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Abstract—More and more Internet companies rely on large
scale data analysis as part of their core services for tasks such
as log analysis, feature extraction or data filtering. Map-Reduce,
through its Hadoop implementation, has proved to be an efficient
model for dealing with such data. One important challenge when
performing such analysis is to predict the performance of individ-
ual jobs. In this paper, we propose a simple framework to predict
the performance of Hadoop jobs. It is composed of a dynamic
light-weight Hadoop job analyzer, and a prediction module using
locally weighted regression methods. Our framework makes some
theoretical cost models more practical, and also well fits for the
diversification of the jobs and clusters. It can also help those
users who want to predict the cost when applying for an on-
demand cloud service. At the end, we do some experiments to
verify our framework.

Index Terms—Locally Weighted Regression; Job Analyzer;
Performance Prediction; Hadoop; MapReduce;

I. INTRODUCTION

It has been widely accepted that we are facing an informa-

tion booming era. The amount of data becomes very huge, and

traditional ways to manage and to process no longer work. In

such a situation, MapReduce[1] has been proved as an efficient

way to deal with ”Big Data”. Hadoop[2] is an open source

implementation of MapReduce. A lot of internet companies

have deployed many Hadoop clusters to provide core services,

such as log analytic, data mining, feature extraction, etc. But

usually the efficiency of these clusters is not very high. After

studying the performance of some Hadoop clusters, we find

some interesting problems as the following:

• How to design an efficient scheduling policy? There are

many works done on scheduling policies for Hadoop

clusters. But some of the advanced policies (such as

[3] [4] [5]) require high level performance estimation in

advance to decide scheduling strategies.

• How to tune the parameters? Hadoop provides more

than 200 parameters both for the clusters and also for

the jobs. But in most of the time, users just choose

to use the default values or tune the parameters rely

on some empirical values. But if we can estimate the

job performance before execution, we can give more

reasonable values.

• How to optimize the job performance? More and more

companies pay attention on the ROI, which refers to

”return of investment”. They not only need to solve the

problems but also want to optimize the job performance,

so that they could use less time and less resources to

solve more problems.

• How to balance between the cost and the performance?

As IaaS becomes more and more popular, some users

prefer to use an on-demand service rather than to deploy

their own clusters. In such a situation, they need to

precisely decide how long and how many nodes will they

use.

To well settle these problems, the main point is to estimate

the job performance in advance. That inspires us to create the

framework described in this paper to predict the performance

of a hadoop job. In order to provide plentiful predictions, our

work is based on the following 2 main parts:

• A job analyzer: which is used to analyse the jobs submit-

ted by the users to collect the features related with the

jobs, it can also collect the parameters related with the

clusters.

• A prediction module: which is used for estimating the

performance in using a local weighted linear regretion

method.

The main contributions of this paper are as follows:

1) We design a light-weight hadoop job analyzer. It can be

used not only as a job performance analyzer but also a

parameter collecter.

2) We propose a prediction module, which combines two

kinds of information given by the job analyzer and the

history traces to predict job performance.

II. RELATED WORK

A. Hadoop MapReduce

The MapReduce programming model was initially devel-

oped by [1] for processing large scale of data. Hadoop is

an open source framework made of a MapReduce framework

and a distributed file system called HDFS. It is very popular

not only among the academic institution but also in many

real industries such as web search, social network, economic

computation and so on. A lot of research work committed to

optimize the Hadoop jobs performance and the efficiency of

the Hadoop clusters in many different aspects [6] [7] [8].

When running a Hadoop job, the large amount of input

data will be first divided into some splits (64M by default).

Then each split will be executed by a user-defined map task.

Take Word Count as an example, each input split contains



several lines of an article, each line is read as a record and

then will be wrapped as key objects and value objects. Then

the map function will consume a key and a value object and

emit a key and value object as well. During this process, all the

records (each line) will be executed by the same map function.

After all the map tasks finish, the reduce tasks will pull the

corresponding partitions from the output of the map tasks.

Then all these data will be sorted and mergered in the reduce

tasks to make sure that all the values with the same key will

be put together. Finally reduce tasks will run and produce the

output data.

B. Hadoop Simulator

To the best of our knowledge, there are two kinds of

Hadoop simulators. One is trying to ”replace” the Hadoop

framework and usually focuses on the scheduling policy design

[9] or resource allocation [10]. To simplify their problem and

evaluation, they use some simulator to help them analyze

the jobs. Usually these simulators are just simply an analog

of the MapReduce framework without any complex node

communication or process communication. Another one [11] is

trying to analyze the application performance on MapReduce

cluster through studying the language syntax, logical data-

flow, data storage and its implementations. It provides a

vivid MapReduce environment and can be used to test the

scheduling algorithms. The framework in [11] is designed

based on Grid Sim. It will not sample the input data and

does not care about the complexity of the jobs. Instead, it will

record the performance after executing the whole job in the

environment of their simulator. In other words, this simulator

is not light weight, and can not meet a quasi-realtime need.

All these works are not well suited for our prediction need.

As described before, our job analyzer can not only support real

Hadoop jobs but also profile usefull information about jobs and

give them to the prediction moduler. Most of the others works

do not focus on job analyzing, and cannot provide enough

information, such as the complexity of the Map functions and

Reduce functions, the conversion rate of the data and so on,

for a further module to make prediction. At the same time,

our job analyser is light-weight, it will consume only a little

additional cost to provide plenty of information. And it is not

only a simulator, it is designed to collect information and to

analyze job performance, but it could also be used as a Map

and Reduce function debugger tool.

C. Predictor

Some predictors are statistic based black box model , while

others are cost model based white box model. In [12], the

author classify the job into several categories by collecting

the history trace of a given cluster. And inside each categories,

they use a statistic model to predict job execution time. The

authors also compare some clustering technics and feature

elimination technics, then propose to use Kernel Canonical

Correlation Analysis (KCCA) statistic model to find out the

correlation between the features (e.x. inputSize, shuffleInpu-

tRatio, outputShuffleRatio, etc.) and the job execution times.

Fig. 1. System Overview

The biggest difference between our work and this kind of

work is that we focus on predicting detailed information about

jobs. Meanwhile, their features can not be obtained before job

execution, and we can use our job analyser to get our features.

Another kind of predictor is based on cost-model. The what-

if engine discribed in [13] is focusing on optimizing Hadoop

job performance by predicting job performance. This engine

is actually a predictor. It gives a corresponding prediction by

tuning Hadoop job configurations. But as Hadoop has more

than 200 configuration parameters, it’s not easy to control the

work under a low overhead. And in our work, we only care

about a few main features (5 for Map and 6 for Reduce) which

can accurately react the performance, so that we can give the

prediction of the performance within a reasonable time and

help to guide the scheduling policy or any other tuning needs.

III. SYSTEM DESIGN

In this section, we introduce the design of our system. The

purpose of this system is to predict the job performance, hence,

i.e. the execution time of Map task and Reduce task. Our work

can also help some ideal cost models such as [14] to calculate

the CPU, Disk I/O and Network I/O cost as well. Meanwhile, it

can also be used to help other optimizing works about Hadoop

such as [15] to estimate their cost. All the parts in our system

are loosely coupled. Figure 1 presents an overview.

A. Job Analyzer

The purpose of the Job Analyzer is to extract the following

information from the use submitted job. First, it measures the

data input size and the number of records. Second, it tries to

estimate the complexity of the Map and Reduce functions.

Finally, it estimates the data conversion rate, i.e. the ratio

between the input and output data of a mapper.

And these information should be achieved in a reansonable

time within a low latency, because any additional time cost is

not welcomed by users. To achieve these goals, we first get

a sample of the input data instead of processing the whole

data set. Then we extract and modify the procedure code only

for Map and Reduce functions, eliminate all the costs for

transfering data, initiate the cluster, and so on. Finally, we use

the reflection mechanism of Java to instantiate the processing

class of Map and Reduce in users’ jobs.

1) Feasibility Analysis: We argue that our method is feasi-

ble from the following 2 aspects:

The introduction about Hadoop in sectio I shows out that

a Hadoop MapReduce job has some special characteristics as

shown below,



• Execution Similarity: According to the programming

model, users only have to provide a map function and a

reduce function. And the execution for each Map task (or

Reduce task) is very similar to others. In other words, all

data will be processed by these functions repeatly. Thanks

to this design, we only need to study how each key-

value pairs are processed for a particular job, as reading,

sorting, transferring and writing data are independent of

these two functions.

• Data Similarity: MapReduce is well suited for off-line

batches processing. And it is usually used to do repeated

work in which the input data has very similar format,

such as log analysis, inverted index and so on. We can

just take a look at a very little sample and then we can

estimate the whole dataset.

These two main characteristics make the methods used in our

Job Analyzer possible.

2) Implementation: To analyze a job, we first need to get

a sample of input data. And we read these data into memory

and package them by (key, value) pairs. Then we will execute

map function, and sort the output by a hash function, then

package the result into (key, value) pairs and give them to

Reduce function. After that we will run the reduce function

and give the output. Through these processes, we will count

the number of the (key, value) pairs, the size of them, and so

on.

Figure 2 shows the structure of Job Analyzer.

Fig. 2. Job Analyzer

The Job Analyzer mainly contains 4 parts, the Hadoop

virtual execution environment, the input sampling module, the

MR module and the control module. We will present the details

for each module:

• Hadoop virtual execution environment

This is the main part of Job Analyzer. Its main purpose

is to support to execute the Hadoop jobs submitted by

users. In this virtual execution environment, Jop Analyzer

can on one hand use the user configuration variables

and on the other hand collect the dynamic parameters

in processing map and reduce tasks.

• Input Sampling Module

The main function of this module is to sample and read

the input file from HDFS. The most important thing for

this module is to know the percentage of the sampling.

If the ratio is set too high, to sample will consume too

much time; but if it is set too low, then the sample will not

reflect the overall of the data set. We use a the sampling

algorithm shown below.

Algorithm 1 Sampling Algorithm

Require:

The input file: FILE;

The quantity of lines that we want to sample: k;

The maximum number of iterations (depends on the

filesize): MAX;

Ensure:

The sample with k lines (each line is selected with the

probability k/n): Sk;

1: Sk = [1, 2, ..., k] //Take the top k lines in FILE;

2: if k > n then

3: return Sk

4: end if

5: for new line i to EndOfFile do

6: if MAX < 0 then

7: break;

8: end if

9: MAX −−;

10: int r = random(0, i)
11: if r < k then

12: S[r]= new line i;

13: end if

14: end for

15: return Sk;

• MR module

This module is used to execute the Map function and

Reduce function. We use the reflection mechanism of Java

and the configuration variables collected by the virtual

environment to instance the mapper object and reducer

object defined in users’ job. Then we use the sample data

as input to execute the users’ map function and reduce

function.

• Analysis Module

In this part we will calculate some features defined

in our prediction module, for example the number of

input records (N); the complexity of the map and reduce

functions (MapComplex and ReduceComplex)[14]; and

also the conversion ratio of data for map and reduce tasks

(MapDataConv and ReduceDataConv).

B. Prediction Module

In order to get an in-depth understanding of Hadoop’s

job processing, we have to go deep into every step of the

implementation details and concurrent relationships. There

are a lot researches talking about MapReduce performance

model [16] [17] [14]. Different with most of the other cost



Fig. 3. Map Phase

Fig. 4. Reduce Phase

models which divide the processing from the perspective of

the execution order, we choose to use the method proposed in

[14] to devide the processing from the perspective of resources

dimension. This can help us to predict the consumption of

different types of resources.

Figure 3 and Figure 4 show the processing steps of map

tasks and reduce tasks proposed in [14].

As shown in the figures, we can assume that the total cost

for executing Map or Reduce task should be a function of these

10 steps. We suppose that Tmap = f(Tm1, Tm2, ..., Tm10),
and Treduce = f(Tr1, T r2, ..., T r10).

Through analysis, we have found that the 10 steps of map

tasks are affected by 5 features related to a job. They are: the

amount of Map input data (MapInput), the number of Map

input records (N), N*log(N), the complexity of Map function

(MapComplex), and the data conversion rate for Map function

(MapDataConv)

Table I shows the relationship between the 10 steps for Map

task and these 5 features.

TABLE I
RELATIONSHIP BETWEEN MAP STEPS AND FEATURES

Feature Step

MapInput Tm2, Tm3, Tm7, Tm8, Tm10

N Tm4, Tm5, Tm6, Tm7, Tm9

N*log(N) Tm6

MapComplex Tm5

MapDataConv Tm7, Tm8, Tm9, Tm10

Similarly, the ten steps of Reduce tasks are affected by

following 6 features: the amount of Map input data (Map-

Input), the number of Map input records (N), N*log(N), the

complexity of Reduce function (ReduceComplex), the data

conversion rate for Map function (MapDataConv), and the data

conversion rate for Reduce function (ReduceDataConv)

Table II shows the relationship between the 10 steps for

Reduce task and these 6 features.

TABLE II
RELATIONSHIP BETWEEN REDUCE STEPS AND FEATURES

Feature Step

MapInput Tr2, Tr3, Tr5, Tr9, Tr10

N Tr4, Tr6, Tr7, Tr8

N*log(N) Tr4

ReduceComplex Tr8

MapDataConv Tr2, Tr3, Tr4, Tr5, Tr6, Tr7, Tr8, Tr9, Tr10

ReduceDataConv Tr9, Tr10

TABLE III
CORRELATION COEFFICIENT FOR TREDUCE

Job Name Dedup WordCount Project Grep Total

R
2 0.9982 0.9992 0.9991 0.9949 0.6157

We assume that Tmap and Treduce have some linear rela-

tionship with their corresponding features:

Tmap = a0+a1 ∗MapInput+a2 ∗N +a3 ∗Nlog(N)+a4 ∗

MapComplex+ a5 ∗MapDataConv

Treduce = b0 + b1 ∗ MapInput + b2 ∗ N + b3 ∗

Nlog(N) + b4 ∗ ReduceComplex + b5 ∗MapDataConv +
b6 ∗ReduceDataConv

To test our hypothesis, we generate 10 benchmarks with

the input data vary from 64M to 8G for 4 kinds of jobs,

and we repeat each benchmark for 3 times, and collect the

values of the features needed in our linear functions, then

we use these values to calculate the correlation coefficient

R2 for Treduce. The correlation coefficient R2 represents the

strength of the linear relationship between the two variables

in a regression equation. A value close to 1, indicates that the

function is linear, whereas a value close to 0 indicates that

there is no linear relationship between the two variables. We

use R1 scripts to calculate this coefficient, the results are listed

in table III.

From table III we can see that there is a very good linear re-

lationship for Treduce within each type of jobs (with R2 bigger

than 0,99), but among different types the linear relationship is

not good enough (R2=0.6157). Tmap shows similar results.

So, we will get a very good result if we choose the history

trace of the similar type of jobs as a training set to train our

linear model. And different feature will give different affect

to the model. For example, if the job is compute-intensive,

then the complexity of map and reduce function will be the

main features; if the job is data-intensive, then the amount of

input and the number of records will be more important. This

encourage us to choose locally weighted regression method

to solve our problem. In this method, we give each feature

a weight w. And we measure the weighted distance between

the new instance and the ones in the history trace in order to

choose the similar type of jobs as a new training set. And then

we use this training set to train our model, and use this model

to make prediction.

1http://www.r-project.org/



The structure of the Prediction Module is shown in Figure 5.

Fig. 5. Prediction Module

IV. EVALUATION

In this section we will evaluate the performance and preci-

sion of the prediction module. We set our experiment on a 5

nodes Hadoop cluster. The cluster is deployed with Hadoop

version 1.0 with one node started as master and the other

nodes as slaves. We have chosen a 5 nodes cluster to limit

the size of the training set. Indeed, the larger the cluster, the

larger the training set we can obtain, increasing the accuracy

of the machine learning method. Evaluating our method on

a small training set will give insight on its behaviour with

limited training.

A. Experiments for Job Analyzer

The Job analyzer is used for sampling and getting properties

such as the number of records (N), the complexity of Map

function and Reduce function (MapComplex and ReduceCom-

plex), and also the data conversion rate for Map task and

Reduce task (MapDataConv and ReduceDataConv).

One of the most important part of the Job Analyzer is

sampling. We test our sampling module with data varying

from 16 MB to 8 GB. For each data set, we compare the

number of records estimated by the job analyzer and the real

one from the history trace. Among them, the average error rate

is less them 0.02. That means our sampling algorithm is good

enough, and the sampling we got can reflect a real situation

about the whole data set.

The results are shown in figure 6.

Fig. 6. Precision of sampling

We also compare the complexity of Map and Reduce

functions as estimated by the job analyzer to real job history

traces. We define the complexity as the ratio of the execution

time of a job to the execution time of a standard job, running

on the same amount of data in the same environment. Here

we choose Word Count as a standard job as it is a typical

data-intensive job with an average complex, that will make

the value of complexity not too big or too small. Figure 7

shows that for the wc and proj jobs, we obtain a very close

value for the complexity. The difference for grep and dedup

jobs is because in a real job we use a large amount of data,

but in job analyser we only choose a small sample, and grep

and dedup depends on the records, different records will give

a very different result, but the error is still acceptable.

Fig. 7. Estimation of Job Complexity

B. Experiments for Prediction Module

Fig. 8. Map task prediction

1) The prediction about Map task execution time: Figure

8 shows the the prediction about the Map task execution

time for various sampling ratio K, K reflects the number of

similar jobs being choosen from the history trace. We can

see from this experiment that when the sampling ratio is not

high, the prediction accuracy is higher, but when the sampling

ratio is high, the accuracy rate will decrease. That’s because

our prediction model is based on a multiple linear regression

model, if the sample rate is high, that means we have selected

a lot of history traces which is far from the job need to be

predicted. And these selected traces are not similar with the

job need to be predicted, that’s why the accuracy decrease.

We use locally weighted regression method to train our

model. When considering a new job need to be predicted, we

first need to find out the similar jobs to use as training set. But

as we discribe before, different feature gives different effect

for the job classification. So, for important features we set a

higher weight w in order to find the most similar jobs. We can



see that if we set all the weight w to be 1, it will give us a

worse result than giving different features a different weight.

The sampling ratio K and the weight w can be set to some

empirical values, or can be infered using machine learning

methods.

2) The prediction about Reduce task execution time: The

same analysis also applies to the prediction about the execution

time of Reduce tasks as shown in figure 9.

From figure 8 and figure 9 we can see that the error rates are

high for some job IDs. These particular jobs had the highest

possible input size, 8GB. Hence, our trained model had no

similar jobs and could not come with a good prediction. This

could be solved by improving the training.

Fig. 9. Reduce task prediction

3) Overhead of prediction: Figure 10 shows the overhead

of our framework. We define the overhead as a proportion

between the execution time of our framework for prediction

and the job execution time get from the job history. As shown

in the figure, when the amount of data augments, the overhead

becomes smaller.

Fig. 10. overhead of the prediction

V. CONCLUSION

In this paper we have presented a simple model for pre-

dicting Hadoop MapReduce jobs’ performance. This model is

implemented through 2 parts, a job analyzer and a prediction

module. The job analyzer is in charge of collecting the impor-

tant properties related to the jobs for the prediction module.

And then the prediction module will use this information

to train a locally linear model in using locally weighted

regression method. Our work can predict task execution times

as well as other job performance metrics. We have shown in

experiments the accuracy and efficiency of our framework.

It accurately predicts the performance of jobs with a low

overhead.
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