 (page 10) the 8 alternative X -deterministic extended Petri nets tting the experimental data X from our running example.

We now briey sketch the reconstruction procedure.

Representation of observed responses. As initial step, extract the observed changes of states from the experimental data. For that, dene the set

D := d j = x j+1 -x j : x j+1 = succ X (x j ) ∈ X .
Generating the complete list of all X -deterministic extended Petri nets P = (P, T, A, w) includes nding the corresponding standard networks and their incidence matrices M ∈ Z |P |×|T | . Hence, the rst step is to describe the set of potential columns of M . Due to monotonicity [START_REF] Durzinsky | A combinatorial approach to reconstruct Petri nets from experimental data[END_REF], it suces to represent any d j ∈ D using sign-compatible vectors from the following set only:

Box(d j ) =    r ∈ Z |P | : 0 ≤ r p ≤ d p if d j p > 0 d p ≤ r p ≤ 0 if d j p < 0 r p = 0 if d j p = 0    \ {0}.
Next, we determine for any d j ∈ D, the set Λ(d j ) of all integral solutions of

d j = r t ∈ Box(d j ) λ t r t , λ t ∈ Z + ,
and for each λ ∈ Λ(d j ), the (multi-)set R(d j , λ) = {r t ∈ Box(d j ) : λ t = 0} of update vectors used for this solution λ. By construction, Box(d j ) and Λ(d j ) are always non-empty since d j itself is always a solution due to reproducibility [START_REF] Favre | Reconstructing X -deterministic extended Petri nets from experimental time-series data X (extended abstract)[END_REF].

Every permutation π = (r t1 , . . . , r tm ) of the elements of a set R(d j , λ) gives rise to a sequence of intermediate states

x j = y 1 , y 2 , ..., y m , y m+1 = x j+1 with σ = σ π,λ (x j , d j ) = (y 1 , r t1 ), (y 2 , r t2 ), . . . , (y m , r tm )
which induces a priority relation O σ since transition t i resulting from r ti is supposed to have highest priority in y i for 1 ≤ i ≤ m.

Example 3. For the running example we obtain as sequences

x 0 x 1 x 2 x 3 x 4 x 5 x 6 x 0 x 2 FR R d 1 d 2 d 4 r 1 r 2 r 3 r 4 r 1 r 2 r 3 r 4 with x 5 = (1, 0, 0, 1, 0) T and x 6 = (0, 1, 1, 0, 0) T .
Sequences and their conicts. Two sequences σ and σ are in priority conict if there are update vectors r t = r t and intermediate states y, y such that t, t ∈ T (y) ∩ T (y ) and (y, r t ) ∈ σ but (y , r t ) ∈ σ (since this implies t > t in O σ but t > t in O σ ). We have a weak (resp. strong) priority conict if y = y (resp. y = y ) which can (resp. cannot) be resolved by adding control-arcs.

Priority conict graph. Construct a priority conict graph

G = (V D ∪V term , E D ∪ E W ∪ E S )
whose nodes correspond to all possible sequences σ π,λ (x j , d j ) and whose edges reect weak and strong priority conicts:

-V D contains the sequences σ π,λ (x j , d j ) for all x j ∈ X \ X term and the difference vector d j = succ X (x i )x i , for all λ ∈ Λ(d j ) and all permutations π of R(d j , λ). -V term contains for all x k ∈ X term the trivial sequence σ(x k , 0).

-E D contains all edges between two sequences σ, σ stemming from the same dierence vector -E S (resp. E W ) reects all SPCs (resp. WPCs) between sequences σ, σ stemming from distinct dierence vectors.

The edges in E D induce a clique partition Q of V D in as many cliques 3 as there are observed states in X \X term resp. dierence vectors in D:

V D = Q 1 ∪. . .∪Q |D| . Moreover, each node in V term corresponds to a clique of size 1, so that G is partitioned into |X | many cliques.
For illustration, we present in Fig. 2 the WPCs and SPCs between sequences of our running example.

Selection of suitable sequences. In G, all node subsets S are generated that select exactly one sequence σ π,λ (x j , d j ) per dierence vector d j ∈ D such that no SPCs occur between the selected sequences. The set of all such solutions S ∪ V term can be encoded by all vectors x ∈ {0, 1} |V D ∪Vterm| satisfying

σ∈Qj x σ = 1 ∀Q j ∈ Q (1a) x σ = 1 ∀σ ∈ V term (1b) x σ + x σ ≤ 1 ∀σσ ∈ E S (1c) x σ ∈ {0, 1} ∀σ ∈ V D ∪ V term . (1d) Q 3 Q 1 Q 3 Q 2 Q 0 Q 4 σ(x 1 , d 1 ) σ 2 (x 1 , d 1 ) σ 3 (x 1 , d 1 ) σ(x 3 , 0) σ(x 2 , d 2 ) σ(x 0 , 0) σ(x 4 , d 4 ) σ 2 (x 4 , d 4 ) σ 3 (x 4 , d 4 )
Fig. 2. The priority conict graph resulting from the running example, where bold edges indicate SPCs, thin edges WPCs and gray boxes the clique partition Q.

3.

A clique is a subset of mutually adjacent nodes.

Example 4. From G shown in Fig. 2, we obtain as feasible subsets S i ∪ V term :

S1 = {σ1(x 1 , d 1 ), σ1(x 2 , d 2 ), σ1(x 4 , d 4 )}, S3 = {σ1(x 1 , d 1 ), σ1(x 2 , d 2 ), σ3(x 4 , d 4 )}, S2 = {σ3(x 1 , d 1 ), σ1(x 2 , d 2 ), σ1(x 4 , d 4 )}, S4 = {σ3(x 1 , d 1 ), σ1(x 2 , d 2 ), σ3(x 4 , d 4 )}.
Construction of standard networks, inserting control-arcs. Each subset S gives rise to a standard network P S = (P, T S , A S , w) which is conformal with X and can be made X -deterministic by inserting appropriate control-arcs and combining the priority relations O σ ∀σ ∈ S. Let P (y, y ) = {p ∈ P : y p = y p }:

-we obtain the columns of the incidence matrix M S of P S by taking the union of all sets R(d j , λ) of the sequences σ = σ π,λ (x j , d j ) selected by σ ∈ S; -for each WPC between σ, σ ∈ S involving update vectors r t = r t and intermediate states y = y , include either a read-arc (p, t) ∈ A R with weight w(p, t) > y p for some p ∈ P (y, y ) with y p > y p or an inhibitor-arc (p, t) ∈ A I with weight w(p, t) < y p for some p ∈ P (y, y ) with y p < y p to disable transition t resulting from r t at y , -for each σ ∈ S,

dene O σ = {t i > t : t ∈ T A S ∪A R ∪A I (y i ) \ {t i }, 1 ≤ i ≤ m}
and let O S = σ∈S O σ be the studied partial order. This implies nally that every extended network P S = (P, T S , A S ∪ A R ∪ A I , w) together with the partial order O S is X -deterministic, see [START_REF] Favre | Reconstructing X -deterministic extended Petri nets from experimental time-series data X (extended abstract)[END_REF] for details.

Example 5. We apply the method only to the feasible set S 4 ∪V term from Exp. 4.

The standard network P S4 = (P, T S4 , A S4 ) has T S4 = {r 1 , r 2 , d 2 , r 3 , r 4 }. There are four WPCs between sequences of S 4 : WPC1 between σ 3 (x 1 , d 1 ) and σ(x 0 , 0) due to r 2 , 0 ∈ T (x 1 ) ∩ T (x 0 ) WPC2 between σ(x 2 , d 2 ) and σ 3 (x 4 , d 4 ) due to d 2 , r 4 ∈ T (x 2 ) ∩ T (x 4 ) WPC3 between σ(x 2 , d 2 ) and σ(x 0 , 0) due to d 2 , 0 ∈ T (x 2 ) ∩ T (x 0 ) WPC4 between σ(x 3 , 0) and σ 3 (x 4 , d 4 ) due to 0, r 4 ∈ T (x 3 ) ∩ T (x 4 ) For WPC1, we obtain P (

x 1 , x 0 ) = {F R}, by x 1 F R > x 0 F R , the read-arc (F R, r 2 ) disables r 2 at x 0 ∈ X τ . For WPC2, we have P (x 2 , x 4 ) = {R}, by x 2 R < x 4 R ,
the read-arc (R, r 4 ) disables r 4 at x 2 or, alternatively, the inhibitor-arc (R, d 2 ) disables d 2 at x 4 . For WPC3, we obtain P (

x 2 , x 0 ) = {P F R , P R }, to disable d 2 at x 0 ∈ X τ , by x 2 P R > x 0 P R , the read-arc (P R , d 2 ) or, by x 2 P F R < x 0 P F R
, the inhibitor-arc (P F R , d 2 ) can be used. For WPC4, we have

P (x 3 , x 4 ) = {R, Spo}, to disable r 4 at x 3 ∈ X τ , by x 4 R > x 3 R , the read-arc (R, r 4 ) or, by x 4 Spo < x 3
Spo , the inhibitor-arc (Spo, r 4 ) can be used. All possible control-arcs have weight 1.

The priority relation O 4 = {(r 2 > r 1 ), (r 4 > r 3 )} is required, the resulting 8 alternative X -deterministic extended Petri nets are presented in Fig. 3.

PR F R R Spo PF R r 1 r 2 d 2 r 4 r 3 PR F R R Spo PF R r 1 r 2 d 2 r 4 r 3 PF R R F R Spo PR r 4 r 3 d 2 r 1 r 2 (a) (b) (c) PF R R F R Spo PR r 4 r 3 d 2 r 1 r 2 PR F R R Spo PF R r 1 r 2 d 2 r 4 r 3 PR F R R Spo PF R r 1 r 2 d 2 r 4 r 3 (d) (e) (f ) PF R R F R Spo PR r 4 r 3 d 2 r 1 r 2 PF R R F R Spo PR r 4 r 3 d 2 r 1 r 2 (g) (h)
Fig. 3. The eight X -deterministic extended Petri nets resulting from PS 4 .

Handling and resolving priority conicts

In this section, we discuss the underlying mathematical structures and combinatorial problems of the two main reconstruction steps.

The priority conict graph and selecting sequences

By construction of the priority conict graph G = (V D ∪V term , E D ∪E W ∪E S ) and the selection of S ⊆ V D according to system (1), we note the following. Every solution S∪V term of (1) corresponds to a stable set 4 in the strong priority conict graph G S = (V D ∪ V term , E D ∪ E S ). In particular, the two constraints (1a) and (1b) enforce to select exactly one node from each of the cliques Q 1 , . . . Q |D| and all nodes from V term , resp. Since Q 1 , . . . Q |D| together with the nodes from V term 4. A stable set is a subset of pairwise non-adjacent nodes. built a clique partition Q of G S by construction, we aim at nding a stable set S ∪ V term of the same size as the clique cover number χ(G S ) is. In general, not every graph G has a stable set of size χ(G), but making use of the reproducibility of the given data X , we can ensure that at least the selection of all sequences σ 1 (x j , d j ) = ((x j , d j )) in G S , called canonical solution S 1 , always satises (1).

This implies:

Theorem 1. G S has at least one stable set of size χ(G S ) and, thus, system [START_REF] Berge | Hypergraphs[END_REF] is always feasible.

Finding all solutions of (1) means to enumerate all stables sets of size χ(G S ) in G S , i.e., all maximum stable stets of G S . We next discuss which nodes of G S can never enter any solution of (1) and propose a corresponding reduction of G S . Lemma 1. A node σ ∈ V D can never be selected for any solution S if there is a clique Q in Q so that σ is in strong conict with all sequences σ ∈ Q.

Corollary 1. No σ ∈ V D can be selected for any solution S if the sequence contains a terminal state as intermediate state.

This leads to the following reduction of the priority conict graph: We obtain the reduced priority conict graph

G = (V D ∪ V term , E D ∪ E S ∪ E W ) from G by
recursively removing from V D all nodes which are completely joined to a clique in Q and the edges being adjacent to them. Example 6. The reduced priority conict graph G of the running example can be obtained as follows: We remove σ 2 (x 1 , d 1 ) since it is in SPC with (the only sequence σ(x 0 , 0)) in Q 0 due to r 2 , 0 ∈ T (x 0 ). We omit σ 2 (x 4 , d 4 ) since it is in SPC with (the only sequence σ(x 2 , d 2 )) in Q 2 due to d 2 , r 4 ∈ T (x 2 ).

Furthermore, let G S = (V D ∪ V term , E D ∪ E S ) be the reduced strong priority conict graph. We nally obtain from the above considerations: Theorem 2. The sets of maximum stable sets in G S and G S are equal.

Hence, we can also reduce system (1) based on G S and obtain the same solutions.

Interpretation of resolving WPCs as set cover problem

For each WPC between two sequences σ, σ , there are update vectors r t = r t and intermediate states y = y with t, t ∈ T (y) ∩ T (y ) s.t. (y, r t ) ∈ σ but (y , r t ) ∈ σ . We denote this for short by WPC(σ, σ ). This priority conict can be solved by adding control-arcs which -either turn r t into a transition t which is disabled at y (then t > t forces t to switch in y whereas only t is enabled at y ), -or turn r t into a transition t which is disabled at y (then t > t forces t to switch in y whereas only t is enabled at y). For that, consider for each WPC the set P (y, y ) of places where y and y dier.

Remark 1. If one of y, y is a terminal state, say y , one of the alternatives is not possible, then t has to be disabled at y and t > t = 0 holds automatically. Note that if y = y then P (y, y ) = ∅ follows which is the reason why SPCs cannot be resolved by adding control-arcs.

Let CA(σ, σ ) be the set of all possible read-arcs that can resolve W P C(σ, σ ), involving r t = r t and states y = y by either disabling t at y or t at y then CA(σ, σ ) contains:

-a read-arc (p, t) ∈ A R with weight w(p, t) > y p ∀p ∈ P (y, y ) with y p > y p , -an inhibitor-arc (p, t) ∈ A I with w(p, t) < y p ∀p ∈ P (y, y ) with y p < y p , -a read-arc (p, t ) ∈ A R with weight w(p, t ) > y p ∀p ∈ P (y, y ) with y p > y p , -an inhibitor-arc (p, t ) ∈ A I with w(p, t ) < y p ∀p ∈ P (y, y ) with y p < y p . Lemma 2. Inserting in P S any non-empty subset A ⊆ CA(σ, σ ) resolves the weak priority conict WPC(σ, σ ).

We next discuss which subsets of control-arcs for all WPCs are suitable to turn P S into a catalytical conformal extended Petri net. On the one hand, a controlarc (p, t) ∈ CA(σ, σ ) might disable t at a state in a sequence σ ∈ S \σ, σ where t is supposed to switch. In this case, (p, t) has to be removed from CA(σ, σ ), resulting in a reduced set CA S (σ, σ ). On the other hand, one control-arc may resolve several WPCs in P S if the corresponding sets CA S (σ, σ ) intersect.

This motivates the following consideration: Introduce one variable z (p,t) ∈ {0, 1} for each possible control-arc (p, t) ∈ CA S (σ, σ ) for all WPCs in P S . Construct a 0/1-matrix A S whose columns correspond to all those variables (resp. control-arcs) and whose rows encode the incidence vectors of the sets CA S (σ, σ ) for all WPCs in P S . Then any 0/1-solution z of A S z ≥ 1 encodes a suitable set of control-arcs resolving all WPCs in P S and, thus, a hitting set or cover of A S . Lemma 3. Any cover of A S corresponds to a set of control-arcs making P S catalytical conformal with X .

According to [START_REF] Wagler | On minimality and equivalence of Petri nets[END_REF], we are only interested in nding minimal models tting X , where minimality is interpreted in the sense that all non-minimal models contain another one also tting the data. Based on results in [START_REF] Wagler | On minimality and equivalence of Petri nets[END_REF], we can show: Lemma 4. Non-minimal covers of A S yield extended Peri nets with unnecessary control-arcs and, thus, being not minimal.

Hence, it suces to only consider minimal covers of A S but, for the sake of completeness, we are interested in nding all of them. The set of all minimal covers of a matrix A is called its blocker b(A). This nally implies: Theorem 3. All minimal catalytical conformal extended Petri nets based on P S can be obtained by computing the blocker b(A S ).

Example 7. For the feasible set S 4 ∪ V term , we obtain as matrix A S4 :

(FR,r 2 ) ∈ AR (PF R, d 2 ) ∈ AI (PR, d 2 ) ∈ AR (Spo,r 4 ) ∈ AI (R,r 4 ) ∈ AR (R,d 2 ) ∈ AI WPC1 X WPC2 X X WPC3 X X WPC4 X X
The 15 covers of A S4 are shown in the table below. The 8 X -deterministic extended Petri nets from Fig. 3 correspond to the 8 covers (a-h) of A S4 where we chose one by one, one control-arc to solve one WPC. Note that P e , P f , P g and P h

are not minimal since they contain unnecessary control-arcs, whereas the minimal covers from b(A S4 ) correspond to the four minimal solutions P a , P b , P c , P d . Note that b(A S ) is non-empty if and only if none of the sets CA S (σ, σ ) is empty. Finally, one can show that b(A S1 ) = ∅ always holds for the canonical solution S 1 , so there is at least one catalytical conformal network for any given X . By construction, all catalytic conformal extended Petri nets based on P S can be made X -deterministic by taking all the priorities O σ for all σ ∈ S.

(F R, r 2 ) ∈ AR (PF R, d 2 ) ∈ AI (PR, d 2 ) ∈ AR (Spo, r 4 ) ∈ AI (R, r 4 ) ∈ AR (R, d 2 ) ∈ AI Pa WCP1 WCP3 WCP4 WCP2 Pb WCP1 WCP3 WCP2

Concluding Remarks

In [START_REF] Favre | Reconstructing X -deterministic extended Petri nets from experimental time-series data X (extended abstract)[END_REF], an integrative method to reconstruct all X -deterministic extended Petri nets with priorities tting given experimental time series data is proposed.

We detailed here the aspect of handling priority conicts and choosing controlarcs by discussing the underlying mathematical structures and related combinatorial problems, feasibility as well as minimality issues. For that, we interpreted -the selection of suitable sequences from the priority conict graph G S as the problem of nding all stable sets S of size χ(G S ) to obtain all conformal standard networks P S (Thm. 1); -resolving all WPCs in a standard network P S as hitting set or set cover problem involving a matrix A S whose blocker b(A S ) yields all minimal catalytic conformal extended Petri nets based on P S (Thm. 3).

These interpretations in terms of two classical combinatorial problems open us

the possibility to apply eective techniques known from the literature to compute the blocker of a matrix [START_REF] Berge | Hypergraphs[END_REF][START_REF] Eiter | Computational aspects of monotone dualization: A brief survey[END_REF][START_REF] Murakami | Ecient algorithms for dualizing large-scale hypergraphs[END_REF] or to enumerate all maximal stable sets of a graph [START_REF] Johansson | Nlc2-decomposition in polynomial time[END_REF][START_REF] Tsukiyama | A new algorithm for generating all the maximal independent sets[END_REF], which include all maximum ones.

Moreover, we can ensure the existence of at least one conformal network outgoing from reproducible data (Thm. 1), since we allow the occurrence of WPCs in P S which can be later resolved by inserting control-arcs. In contrast, not using control-arcs does not always result in a solution [START_REF] Marwan | A mathematical approach to solve the network reconstruction problem[END_REF][START_REF] Durzinsky | An algorithmic framework for network reconstruction[END_REF], whereas not using priorities may force the insertion of articial control-arcs [START_REF] Durzinsky | Reconstruction of extended Petri nets from time-series data by using logical control functions[END_REF].

Concluding Remarks: Long version

In [START_REF] Favre | Reconstructing X -deterministic extended Petri nets from experimental time-series data X (extended abstract)[END_REF], an integrative method to reconstruct all X -deterministic extended Petri nets with priorities tting given experimental time series data is proposed.

We detailed here the aspect of handling priority conicts and choosing controlarcs by discussing the underlying mathematical structures and related combinatorial problems, feasibility as well as minimality issues. For that, we interpreted -the selection of suitable sequences from the priority conict graph as the problem of nding all stable sets S of size χ(G S ) in the priority conict graph G S to obtain all conformal standard networks P S ; -resolving WPCs as set cover problem involving a matrix A S encoding all possible control-arcs to resolve all WPCs in a standard network P S and showed that computing the blocker b(A S ) yields all minimal catalytic conformal extended Petri nets based on P in terms of two well-known combinatorial optimization problems open us the possibility to apply eective techniques known from the literature, e.g., the classical algorithm of Berge [START_REF] Berge | Hypergraphs[END_REF] or one of its recent, more ecient variants [START_REF] Eiter | Computational aspects of monotone dualization: A brief survey[END_REF][START_REF] Murakami | Ecient algorithms for dualizing large-scale hypergraphs[END_REF] to compute the blocker of a matrix, or algorithms to enumerate all maximal stable sets of a graph [START_REF] Johansson | Nlc2-decomposition in polynomial time[END_REF][START_REF] Tsukiyama | A new algorithm for generating all the maximal independent sets[END_REF], which include all maximum ones. Here, it could be interesting to design a specialized algorithm for enumerating all stable sets of size χ(G), based on a known clique partition of G of the same size χ(G).

Moreover, we can ensure the existence of at least one conformal network outgoing from reproducible data (Thm. 1), since we allow the occurrence of WPCs in P S which can be later resolved by inserting control-arcs. In contrast, during the reconstruction of standard networks without control-arcs, all priority conicts have to be excluded so that we obtain a solution outgoing from reproducible data only if none of the observed dierences d j is enabled at a terminal state

x k [12] (since the resulting WPC(σ, σ ) between (x j , d j ) ∈ σ and (x k , 0) ∈ σ cannot be resolved in standard networks).

On the other hand, we always obtain an extended network being conformal with reproducible data, since a catalytical conformal extended network exists if none of the observed dierences d j starts at a terminal state x j [2], and this property is guaranteed by the preprocessing [START_REF] Wagler | Preprocessing for network reconstruction: Feasibility test and handling infeasibilty[END_REF] (otherwise, x j would have two dierent successors x j + d j and x j + 0).

During the reconstruction of extended networks without priorities in [START_REF] Durzinsky | Reconstruction of extended Petri nets from time-series data by using logical control functions[END_REF], all occuring WPCs are resolved by inserting control-arcs only: a WPC(σ, σ ) between (y, r t ) ∈ σ and (y , r t ) ∈ σ is resolved by disabling t at y and disabling t at y (since no priorities are at hand to force the desired switch). Hence, the resulting networks may contain more control-arcs than catalytic or inhibitory dependencies indeed exist, since several switches are not controled by reaction rates (reected by priorities), but by additional control-arcs.

In contrast, during the reconstruction of extended networks with priorities we only introduce control-arcs if the experimentally observed behavior cannot be forced by priorities alone. Moreover, only using minimal sets of control-arcs needed to resolve all WPCs in a network P S has a further advantage: instead of rstly computing all possible solutions (in terms of all possible covers of the matrix A S ) and later removing non-minimal solutions in a postprocessing step (as described in [START_REF] Wagler | On minimality and equivalence of Petri nets[END_REF]), we avoid to generate such solutions already during the reconstruction process.

Our further goal is to avoid not only generating non-minimal solutions, but also minimal solutions which are technically correct but would be ruled out later during a subsequent verication process to check whether the returned solutions are biological meaningful or contradict well-established biological preknowledge (e.g. on catalysts or inhibitors of certain reactions). This could be done by integrating further biological pre-knowledge (beyond the information given with the experimental data) into the reconstruction process.

For standard networks, we already provided an implementation of the reconstruction approach using Answer Set Programming [START_REF] Durzinsky | Automatic network reconstruction using asp[END_REF]. The nal goal is to provide such an implementation also for extended Petri nets with priorities and to apply the presented reconstruction approach to dierent biological experimental data. We indeed expect an important impact of Automatic Network Reconstruction in order to support the integrated experimental and theoretical analysis of biological systems and processes towards their holistic understanding.

In [START_REF] Favre | Reconstructing X -deterministic extended Petri nets from experimental time-series data X (extended abstract)[END_REF], an integrative method to reconstruct all X -deterministic extended Petri nets with priorities tting given experimental time series data is proposed.

We detailed here the aspect of handling priority conicts and choosing controlarcs by discussing the underlying mathematical structures and related combinatorial problems: we interpreted -the selection of suitable sequences from the priority conict graph as the problem of nding a stable set of size χ(G S ) in G S and ensured the existence of such a stable set (Thm. 1).

-resolving WPCs as set cover problem involving a matrix A S encoding all possible control-arcs to resolve all WPCs in a standard network P S and showed that computing the blocker b(A S ) yields all minimal catalytic conformal extended Petri nets based on P S (Thm. 3).

These interpretations in terms of two well-known combinatorial optimization

problems open us the possibility to apply eective techniques known from the literature, e.g., the classical algorithm of Berge [START_REF] Berge | Hypergraphs[END_REF] or one of its recent, more ecient variants [START_REF] Eiter | Computational aspects of monotone dualization: A brief survey[END_REF][START_REF] Murakami | Ecient algorithms for dualizing large-scale hypergraphs[END_REF], to compute the blocker of a matrix.

On the other hand, there exist algorithms to enumerate all maximal stable sets of a graph [START_REF] Johansson | Nlc2-decomposition in polynomial time[END_REF][START_REF] Makino | New algorithms for enumerating all maximal cliques[END_REF][START_REF] Tsukiyama | A new algorithm for generating all the maximal independent sets[END_REF], which include all maximum ones. Here, it could be interesting to design a specializes algorithm for enumerating all stable sets of size χ(G), based on a known clique partition of G of the same size χ(G).

Appendix

The following appendix should not be considered as part of the paper, but only as condential supplementary information for the program committee.

6.1 The priority conict graph and selecting sequences

For any graph G, the maximum size of a stable set in a graph, called its stability number α(G), is a lower bound for its clique cover number χ(G) (since a stable can meet a clique in at most one node). In general, we do not have equality (e.g., the chordless cycle C 5 on 5 nodes has α(C 5 ) = 2 but χ(C 5 ) = 3).

Theorem 4. We have α(G S ) = χ(G S ) for the strong priority conict graph G S and, thus, system (1) is always feasible.

Proof of Theorem 4. Making use of the reproducibility of the given data X

guaranteed by the preprocessing [START_REF] Wagler | Preprocessing for network reconstruction: Feasibility test and handling infeasibilty[END_REF], we show that the canonical solution S 1 , the selection of all canonical sequences σ 1 (x j , d j ) = ((x j , d j )) ∀ d j ∈ D, is always a solution of [START_REF] Berge | Hypergraphs[END_REF].

For that we have to verify that σ 1 (x j , d j ) is neither in strong priority conict with any other canonical sequence σ 1 (x i , d i ) for some d i ∈ D \ d j , nor with any trivial sequence σ(x, 0) for some x ∈ X term .

Recall that the reproducibility of X guarantees that each x j ∈ X has a unique successor x j+1 = x j + d j ∈ X , and that this includes d j = 0 ∀ d j ∈ D (otherwise, if d j = 0, then x j+1 = succ(x j ) = x j + 0 = x j holds and, thus, x j has two dierent successors x j+1 = x j and succ(x j+1 ) = x j , a contradiction).

Case 1: Consider two canonical sequences σ 1 (x i , d i ) and σ 1 (x j , d j ) in priority conict, i.e., we have d i = d j and d i , d j ∈ T (x i ) ∩ T (x j ).

Then x i = x j follows from reproducibility (otherwise, x i = x j would have two dierent successors x i + d i = x j + d j in X by d i = d j ), hence the priority conict is not strong.

Case 2: Consider a canonical sequence σ 1 (x i , d i ) and a trivial sequence σ(x, 0) for some x ∈ X term in priority conict, i.e., we have d i ∈ T (x).

We infer x = x i from the reproducibility of X (otherwise x = x i would have two dierent successors x + d i = x + 0 in X by d i = 0), hence the priority conict is not strong.

Finally, observe that neither two canonical sequences σ 1 (x i , d) and σ 1 (x j , d) nor two trivial sequences σ(x, 0) and σ(x , 0) can be in any priority conict (since d = d and 0 = 0 holds, resp.).
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Theorem 1 is clearly a corrollary from the more general Theorem 4.

Proof of Lemma 1. A node σ ∈ V D being in SPC with all sequences from some Q ∈ Q is adjacent to all nodes in Q. Since exactly one node, say σ ∈ Q, has to be selected from Q by (1a) or (1b), inequality (1c) forces x σ = 0 (by x σ = 1 and x σ + x σ ≤ 1) due to the SPC between σ and σ . Hence, σ cannot be selected for any solution S of (1). 2

Note that Lemma 1 includes the case addressed in [START_REF] Durzinsky | Reconstruction of extended Petri nets from time-series data by using logical control functions[END_REF] that no sequence σ containing a terminal state x as intermediate state is appropriate: Then σ contains a reaction vector r t = 0 which is supposed to switch in x, leading to a SPC between σ and the trivial sequence σ(x, 0) since t ∈ T (x) holds.

Since σ(x, 0) is a clique Q x in G S of size 1 and σ is in SPC with the whole clique Q x , Lemma 1 implies the assertion of Corollary 1.

The reduced version of the original priority conict graph from Fig. 2 is presented in Fig. 4.

Q 3 Q 1 Q 3 Q 2 Q 0 Q 4 σ(x 1 , d 1 ) σ 3 (x 1 , d 1 ) σ(x 3 , 0) σ(x 2 , d 2 ) σ(x 0 , 0) σ(x 4 , d 4 ) σ 3 (x 4 , d 4 )
Fig. 4. The reduced priority conict graph resulting from the running example, where bold edges indicate SPCs, thin edges WPCs and gray boxes the clique partition Q.

Theorem 5. We have α(G S ) = χ(G S ) for the reduced strong priority conict graph and the sets of maximum stable sets in G S and G S are equal.

Proof of Theorem 5. By construction, G is an induced subgraph of G, hence G S is an induced subgraph of G S as well.

Since from G and G S , only nodes are deleted during the reduction step which cannot occur in any maximum stable set of G S by Lemma 1, we have α(G S ) = α(G S ).

None of the cliques in Q turns into the empty set by applying the reduction (since at least the canonical sequence σ 1 (x j , d j ) remains in Q j and all trivial sequences σ(x, 0) from V term remain in G due to Theorem 4 and Lemma 1).

This implies χ(G S ) = χ(G S ), and the assertion α(G S ) = χ(G S ) follows from Theorem 4.
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Theorem 2 is a direct consequence of the more general Theorem 5.

We nally obtain the reduced system to compute all maximum stable sets in G S .

σ∈Qj x σ = 1 ∀Q j ∈ Q (2a) x σ = 1 ∀σ ∈ V term (2b) x σ + x σ ≤ 1 ∀σσ ∈ E S (2c) 
x σ ∈ {0, 1} ∀σ ∈ V D ∪ V term .

(2d)

Interpretation of resolving WPCs as set cover problem

Proof of Lemma 2. We can partition the set CA(σ, σ ) in two dierent subsets:

-CA t,y (σ, σ ) containing all control-arcs that disable t at y , -CA t ,y (σ, σ ) containing all control-arcs that disable t at y.

We distinguish the following cases:

Case 1: A ⊆ CA t,y (σ, σ ). In this case, the control-arcs in A disable t at y (such that only t remains in T (y )), but still t, t ∈ T (y) holds. Adding the priority t > t forces t to switch in y and, thus, the WPC(σ, σ ) is resolved by adding A and t > t .

Case 2: A ⊆ CA t ,y (σ, σ ). This case is analogously to Case 1, by interchanging the roles of t and t resp. y and y .

Case 3: A intersects both CA t,y (σ, σ ) and CA t ,y (σ, σ ). In this case, the control-arcs in A disable t at y and t at y (such that only transition t remains in T (y) and transition t in T (y )). This already forces t to switch in y and t in y , thus, the WPC(σ, σ ) is resolved by adding A , without adding a further priority between t and t . 2

Proof of Lemma 3. Any cover C of the matrix A S encoding row-wise all sets CA S (σ, σ ) for all WPCs in P S selects, by construction, a non-empty subset A ⊆ CA S (σ, σ ) for each WPC. According to Lemma 2, the union of these sets A resolves all WPCs in P S . Moreover, it is ensured for all sequences σ ∈ S, that r t l ∈ T A (y l ) holds for all reaction vectors r t l and intermediate states y l in σ = σ π,λ (x j , d j ) = ((y 1 , r t1 ), . . . , (y m , r tm ), since the control-arcs do not remove t l from T A (y l ) for any t l involved in a WPC at y l by construction of CA(σ, σ ) and for any t l not eected by a WPC at y l by the reduction of the sets CA(σ, σ ) to CA S (σ, σ ), if necessary. Hence, inserting the control-arcs selected by C in P S indeed yields a catalytical conformal extended Petri net.
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Note: A S does not necessarily have a cover (namely, not if CA S (σ, σ ) is empty for one WPC(σ, σ )). On the other hand, if there is a cover C for A S , then the resulting catalytical conformal extended Petri net can be made X -deterministic by adding appropriate priorities (as in the proof of Lemma 2).

Proof of Lemma 4. According to [START_REF] Wagler | On minimality and equivalence of Petri nets[END_REF], two X -deterministic extended Petri nets with priorities are M -equivalent if they have the same incidence matrix M .

In particular, all X -deterministic extended Petri nets with priorities stemming from the same standard network P S are M -equivalent (since they dier only in their sets of control-arcs or priorities).

We call a control-arc essential if the network is not X -deterministic anymore after its removal (since at least one of the WPCs in P S remains unresolved), and unnecessary otherwise.

We ensure that a cover C of the matrix A S encoding row-wise all sets CA S (σ, σ ) for all WPCs in P S is minimal if and only if it only contains essential control-arcs: Case 1: Each CA S (σ, σ ) intersects C in exactly one element. Then all controlarcs selected by C are clearly essential and C is a minimal cover.

Case 2: There is a set CA S (σ i , σ i ) having with C at least 2 elements in common.

Case 2.1: (At least) one control-arc in CA S (σ i , σ i ) does not show up in the intersection of C with any other CA S (σ j , σ j ), say (p i , t i ). Then C \ {(p i , t i )} is still a cover of A S and, thus, C is not minimal and contains an unnecessary control-arc (p i , t i ).

Case 2.2: All control-arcs in CA S (σ i , σ i )∩C show up in the intersection of C with another set CA S (σ j , σ j ). If each of them is the only control-arc in CA S (σ j , σ j ) ∩ C, then all of them are essential and C is minimal. Otherwise, at least one of them, say (p, t), is not the only control-arc in CA S (σ j , σ j ) ∩ C (for each WPC with (p, t) ∈ CA S (σ j , σ j )). Then C \ {(p, t)} is still a cover of A S , C not minimal and (p, t) ∈ C unnecessary.
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  1 , ..., t m ) of transition switches, i.e., there are intermediate statesx j = y 1 , y 2 , ..., y m+1 = x j+1 with y l + M •t l = y l+1 for 1 ≤ l ≤ m. The extended Petri net P = (P, T, A, w) is catalytic conformal with X if t l ∈ T A (y l ) for each intermediate state y l , and the extended Petri net with priorities
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