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Abstract

We prove that the determinacy of Gale-Stewart games whose winning sets are infinitary ra-

tional relations accepted by 2-tape Büchi automata is equivalent to the determinacy of (effec-

tive) analytic Gale-Stewart games which is known to be a large cardinal assumption. Then we

prove that winning strategies, when they exist, can be very complex, i.e. highly non-effective,

in these games. We prove the same results for Gale-Stewart games with winning sets accepted

by real-time 1-counter Büchi automata, then extending previous results obtained about these

games.

1. There exists a 2-tape Büchi automaton (respectively, a real-time 1-counter Büchi au-

tomaton) A such that: (a) there is a model of ZFC in which Player 1 has a winning

strategy σ in the game G(L(A)) but σ cannot be recursive and not even in the class

(Σ1

2
∪ Π1

2
); (b) there is a model of ZFC in which the game G(L(A)) is not determined.

2. There exists a 2-tape Büchi automaton (respectively, a real-time 1-counter Büchi au-

tomaton)A such thatL(A) is an arithmetical∆0

3
-set and Player 2 has a winning strategy

in the game G(L(A)) but has no hyperarithmetical winning strategies in this game.

3. There exists a recursive sequence of 2-tape Büchi automata (respectively, of real-time

1-counter Büchi automata) An, n ≥ 1, such that all games G(L(An)) are determined,

but for which it is Π1

2
-complete hence highly undecidable to determine whether Player

1 has a winning strategy in the game G(L(An)).

Then we consider the strenghs of determinacy for these games, and we prove the following

results.

1. There exists a 2-tape Büchi automaton (respectively, a real-time 1-counter Büchi au-

tomaton) A♯ such that the game G(A♯) is determined iff the effective analytic determi-

nacy holds.

2. There is a transfinite sequence of 2-tape Büchi automata (respectively, of real-time

1-counter Büchi automata) (Aα)α<ωCK

1
, indexed by recursive ordinals, such that the

games G(L(Aα)) have strictly increasing strenghs of determinacy.

We show also that the determinacy of Wadge games between two players in charge of in-

finitary rational relations accepted by 2-tape Büchi automata is equivalent to the (effective)

analytic Wadge determinacy and thus also equivalent to the (effective) analytic determinacy.

Keywords: Automata and formal languages; logic in computer science; Gale-Stewart games; 2-tape Büchi

automaton; 1-counter automaton; determinacy; effective analytic determinacy; models of set theory; inde-

pendence from the axiomatic system ZFC; complexity of winning strategies; Wadge games.
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1 Introduction

In Computer Science, non terminating systems in relation with an environment may be specified

with some particular infinite games of perfect information, called Gale Stewart games since they

have been firstly studied by Gale and Stewart in 1953 in [GS53]. The two players in such a game

are respectively a non terminating reactive program and the “environment”. A Gale-Stewart game

is defined as follows. If X is a (countable) alphabet having at least two letters and A ⊆ Xω , then

the Gale-Stewart game G(A) is an infinite game with perfect information between two players.

Player 1 first writes a letter a1 ∈ X, then Player 2 writes a letter b1 ∈ X, then Player 1 writes a2 ∈
X, and so on . . . After ω steps, the two players have composed an infinite word x = a1b1a2b2 . . .
of Xω . Player 1 wins the play iff x ∈ A, otherwise Player 2 wins the play. The game G(A) is said

to be determined iff one of the two players has a winning strategy.

Then the problem of the synthesis of winning strategies is of great practical interest for the

problem of program synthesis in reactive systems. In particular, if A ⊆ Xω , where X is here a

finite alphabet, and A is effectively presented, i.e. accepted by a given finite machine or defined

by a given logical formula, the following questions naturally arise, see [Tho95, LT94]: (1) Is the

game G(A) determined? (2) If Player 1 has a winning strategy, is it effective, i.e. computable?

(3) What are the amounts of space and time necessary to compute such a winning strategy? Büchi

and Landweber gave a solution to the famous Church’s Problem, posed in 1957, by proving that in

a Gale Stewart gameG(A), whereA is a regular ω-language, one can decide who the winner is and

compute a winning strategy given by a finite state transducer, see [Tho08]. Walukiewicz extended

Büchi and Landweber’s Theorem to the case of a winning set A which is deterministic context-

free, i.e. accepted by some deterministic pushdown automaton, answering a question of Thomas

and Lescow in [Tho95, LT94]. He first showed in [Wal00] that one can effectively construct

winning strategies in parity games played on pushdown graphs and that these strategies can be

computed by pushdown transducers. Notice that later some extensions to the case of higher-order

pushdown automata have been established [Cac03, CHM+08].

In [Fin12, Fin13] we have studied Gale-Stewart games G(A), where A is a context-free ω-

language accepted by a non-deterministic pushdown automaton, or even by a 1-counter automaton.

We have proved that the determinacy of Gale-Stewart games G(A), whose winning sets A are

accepted by real-time 1-counter Büchi automata, is equivalent to the determinacy of (effective)

analytic Gale-Stewart games. On the other hand Gale-Stewart games have been much studied in

Set Theory and in Descriptive Set Theory, see [Kec95, Jec02]. It has been proved by Martin that

every Gale-Stewart game G(A), where A is a Borel set, is determined [Kec95]. Notice that this

is proved in ZFC, the commonly accepted axiomatic framework for Set Theory in which all usual

mathematics can be developped. But the determinacy of Gale-Stewart games G(A), where A is an

(effective) analytic set, is not provable in ZFC; Martin and Harrington have proved that it is a large

cardinal assumption equivalent to the existence of a particular real, called the real 0♯, see [Jec02,

page 637]. Thus we proved in [Fin12, Fin13] that the determinacy of Gale-Stewart games G(A),
whose winning sets A are accepted by real-time 1-counter Büchi automata, is also equivalent to

the existence of the real 0♯, and thus not provable in ZFC.

In this paper we consider Gale-Stewart games G(L(A)), where L(A) is an infinitary rational

relation, i.e. an ω-language over a product alphabet X = Σ × Γ, which is accepted by a 2-tape

(non-deterministic) Büchi automaton A. In such a game, the two players alternatively write letters

from the product alphabet X = Σ × Γ, and after ω steps they have produced an infinite word

over X which may be identified with a pair of infinite words (u, v) ∈ Σω × Γω. Then Player 1

wins the play if (u, v) ∈ L(A). Notice that if the 2-tape Büchi automaton A is synchronous then

the winning set is actually a regular ω-language over the product alphabet X = Σ × Γ. Then the
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infinitary rational relation L(A) is Borel, the game G(L(A)) is determined, and it follows from

Büchi and Landweber’s Theorem that one can decide who the winner is and compute a winning

strategy given by a finite state transducer. We show in this paper that the situation is very different

when the 2-tape Büchi automaton may be asynchronous.

We firstly prove that the determinacy of Gale-Stewart games whose winning sets are infinitary

rational relations accepted by 2-tape Büchi automata is equivalent to the determinacy of Gale-

Stewart games whose winning sets are accepted by 1-counter Büchi automata and thus also equiv-

alent to the existence of the real 0♯. In particular, it is not provable in ZFC.

Next we prove numerous more results on these games along with similar results about 1-

counter games which extend the previous results obtained in [Fin12, Fin13]. In particular, we

prove that winning strategies in these games, when they exist, can be very complex, i.e. highly

non-effective.

1. There exists a 2-tape Büchi automaton (respectively, a real-time 1-counter Büchi automaton)

A such that: (a) there is a model of ZFC in which Player 1 has a winning strategy σ in the

game G(L(A)) but σ cannot be recursive and not even in the class (Σ1
2 ∪Π1

2); (b) there is a

model of ZFC in which the game G(L(A)) is not determined.

2. There exists a 2-tape Büchi automaton (respectively, a real-time 1-counter Büchi automaton)

A such that the infinitary rational relation (respectively, the 1-counter ω-language) L(A) is

an arithmetical ∆0
3-set and Player 2 has a winning strategy in the game G(L(A)) but has no

hyperarithmetical winning strategies in this game.

3. There exists a recursive sequence of 2-tape Büchi automata (respectively, of real-time 1-

counter Büchi automata) An, n ≥ 1, such that all games G(L(An)) are determined, but

for which it is Π1
2-complete, hence highly undecidable, to determine whether Player 1 has a

winning strategy in the game G(L(An)).

Then we consider the possible strenghs of determinacy for these games, and prove the following

results, using results of Harrington and Stern on effective analytic games, [Har78, Ste82].

1. There exists a 2-tape Büchi automaton (respectively, a real-time 1-counter Büchi automaton)

A♯ such that the game G(L(A♯)) is determined iff the effective analytic determinacy holds.

2. There is a transfinite sequence of 2-tape Büchi automata (respectively, of real-time 1-counter

Büchi automata) (Aα)α<ωCK
1

, indexed by recursive ordinals, such that the gamesG(L(Aα))
have strictly increasing strenghs of determinacy.

On the other hand, there is another class of infinite games of perfect information which have

been much studied in Set Theory and in Descriptive Set Theory: the Wadge games firstly studied

by Wadge in [Wad83] where he determined a great refinement of the Borel hierarchy defined via

the notion of reduction by continuous functions. The Wadge games are closely related to the

notion of reducibility by continuous functions. For L ⊆ Xω and L′ ⊆ Y ω , L is said to be Wadge

reducible to L′ iff there exists a continuous function f : Xω → Y ω, such that L = f−1(L′);
this is then denoted by L ≤W L′. On the other hand, the Wadge game W (L,L′) is an infinite

game with perfect information between two players, Player 1 who is in charge of L and Player 2

who is in charge of L′. And it turned out that Player 2 has a winning strategy in the Wadge game

W (L,L′) iff L ≤W L′. The Wadge games have also been considered in Computer Science since

they are important in the study of the topological complexity of languages of infinite words or trees

accepted by various kinds of automata, [PP04, Sta97, Fin06a, Fin08, Sel03, Sel08, ADNM08]. We
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proved in [Fin12, Fin13] that the determinacy of Wadge games between two players in charge of ω-

languages accepted by real-time 1-counter Büchi automata is equivalent to the (effective) analytic

Wadge determinacy, which is known to be equivalent to the (effective) analytic determinacy (see

[LSR88]) and thus also equivalent to the existence of the real 0♯. We consider here Wadge games

between two players in charge of infinitary rational relations accepted by 2-tape Büchi automata

and we prove that the determinacy of these Wadge games is equivalent to the determinacy of

Wadge games between two players in charge of ω-languages accepted by real-time 1-counter

Büchi automata and thus also equivalent to the (effective) analytic determinacy. In particular, the

determinacy of these games is not provable in ZFC.

Notice that as the results presented in this paper might be of interest to both set theorists and

theoretical computer scientists, we shall recall in detail some notions of automata theory which are

well known to computer scientists but not to set theorists. In a similar way, we give a presentation

of some results of set theory which are well known to set theorists but not to computer scientists.

The paper is organized as follows. We recall some known notions in Section 2. We study

Gale-Stewart games with winning sets accepted by 2-tape Büchi automata or by 1-counter Büchi

automata in Section 3. In Section 4 we study Wadge games between two players in charge of

infinitary rational relations. Some concluding remarks are given in Section 5.

2 Recall of some known notions

We assume the reader to be familiar with the theory of formal (ω-)languages [Sta97, PP04].

We recall the usual notations of formal language theory.

If Σ is a finite or countably infnite alphabet, a non-empty finite word over Σ is any sequence

x = a1 . . . ak, where ai ∈ Σ for i = 1, . . . , k , and k is an integer ≥ 1. The length of x is k,

denoted by |x|. The empty word is denoted by λ; its length is 0. Σ⋆ is the set of finite words

(including the empty word) over Σ. A (finitary) language V over an alphabet Σ is a subset of Σ⋆.

The first infinite ordinal is ω. An ω-word over Σ is an ω -sequence a1 . . . an . . ., where for

all integers i ≥ 1, ai ∈ Σ. When σ = a1 . . . an . . . is an ω-word over Σ, we write σ(n) = an,

σ[n] = σ(1)σ(2) . . . σ(n) for all n ≥ 1 and σ[0] = λ.

The usual concatenation product of two finite words u and v is denoted u.v (and sometimes

just uv). This product is extended to the product of a finite word u and an ω-word v: the infinite

word u.v is then the ω-word such that:

(u.v)(k) = u(k) if k ≤ |u| , and (u.v)(k) = v(k − |u|) if k > |u|.
The set of ω-words over the alphabet Σ is denoted by Σω. An ω-language V over an alphabet

Σ is a subset of Σω, and its complement (in Σω) is Σω − V , denoted V −.

The prefix relation is denoted ⊑: a finite word u is a prefix of a finite word v (respectively, an

infinite word v), denoted u ⊑ v, if and only if there exists a finite word w (respectively, an infinite

word w), such that v = u.w.

If L is a finitary language (respectively, an ω-language) over the alphabet Σ then the set

Pref(L) of prefixes of elements of L is defined by Pref(L) = {u ∈ Σ⋆ | ∃v ∈ L u ⊑ v}.

We now recall the definition of k-counter Büchi automata, reading ω-words over a finite al-

phabet, which will be useful in the sequel.

Let k be an integer ≥ 1. A k-counter machine has k counters, each of which containing a

non-negative integer. The machine can test whether the content of a given counter is zero or not.

And transitions depend on the letter read by the machine, the current state of the finite control,

and the tests about the values of the counters. Notice that in this model some λ-transitions are

allowed. During these transitions the reading head of the machine does not move to the right, i.e.
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the machine does not read any more letter.

Formally a k-counter machine is a 4-tuple M=(K,Σ, ∆, q0), where K is a finite set of states,

Σ is a finite input alphabet, q0 ∈ K is the initial state, and ∆ ⊆ K × (Σ ∪ {λ}) × {0, 1}k ×
K × {0, 1,−1}k is the transition relation. The k-counter machine M is said to be real time iff:

∆ ⊆ K × Σ× {0, 1}k ×K × {0, 1,−1}k , i.e. iff there are no λ-transitions.

If the machine M is in state q and ci ∈ N is the content of the ith counter Ci then the

configuration (or global state) of M is the (k + 1)-tuple (q, c1, . . . , ck).
For a ∈ Σ ∪ {λ}, q, q′ ∈ K and (c1, . . . , ck) ∈ N

k such that cj = 0 for j ∈ E ⊆ {1, . . . , k}
and cj > 0 for j /∈ E, if (q, a, i1, . . . , ik, q

′, j1, . . . , jk) ∈ ∆ where ij = 0 for j ∈ E and ij = 1
for j /∈ E, then we write:

a : (q, c1, . . . , ck) 7→M (q′, c1 + j1, . . . , ck + jk).
Thus the transition relation must obviously satisfy:

if (q, a, i1, . . . , ik, q
′, j1, . . . , jk) ∈ ∆ and im = 0 for some m ∈ {1, . . . , k} then jm = 0 or

jm = 1 (but jm may not be equal to −1).

Let σ = a1a2 . . . an . . . be an ω-word over Σ. An ω-sequence of configurations r = (qi, c
i
1, . . . c

i
k)i≥1

is called a run of M on σ iff:

(1) (q1, c
1
1, . . . c

1
k) = (q0, 0, . . . , 0)

(2) for each i ≥ 1, there exists bi ∈ Σ∪{λ} such that bi : (qi, c
i
1, . . . c

i
k) 7→M (qi+1, c

i+1
1 , . . . ci+1

k )
and such that a1a2 . . . an . . . = b1b2 . . . bn . . .

For every such run r, In(r) is the set of all states entered infinitely often during r.

Definition 2.1 A Büchi k-counter automaton is a 5-tuple M=(K,Σ,∆, q0, F ), where M′=(K,Σ,
∆, q0) is a k-counter machine and F ⊆ K is the set of accepting states. The ω-language accepted

by M is: L(M)= {σ ∈ Σω | there exists a run r of M on σ such that In(r) ∩ F 6= ∅}

The class of ω-languages accepted by Büchi k-counter automata is denoted BCL(k)ω . The

class of ω-languages accepted by real time Büchi k-counter automata will be denoted r-BCL(k)ω .

The class BCL(1)ω is a strict subclass of the class CFLω of context free ω-languages accepted

by Büchi pushdown automata.

Infinitary rational relations are subsets of Σω × Γω , where Σ and Γ are finite alphabets, which

are accepted by 2-tape Büchi automata.

Definition 2.2 A 2-tape Büchi automaton is a sextuple A = (K,Σ,Γ,∆, q0, F ), where K is a

finite set of states, Σ and Γ are finite alphabets, ∆ is a finite subset of K × Σ⋆ × Γ⋆ ×K called

the set of transitions, q0 is the initial state, and F ⊆ K is the set of accepting states.

A computation C of the 2-tape Büchi automaton A is an infinite sequence of transitions

(q0, u1, v1, q1), (q1, u2, v2, q2), . . . , (qi−1, ui, vi, qi), (qi, ui+1, vi+1, qi+1), . . .

The computation is said to be successful iff there exists a final state qf ∈ F and infinitely many

integers i ≥ 0 such that qi = qf .

The input word of the computation is u = u1.u2.u3 . . .
The output word of the computation is v = v1.v2.v3 . . .
Then the input and the output words may be finite or infinite.

The infinitary rational relation L(A) ⊆ Σω × Γω accepted by the 2-tape Büchi automaton A is

the set of pairs (u, v) ∈ Σω × Γω such that u and v are the input and the output words of some

successful computation C of A.

The set of infinitary rational relations will be denoted by RATω.
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We assume the reader to be familiar with basic notions of topology which may be found in

[Kec95, LT94, Sta97, PP04]. There is a natural metric on the set Σω of infinite words over a finite

or countably infinite alphabet Σ containing at least two letters which is called the prefix metric and

is defined as follows. For u, v ∈ Σω and u 6= v let δ(u, v) = 2−lpref(u,v) where lpref(u,v) is the

first integer n such that the (n + 1)st letter of u is different from the (n + 1)st letter of v. This

metric induces on Σω the usual topology in which the open subsets of Σω are of the form W.Σω ,

for W ⊆ Σ⋆. A set L ⊆ Σω is a closed set iff its complement Σω − L is an open set. If the

alphabet Σ is finite then the set Σω equipped with this topology is a Cantor space, and if Σ = ω
then the set ωω equipped with this topology is the classical Baire space. We shall consider only

these two cases in the sequel.

For V ⊆ Σ⋆ we denote Lim(V ) = {x ∈ Σω | ∃∞n ≥ 1 x[n] ∈ V } the set of infinite words

over Σ having infinitely many prefixes in V . Then the topological closure Cl(L) of a set L ⊆ Σω

is equal to Lim(Pref(L)). Thus we have also the following characterization of closed subsets of

Σω: a set L ⊆ Σω is a closed subset of the space Σω iff L = Lim(Pref(L)).
We now recall the definition of the Borel Hierarchy of subsets of Xω .

Definition 2.3 For a non-null countable ordinal α, the classes Σ0
α and Π

0
α of the Borel Hierarchy

on the topological space Xω are defined as follows: Σ0
1 is the class of open subsets of Xω , Π0

1 is

the class of closed subsets of Xω, and for any countable ordinal α ≥ 2:

Σ
0
α is the class of countable unions of subsets of Xω in

⋃
γ<α Π

0
γ .

Π
0
α is the class of countable intersections of subsets of Xω in

⋃
γ<α Σ

0
γ .

A set L ⊆ Xω is Borel iff it is in the union
⋃

α<ω1
Σ

0
α =

⋃
α<ω1

Π
0
α, where ω1 is the first

uncountable ordinal.

There are also some subsets of Xω which are not Borel. In particular, the class of Borel subsets of

Xω is strictly included into the class Σ1
1 of analytic sets which are obtained by projection of Borel

sets. The co-analytic sets are the complements of analytic sets.

Definition 2.4 A subset A of Xω is in the class Σ1
1 of analytic sets iff there exist a finite alphabet

Y and a Borel subset B of (X × Y )ω such that x ∈ A ↔ ∃y ∈ Y ω such that (x, y) ∈ B, where

(x, y) is the infinite word over the alphabet X × Y such that (x, y)(i) = (x(i), y(i)) for each

integer i ≥ 1.

We now recall the notion of completeness with regard to reduction by continuous functions.

For a countable ordinal α ≥ 1, a set F ⊆ Xω is said to be a Σ
0
α (respectively, Π0

α, Σ1
1)-complete

set iff for any set E ⊆ Y ω (with Y a finite alphabet): E ∈ Σ
0
α (respectively, E ∈ Π

0
α, E ∈ Σ

1
1)

iff there exists a continuous function f : Y ω → Xω such that E = f−1(F ).
We now recall the definition of classes of the arithmetical hierarchy of ω-languages, see

[Sta97]. Let X be a finite alphabet or X = ω. An ω-language L ⊆ Xω belongs to the class

Σn if and only if there exists a recursive relation RL ⊆ (N)n−1 ×X⋆ such that:

L = {σ ∈ Xω | ∃a1 . . . Qnan (a1, . . . , an−1, σ[an + 1]) ∈ RL},
where Qi is one of the quantifiers ∀ or ∃ (not necessarily in an alternating order). An ω-language

L ⊆ Xω belongs to the class Πn if and only if its complement Xω − L belongs to the class Σn.

The class Σ1
1 is the class of effective analytic sets which are obtained by projection of arithmetical

sets. An ω-language L ⊆ Xω belongs to the class Σ1
1 if and only if there exists a recursive relation

RL ⊆ N× {0, 1}⋆ ×X⋆ such that:

L = {σ ∈ Xω | ∃τ(τ ∈ {0, 1}ω ∧ ∀n∃m((n, τ [m], σ[m]) ∈ RL))}.
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Then an ω-language L ⊆ Xω is in the class Σ1
1 iff it is the projection of an ω-language over the

alphabet X × {0, 1} which is in the class Π2. The class Π1
1 of effective co-analytic sets is simply

the class of complements of effective analytic sets.

Recall that the (lightface) class Σ1
1 of effective analytic sets is strictly included into the (bold-

face) class Σ1
1 of analytic sets.

Recall that a Büchi Turing machine is just a Turing machine working on infinite inputs (over a

finite alphabet) with a Büchi-like acceptance condition, and that the class of ω-languages accepted

by Büchi Turing machines is the class Σ1
1 of effective analytic sets [CG78, Sta97]. On the other

hand, one can construct, using a classical construction (see for instance [HMU01]), from a Büchi

Turing machine T , a 2-counter Büchi automaton A accepting the same ω-language. Thus one can

state the following proposition.

Proposition 2.5 ([Sta97, Sta00]) Let X be a finite alphabet. An ω-language L ⊆ Xω is in the

class Σ1
1 iff it is accepted by a non deterministic Büchi Turing machine, hence iff it is in the class

BCL(2)ω .

We assume also the reader to be familiar with the arithmetical and analytical hierarchies on

subsets of N, these notions may be found in the textbooks on computability theory [Rog67] [Odi89,

Odi99].

3 Gale-Stewart games specified by 2-tape automata

We first recall the definition of Gale-Stewart games.

Definition 3.1 ([Jec02]) Let A ⊆ Xω , where X is a finite or countably infinite alphabet. The

Gale-Stewart game G(A) is a game with perfect information between two players. Player 1 first

writes a letter a1 ∈ X, then Player 2 writes a letter b1 ∈ X, then Player 1 writes a2 ∈ X, and

so on . . . After ω steps, the two players have composed a word x = a1b1a2b2 . . . of Xω. Player 1

wins the play iff x ∈ A, otherwise Player 2 wins the play.

Let A ⊆ Xω and G(A) be the associated Gale-Stewart game. A strategy for Player 1 is a

function F1 : (X2)⋆ → X and a strategy for Player 2 is a function F2 : (X2)⋆X → X. Player 1

follows the strategy F1 in a play if for each integer n ≥ 1 an = F1(a1b1a2b2 · · · an−1bn−1). If

Player 1 wins every play in which she has followed the strategy F1, then we say that the strategy

F1 is a winning strategy (w.s.) for Player 1. The notion of winning strategy for Player 2 is defined

in a similar manner.

The game G(A) is said to be determined if one of the two players has a winning strategy.

We shall denote Det(C), where C is a class of ω-languages, the sentence : “Every Gale-Stewart

game G(A), where A ⊆ Xω is an ω-language in the class C, is determined”.

Notice that, in the whole paper, we assume that ZFC is consistent, and all results, lemmas,

propositions, theorems, are stated in ZFC unless we explicitely give another axiomatic framework.

Notice that it is known that the determinacy of effective analytic games for X = ω, i.e. for

a countably infinite alphabet, is equivalent to the determinacy of effective analytic games for a

finite alphabet X. This follows easily from Lemma 3.14 below. In the sequel the determinacy of

effective analytic games will be denoted by Det(Σ1
1).

The following results were successively proved in [Fin13].
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Proposition 3.2 Det(Σ1
1) ⇐⇒ Det(r-BCL(8)ω).

Theorem 3.3 Det(Σ1
1) ⇐⇒ Det(CFLω) ⇐⇒ Det(BCL(1)ω).

Theorem 3.4 Det(Σ1
1) ⇐⇒ Det(CFLω) ⇐⇒ Det(r-BCL(1)ω).

We now consider Gale-Stewart games of the form G(A) where A ⊆ Xω, X = Σ × Γ is

the product of two finite alphabets, and A = L(A) ⊆ (Σ × Γ)ω is an infinitary rational relation

accepted by a 2-tape Büchi automaton A.

Recall that an infinite word over the alphabet X = Σ × Γ may be identified with a pair of

infinite words (u, v) ∈ Σω × Γω and so we often identify (Σ × Γ)ω and Σω × Γω.

We are going to prove the following result.

Theorem 3.5 Det(Σ1
1) ⇐⇒ Det(RATω).

In order to prove this result, we shall use the equivalence Det(Σ1
1) ⇐⇒ Det(r-BCL(1)ω)

which was proved in [Fin12, Fin13].

We now first define a coding of an ω-word over a finite alphabet Σ, by an ω-word over the

alphabet Σ1 = Σ ∪ {0, A}, where 0, A are additional letters not in Σ.

For x ∈ Σω the ω-word h(x) is defined by:

h(x) = 0.Ax(1).02.x(2).03.A.x(3).04.x(4). . . . 02n.x(2n).02n+1.A.x(2n + 1) . . .

Notice that the ω-word h(x) is obtained from the ω-word

0.x(1).02.x(2).03.x(3).04.x(4) . . .

by adding a letter A before each letter x(2n + 1), where n ≥ 0 is an integer.

Let also

α = 0.AA.02.A.03.AA.04.A.05 . . . AA.02n.A.02n+1.AA.02n+2 . . .

Notice that this ω-word α is easily obtained from the ω-word

α′ = 0.A.02.A.03.A.04.A.05.A . . . A.0n.A.0n+1.A . . .

by adding a letter A before each segment A.02n.A, where n ≥ 1 is an integer.

Then it is easy to see that the mapping h from Σω into (Σ ∪ {0, A})ω is continuous and

injective.

We can now state the following Lemma.

Lemma 3.6 Let Σ be a finite alphabet and 0, A be two additional letters not in Σ. Let α be the

ω-word over Γ = {0, A} defined as above, and L ⊆ Σω be in r-BCL(1)ω . Then there exists an

infinitary rational relation R1 ⊆ (Σ ∪ {0, A})ω × Γω such that:

∀x ∈ Σω (x ∈ L) iff ((h(x), α) ∈ R1)
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Proof. Let Σ be a finite alphabet, 0, A be two additional letters not in Σ. Let α be the ω-word over

{0, A} defined as above, and L = L(A) ⊆ Σω, where A=(K,Σ,∆, q0, F ) is a real time 1-counter

Büchi automaton.

We now define the relation R1.

A pair y = (y1, y2) ∈ (Σ ∪ {0, A})ω × Γω is in R1 if and only if it is in the form

y1 = u1.v1.A.x(1).u2.v2.x(2).u3.v3.A.x(3) . . . .u2n.v2n.x(2n).u2n+1.v2n+1.A.x(2n+1). . . .

y2 = w1.z1.AA.w2.z2.A.w3.z3.AA . . . AAw2n.z2n.A.w2n+1.z2n+1 . . .

where |v1| = 0 and for all integers i ≥ 1,

ui, vi, wi, zi ∈ 0⋆ and x(i) ∈ Σ and

|ui+1| = |zi|+ 1

and there is a sequence (qi)i≥0 of states of K such that for all integers i ≥ 1:

x(i) : (qi−1, |vi|) 7→A (qi, |wi|)

Moreover some state qf ∈ F occurs infinitely often in the sequence (qi)i≥0.

Notice that the state q0 of the sequence (qi)i≥0 is also the initial state of A.

Notice that the main idea is that we try to simulate, using a 2-tape automaton, the reading of

the infinite word x(1).x(2).x(3) . . . by the real time 1-counter Büchi automaton A. The initial

value of the counter is |v1| and the value of the counter after the reading of the letter x(1) by A
is |w1| which is on the second tape. Now the 2-tape automaton accepting R1 would need to read

again the value |w1| in order to compare it to the value of the counter after the reading of x(2)
by the 1-counter automaton A. This is not directly possible so the simulation does not work on

every pair of R1. However, using the very special shape of pairs in h(Σω) × {α}, the simulation

will be possible on a pair (h(x), α). Then for such a pair (h(x), α) ∈ R1 written in the above

form (y1, y2), we have |v2| = |w1| and then the simulation can continue from the value |v2| of the

counter, and so on.

We now give the details of the proof.

Let x ∈ Σω be such that (h(x), α) ∈ R1. We are going to prove that x ∈ L.

By hypothesis (h(x), α) ∈ R1 thus there are finite words ui, vi, wi, zi ∈ 0⋆ such that |v1| = 0
and for all integers i ≥ 1, |ui+1| = |zi|+ 1, and

y1 = u1.v1.A.x(1).u2.v2.x(2).u3.v3.A.x(3) . . . .u2n.v2n.x(2n).u2n+1.v2n+1.A.x(2n+1). . . .

y2 = w1.z1.AA.w2.z2.A.w3.z3.AA . . . AAw2n.z2n.A.w2n+1.z2n+1 . . .

Moreover there is a sequence (qi)i≥0 of states of K such that for all integers i ≥ 1:

x(i) : (qi−1, |vi|) 7→A (qi, |wi|)
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and some state qf ∈ F occurs infinitely often in the sequence (qi)i≥0.

On the other side we have:

h(x) = 0.Ax(1).02.x(2).03.A.x(3).04.x(4). . . . 02n.x(2n).02n+1.A.x(2n + 1) . . .
α = 0.AA.02.A.03.AA.04.A.05 . . . AA.02n.A.02n+1.AA.02n+2 . . .

So we have |u1.v1| = 1 and |v1| = 0 and x(1) : (q0, |v1|) 7→A (q1, |w1|). But |w1.z1| = 1,

|u2.v2| = 2, and |u2| = |z1|+ 1 thus |v2| = |w1|.

We are going to prove in a similar way that for all integers i ≥ 1 it holds that |vi+1| = |wi|.
We know that |wi.zi| = i, |ui+1.vi+1| = i+ 1, and |ui+1| = |zi|+ 1 thus |wi| = |vi+1|.

Then for all i ≥ 1, x(i) : (qi−1, |vi|) 7→A (qi, |vi+1|).
So if we set ci = |vi|, (qi−1, ci)i≥1 is an accepting run of A on x and this implies that x ∈ L.

Conversely it is easy to prove that if x ∈ L then (h(x), α) may be written in the form of (y1, y2) ∈
R1.

It remains to prove that the above defined relation R1 is an infinitary rational relation. It is

easy to find a 2-tape Büchi automaton A accepting the relation R1. �

Lemma 3.7 The set

R2 = (Σ ∪ {0, A})ω × Γω − (h(Σω)× {α})

is an infinitary rational relation.

Proof. By definition of the mapping h, we know that a pair of ω-words (σ1, σ2) is in h(Σω)×{α}
iff it is of the form:

σ1 = h(x) = 0.Ax(1).02.x(2).03.A.x(3).04.x(4). . . . 02n.x(2n).02n+1.A.x(2n + 1) . . .

σ2 = α = 0.AA.02.A.03.AA.04.A.05 . . . AA.02n.A.02n+1.AA.02n+2 . . .

where for all integers i ≥ 1, x(i) ∈ Σ.

So it is easy to see that (Σ∪{0, A})ω ×Γω− (h(Σω)×{α}) is the union of the sets Cj where:

• C1 is formed by pairs (σ1, σ2) where

σ1 has not any initial segment in 0.A.Σ.02.Σ.03A.Σ, or

σ2 has not any initial segment in 0.AA.02.A.03AA.

• C2 is formed by pairs (σ1, σ2) where

σ2 /∈ (0+AA0+A)ω , or

σ1 /∈ (0+.A.Σ.0+.Σ)ω.

• C3 is formed by pairs (σ1, σ2) where

σ1 = w1.u.A.z1
σ2 = w2.v.A.z2

where n is an integer ≥ 1, w1 ∈ (0+.A.Σ.0+.Σ)n, w2 ∈ (0+AA0+A)n,

u, v ∈ 0+, z1 ∈ (Σ ∪ {0, A})ω , z2 ∈ Γω, and

|u| 6= |v|
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• C4 is formed by pairs (σ1, σ2) where

σ1 = w1.u.z1
σ2 = w2.v.A.z2

where n is an integer ≥ 1,

w1 ∈ (0+.A.Σ.0+.Σ)n.0+.A.Σ.,
w2 ∈ (0+AA0+A)n.0+AA,

u, v ∈ 0+, z1 ∈ Σ.(Σ ∪ {0, A})ω , z2 ∈ Γω, and

|u| 6= |v|

• C5 is formed by pairs (σ1, σ2) where

σ1 = w1.u.A.b.w.c.A.z1
σ2 = w2.v.A.z2

where n is an integer ≥ 1,

where n is an integer ≥ 1, w1 ∈ (0+.A.Σ.0+.Σ)n, w2 ∈ (0+AA0+A)n,

u, v, w ∈ 0+, b, c ∈ Σ, z1 ∈ (Σ ∪ {0, A})ω , z2 ∈ Γω, and

|w| 6= |v|+ 1

• C6 is formed by pairs (σ1, σ2) where

σ1 = w1.u.A.b.w.c.w
′′ .A.z1

σ2 = w2.v.AA.w
′.Az2

where n is an integer ≥ 1,

where n is an integer ≥ 1, w1 ∈ (0+.A.Σ.0+.Σ)n, w2 ∈ (0+AA0+A)n,

u, v, w,w′, w′′ ∈ 0+, b, c ∈ Σ, z1 ∈ (Σ ∪ {0, A})ω , z2 ∈ Γω , and

|w′′| 6= |w′|+ 1

It is easy to see that for each integer j ∈ [1, 6], the set Cj ⊆ (Σ ∪ {0, A})ω × Γω is an infinitary

rational relation. The class RATω is closed under finite union thus

R2 = (Σ ∪ {0, A})ω × Γω − (h(Σω)× {α}) =
⋃

1≤j≤6

Cj

is an infinitary rational relation. �

End of Proof of Theorem 3.5.

The implication Det(Σ1
1) =⇒ Det(RATω) follows directly from the inclusion RATω ⊆ Σ1

1.

To prove the reverse implication Det(RATω) =⇒ Det(Σ1
1), we assume that Det(RATω)

holds and we show that every Gale-Stewart game G(L), where L ⊆ Σω is an ω-language in the

class r-BCL(1)ω is determined. Then Theorem 3.4 will imply that Det(Σ1
1) also holds.

Let then L = L(A) ⊆ Σω be an ω-language in the class r-BCL(1)ω which is accepted by a

real-time 1-counter Büchi automaton A=(K,Σ,∆, q0, F ).
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We shall consider a Gale-Stewart game G(L) where L ⊆ (Σ∪ {0, A})ω ×Γω , the letters 0, A
are not in Σ and Γ = {0, A}, and we are going to define a suitable winning set L accepted by a

2-tape Büchi automaton.

Notice first that in such a game, the players alternatively write letters (ai, bi), i ≥ 1, from the

product alphabet X = (Σ ∪ {0, A}) × Γ. After ω steps they have produced an ω-word y ∈ Xω

where y may be identified with a pair (y1, y2) ∈ (Σ ∪ {0, A})ω × Γω.

Consider now the coding defined above with the function h : Σω → (Σ ∪ {0, A})ω , and the

ω-word α ∈ Γω. This coding is inspired from a previous one we have used to study the topological

complexity of infinitary rational relations [Fin06b, Fin08]. We have here modified this previous

coding to get some useful properties for the game we are going to define.

Assume that two players alternatively write letters from the alphabet X = (Σ ∪ {0, A}) × Γ
and that they finally produce an ω-word in the form y = (h(x), α) for some x ∈ Σω. We now

have the two following properties which will be useful in the sequel.

(1) The letters x(2n + 1), for n ≥ 0, have been written by Player 1, and the letters x(2n), for

n ≥ 1, have been written by Player 2.

(2) After a sequence of consecutive letters 0, either on the first component h(x) or on the

second component α, the first letter which is not a 0 has always been written by Player 2.

This is due in particular to the following fact: the sequences of letters 0 on the first component

h(x) or on the second component α are alternatively of odd and even lengths.

On the other hand we can remark that all ω-words in the form h(x) belong to the ω-language

H ⊆ (Σ ∪ {0, A})ω defined by:

H = [(02)⋆.0.A.Σ.(02)+.Σ]ω

In a similar way the ω-word α belongs to the ω-language H ′ ⊆ Γω defined by:

H ′ = [(02)⋆.0.AA.(02)+.A]ω

An important fact is the following property of H × H ′ which extends the same property

of the set h(Σω) × {α}. Assume that two players alternatively write letters from the alphabet

X = (Σ ∪ {0, A}) × Γ and that they finally produce an ω-word y = (y1, y2) in H × H ′ in the

following form:

y1 = 0n1 .Ax(1).0n2 .x(2).0n3 .A.x(3).0n4 .x(4). . . . 0n2k .x(2k).0n2k+1 .A.x(2k + 1) . . .

y2 = α = 0n
′

1 .AA.0n
′

2 .A.0n
′

3 .AA.0n
′

4 .A.0n
′

5 . . . AA.0n
′

2k .A.0n
′

2k+1 .AA.0n
′

2k+2 . . .

where for all integers i ≥ 1, ni ≥ 1 (respectively, n′i) is an odd integer iff i is an odd integer

and ni (respectively, n′i) is an even integer iff i is an even integer.

Then we have the two following facts:

(1) The letters x(2n + 1), for n ≥ 0, have been written by Player 1, and the letters x(2n), for

n ≥ 1, have been written by Player 2.

(2) After a sequence of consecutive letters 0 (either on the first component y1 or on the second

component y2), the first letter which is not a 0 has always been written by Player 2.

Let now

V = Pref(H) ∩ (Σ ∪ {0, A})⋆.0
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So a finite word over the alphabet Σ ∪ {0, A} is in V iff it is a prefix of some word in H and its

last letter is a 0. It is easy to see that the topological closure of H is Cl(H) = H ∪ V.0ω.

In a similar manner let

V ′ = Pref(H ′) ∩ (Γ)⋆.0

So a finite word over the alphabet Γ is in V ′ iff it is a prefix of some word in H ′ and its last letter

is a 0. It is easy to see that the topological closure of H ′ is Cl(H ′) = H ′ ∪ V ′.0ω.

Notice that an ω-word x in Cl(H) is not in h(Σω) iff a sequence of consecutive letters 0 in x
has not the good length. And an ω-word y in Cl(H ′) is not equal to α iff a sequence of consecutive

letters 0 in y has not the good length.

Thus if two players alternatively write letters from the alphabet X = (Σ ∪ {0, A}) × Γ and

that they finally produce an ω-word in the form y = (y1, y2) ∈ Cl(H)× Cl(H ′)− h(Σω)× {α}
then it is Player 2 who “has gone out” of the closed set h(Σω) × {α} at some step of the play.

This means that there is an integer n ≥ 1 such that y[2n − 1] ∈ Pref(h(Σω)× {α}) and y[2n] /∈
Pref(h(Σω) × {α}). In a similar way we shall say that, during an infinite play, Player 1 “goes

out” of the closed set h(Σω) × {α} if the final play y composed by the two players has a prefix

y[2n] ∈ Pref(h(Σω) × {α}) such that y[2n + 1] /∈ Pref(h(Σω) × {α}). This will be important

in the sequel.

From Lemmas 3.6 and 3.7 we know that we can effectively construct a 2-tape Büchi automaton

B such that

L(B) = [h(L(A))× {α}] ∪ [(h(Σω)× {α})−]

On the other hand it is very easy to see that the ω-language H (respectively, H ′) is regular and

to construct a Büchi automaton H (respectively, H′) accepting it. Therefore one can also construct

a 2-tape Büchi automaton B′ such that

L(B′) = [h(L(A))× {α}] ∪ [(h(Σω)× {α})− ∩H ×H ′]

Notice also that Pref(H) (respectively, Pref(H ′)) is a regular finitary language since H (respec-

tively, H ′) is a regular ω-language. Thus the ω-languages V.0ω and V ′.0ω are also regular. More-

over the closure of a regular ω-language is a regular ω-language thus Cl(H) and Cl(H ′) are also

regular, and we can construct, from the Büchi automata H and H′, some other Büchi automata Hc

and H′
c acccepting the regular ω-languages Cl(H) and Cl(H ′), [PP04]. Thus one can construct a

2-tape Büchi automaton C such that:

L(C) = [V.0ω × Cl(H ′)] ∪ [Cl(H)× V ′.0ω]

We denote also U the set of finite words u over X = (Σ ∪ {0, A}) × Γ such that |u| = 2n
for some integer n ≥ 1 and u[2n − 1] ∈ Pref(H) × Pref(H ′) and u = u[2n] /∈ Pref(H) ×
Pref(H ′). Since the regular languages Pref(H) and Pref(H ′) are accepted by finite automata,

one can construct a 2-tape Büchi automaton C′ such that:

L(C′) = U.[(Σ ∪ {0, A})ω × Γω]
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Now we set:

L = L(B′) ∪ L(C) ∪ L(C′)

i.e.

L = [h(L(A))× {α}] ∪ [(h(Σω)× {α})− ∩H ×H ′] ∪ L(C) ∪ L(C′)

The class of infinitary rational relations is effectively closed under finite union, thus we can

construct a 2-tape Büchi automaton D such that L = L(D).

By hypothesis we assume that Det(RATω) holds and thus the game G(L) is determined. We

are going to show that this implies that the game G(L(A)) itself is determined.

Assume firstly that Player 1 has a winning strategy F1 in the game G(L).
If during an infinite play, the two players compose an infinite word z ∈ Xω , and Player 2

“does not go out of the set h(Σω)× {α}” then we claim that also Player 1, following her strategy

F1, “does not go out of the set h(Σω) × {α}”. Indeed if Player 1 goes out of this set then due

to the above remark this would imply that Player 1 also goes out of the set Cl(H) × Cl(H ′):
there is an integer n ≥ 0 such that z[2n] ∈ Pref(H × H ′) but z[2n + 1] /∈ Pref(H × H ′). So

z /∈ h(L(A)) × {α} ∪ [(h(Σω) × {α})− ∩H ×H ′] ∪ L(C). Moreover it follows from the

definition of U that z /∈ L(C′) = U.[(Σ ∪ {0, A})ω × Γω]. Thus If Player 1 goes out of the set

h(Σω)× {α} then she looses the game.

Consider now an infinite play in which Player 2 “does not go out of the set h(Σω) × {α}”.

Then Player 1, following her strategy F1, “does not go out of the set h(Σω) × {α}”. Thus the

two players write an infinite word z = (h(x), α) for some infinite word x ∈ Σω. But the letters

x(2n + 1), for n ≥ 0, have been written by Player 1, and the letters x(2n), for n ≥ 1, have been

written by Player 2. Player 1 wins the play iff x ∈ L(A) and Player 1 wins always the play when

she uses her strategy F1. This implies that Player 1 has also a w.s. in the game G(L(A)).

Assume now that Player 2 has a winning strategy F2 in the game G(L).
If during an infinite play, the two players compose an infinite word z, and Player 1 “does not go

out of the set h(Σω)×{α}” then we claim that also Player 2, following his strategy F2, “does not

go out of the set h(Σω)×{α}”. Indeed if Player 2 goes out of the set h(Σω)×{α} and the final play

z remains in Cl(H×H ′) = Cl(H)×Cl(H ′) then z ∈ [(h(Σω)×{α})−∩H×H ′] ∪ L(C) ⊆ L
and Player 2 looses. If Player 1 does not go out of the set Cl(H × H ′) and at some step of the

play, Player 2 goes out of Cl(H) × Cl(H ′), i.e. there is an integer n ≥ 1 such that z[2n − 1] ∈
Pref(H) × Pref(H ′) and z[2n] /∈ Pref(H)× Pref(H ′), then z ∈ U.[(Σ ∪ {0, A})ω × Γω] ⊆ L
and Player 2 looses.

Assume now that Player 1 “does not go out of the set h(Σω) × {α}”. Then Player 2 follows

his w. s. F2, and then “never goes out of the set h(Σω) × {α}”. Thus the two players write an

infinite word z = (h(x), α) for some infinite word x ∈ Σω. But the letters x(2n + 1), for n ≥ 0,

have been written by Player 1, and the letters x(2n), for n ≥ 1, have been written by Player 2.

Player 2 wins the play iff x /∈ L(A) and Player 2 wins always the play when he uses his strategy

F2. This implies that Player 2 has also a w.s. in the game G(L(A)). �

Recall the following effective result cited in [Fin13, remark 3.5] which follows from the proofs

of Proposition 3.2 and Theorems 3.3 and 3.4.
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Proposition 3.8 Let L ⊆ Xω be an ω-language in the class Σ1
1, or equivalently in the class

BCL(2)ω , which is accepted by a Büchi 2-counter automaton A. Then one can effectively con-

struct from A a real time Büchi 1-counter automaton B such that the game G(L) is determined

if and only if the game G(L(B)) is determined. Moreover Player 1 (respectively, Player 2) has a

w.s. in the game G(L) iff Player 1 (respectively, Player 2) has a w.s. in the game G(L(B)).

We can easily see, from the proofs of Proposition 3.2 and Theorems 3.3 and 3.4 in [Fin13], that

we have also the following additional property which strengthens the above one.

Proposition 3.9 With the same notations as in the above Proposition, if σ is a winning strategy

for Player 1 (respectively, Player 2) in the game G(L) then one can construct a w.s. σ′ for Player

1 (respectively, Player 2) in the game G(L(B)) such that σ′ is recursive in σ. And conversely, if

σ is a winning strategy for Player 1 (respectively, Player 2) in the game G(L(B)) then one can

construct a w.s. σ′ for Player 1 (respectively, Player 2) in the game G(L) such that σ′ is recursive

in σ.

Moreover we can easily see, from the proof of the above Theorem 3.5, that we have also the

following property.

Proposition 3.10 Let A be a real time Büchi 1-counter automaton. Then one can effectively

construct from A a 2-tape Büchi automaton B such that the game G(L(A)) is determined if and

only if the game G(L(B)) is determined. Moreover Player 1 (respectively, Player 2) has a w.s.

in the game G(L(A)) iff Player 1 (respectively, Player 2) has a w.s. in the game G(L(B)) and

if σ is a winning strategy for Player 1 (respectively, Player 2) in the game G(L(A)) then one

can construct a w.s. σ′ for Player 1 (respectively, Player 2) in the game G(L(B)) such that σ′ is

recursive in σ. And similarly if σ is a winning strategy for Player 1 (respectively, Player 2) in the

game G(L(B)) then one can construct a w.s. σ′ for Player 1 (respectively, Player 2) in the game

G(L(A)) such that σ′ is recursive in σ.

Recall that, assuming that ZFC is consistent, there are some models of ZFC in which Det(Σ1
1) does

not hold. Therefore there are some models of ZFC in which some Gale-Stewart games G(L(A)),
where A is a one-counter Büchi automaton or a 2-tape Büchi automaton, are not determined.

Some very natural questions now arise.

Question 1. If we live in a model of ZFC in which Det(Σ1
1) holds, then all Gale-Stewart games

G(L(A)), where A is a one-counter Büchi automaton or a 2-tape Büchi automaton, are deter-

mined. Is it then possible to construct the winning strategies in an effective way ?

Question 2. We know from Martin’s Theorem that in any model of ZFC the Gale-Stewart Borel

games are determined. Is it possible to construct effectively the winning strategies in games

G(L(A)), when L(A) is a Borel set, or even a Borel set of low Borel rank ?

We are going to give some answers to these questions. We now firstly recall some basic

notions of set theory which will be useful in the sequel, and which are exposed in any textbook on

set theory, like [Jec02].

The usual axiomatic system ZFC is Zermelo-Fraenkel system ZF plus the axiom of choice AC.

The axioms of ZFC express some natural facts that we consider to hold in the universe of sets. For
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instance a natural fact is that two sets x and y are equal iff they have the same elements. This is

expressed by the Axiom of Extensionality:

∀x∀y [ x = y ↔ ∀z(z ∈ x↔ z ∈ y) ].

Another natural axiom is the Pairing Axiom which states that for all sets x and y there exists a set

z = {x, y} whose elements are x and y:

∀x∀y [ ∃z(∀w(w ∈ z ↔ (w = x ∨ w = y)))]

Similarly the Powerset Axiom states the existence of the set of subsets of a set x. Notice that these

axioms are first-order sentences in the usual logical language of set theory whose only non logical

symbol is the membership binary relation symbol ∈. We refer the reader to any textbook on set

theory for an exposition of the other axioms of ZFC.

A model (V, ∈) of an arbitrary set of axioms A is a collection V of sets, equipped with the

membership relation ∈, where “x ∈ y” means that the set x is an element of the set y, which

satisfies the axioms of A. We often say “ the model V” instead of ”the model (V, ∈)”.

We say that two sets A and B have same cardinality iff there is a bijection from A onto B and

we denote this by A ≈ B. The relation ≈ is an equivalence relation. Using the axiom of choice

AC, one can prove that any set A can be well-ordered and thus there is an ordinal γ such that

A ≈ γ. In set theory the cardinal of the set A is then formally defined as the smallest such ordinal

γ.

The infinite cardinals are usually denoted by ℵ0,ℵ1,ℵ2, . . . ,ℵα, . . . The cardinal ℵα is also

denoted by ωα, when it is considered as an ordinal. The first uncountable ordinal is ω1, and

formally ℵ1 = ω1. The ordinal ω2 is the first ordinal of cardinality greater than ℵ1, and so on.

Let ON be the class of all ordinals. Recall that an ordinal α is said to be a successor ordinal iff

there exists an ordinal β such that α = β + 1; otherwise the ordinal α is said to be a limit ordinal

and in this case α = sup{β ∈ ON | β < α}.

The class L of constructible sets in a model V of ZF is defined by L =
⋃

α∈ON
L(α),

where the sets L(α) are constructed by induction as follows:

(1). L(0) = ∅
(2). L(α) =

⋃
β<α L(β), for α a limit ordinal, and

(3). L(α+1) is the set of subsets of L(α) which are definable from a finite number of elements

of L(α) by a first-order formula relativized to L(α).
If V is a model of ZF and L is the class of constructible sets of V, then the class L is a model

of ZFC. Notice that the axiom ( V=L), which means “every set is constructible”, is consistent with

ZFC because L is a model of ZFC + V=L.

Consider now a model V of ZFC and the class of its constructible sets L ⊆ V which is another

model of ZFC. It is known that the ordinals of L are also the ordinals of V, but the cardinals in V

may be different from the cardinals in L.

In particular, the first uncountable cardinal in L is denoted ℵL
1 , and it is in fact an ordinal of V

which is denoted ωL
1 . It is well-known that in general this ordinal satisfies the inequality ωL

1 ≤ ω1.

In a model V of the axiomatic system ZFC + V=L the equality ωL
1 = ω1 holds, but in some other

models of ZFC the inequality may be strict and then ωL
1 < ω1: notice that in this case ωL

1 < ω1

holds because there is actually a bijection from ω onto ωL
1 in V (so ωL

1 is countable in V) but

no such bijection exists in the inner model L (so ωL
1 is uncountable in L). The construction of

such a model is presented in [Jec02, page 202]: one can start from a model V of ZFC + V=L and

construct by forcing a generic extension V[G] in which ωV
1 is collapsed to ω; in this extension the

inequality ωL
1 < ω1 holds.
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We can now state the following result, which gives an answer to Question 1.

Theorem 3.11 There exists a real-time 1-counter Büchi automaton A and a 2-tape Büchi automa-

ton B such that:

1. There is a model V1 of ZFC in which Player 1 has a winning strategy σ in the game

G(L(A)) (respectively, G(L(B))). But σ cannot be recursive and not even in the class

(Σ1
2 ∪Π1

2).

2. There is a model V2 of ZFC in which the game G(L(A)) (respectively, G(L(B))) is not

determined.

Moreover these are the only two possibilities: there are no models of ZFC in which Player 2 has

a winning strategy in the game G(L(A)) (respectively, G(L(B))).

To prove this result, we shall use some set theory, a result of Stern in [Ste82] on coanalytic games,

and the Shoenfield Absolutenesss Theorem.

We first recall Stern’s result.

Theorem 3.12 (Stern [Ste82]) For every recursive ordinal ξ there exists an effective coanalytic

set Lξ ⊆ ωω such that the Gale-Stewart game G(Lξ) is determined if and only if the ordinal ℵL

ξ is

countable. Moreover if the game G(Lξ) is determined then Player 2 has a winning strategy (and

thus Player 1 cannot have a w.s. in this game).

We also state the following lemmas.

Lemma 3.13 Let L ⊆ ωω be an effective coanalytic subset of the Baire space. Then there is an

effective analytic subset L′ ⊆ ωω such that Player 1 (respectively, Player 2) has a w.s. in the game

G(L) iff Player 2 (respectively, Player 1) has a w.s. in the game G(L′). In particular, the game

G(L) is determined iff the game G(L′) is determined.

Proof. As noticed for instance in [McA79], we can associate to every effective coanalytic set

L ⊆ ωω the effective analytic set L′ ⊆ ωω which is the complement of the set L+ 1 defined by:

L+ 1 = {x ∈ ωω | ∃y [y ∈ L and ∀n ≥ 1 x(n+ 1) = y(n)]}.

It is then easy to see that Player 1 (respectively, Player 2) has a w.s. in the game G(L) iff Player 2

(respectively, Player 1) has a w.s. in the game G(L′). �

Lemma 3.14 Let L ⊆ ωω be an effective analytic subset of the Baire space. Then there exists an

effective analytic set L′ ⊆ {0, 1}ω such that Player 1 (respectively, Player 2) has a w.s. in the

game G(L) iff Player 1 (respectively, Player 2) has a w.s. in the game G(L′). In particular, the

game G(L) is determined iff the game G(L′) is determined. If L is an (effective) Σ0
1 subset of

ωω then the set L′ can be chosen to be an (arithmetical) ∆0
3-subset of the Cantor space {0, 1}ω .

Moreover if σ is a winning strategy for Player 1 (respectively, Player 2) in the game G(L) then

one can construct a w.s. σ′ for Player 1 (respectively, Player 2) in the game G(L′) such that σ′ is

recursive in σ. And conversely, if σ is a winning strategy for Player 1 (respectively, Player 2) in

the game G(L′) then one can construct a w.s. σ′ for Player 1 (respectively, Player 2) in the game

G(L) such that σ′ is recursive in σ.
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Proof. Let L ⊆ ωω be an effective analytic subset of the Baire space, and let ϕ be the mapping

from the Baire space ωω into the Cantor space {0, 1}ω defined by:

ϕ((ni)i≥1) = (11)n
′

10(11)n
′

20 . . . (11)n
′

i0(11)n
′

i+10 . . .

where for each integer i ≥ 1 ni ∈ ω and n′i = ni + 1.

Notice that ϕ(ωω) = [(11)+.0]ω is a regular ω-language accepted by a deterministic Büchi

automaton, hence it is an arithmetical Π0
2-subset of {0, 1}ω .

We now define the set L′ as the union of the following sets Di, for 1 ≤ i ≤ 4:

• D1 = ϕ(L),

• D2 = {y | ∃n, k ≥ 0 y ∈ [(11)+.0]2n.(1)2k+1.0.{0, 1}ω},

• D3 = {y | ∃n ≥ 0 y ∈ [(11)+.0]2n+1.1ω},

• D4 = {y | ∃n ≥ 0 y ∈ [(11)+.0]2n+1.0.{0, 1}ω},

We now explain the meaning of these sets. The first set D1 codes the set L ⊆ ωω . The other sets

Di, for 2 ≤ i ≤ 4 are the results of infinite plays where two players alternatively write letters 0 or

1 and the infinite word written by the players in ω steps is out of the set ϕ(ωω), due to the letters

written by Player 2.

Notice first that if the two players alternatively write letters 0 or 1 and the infinite word written

by the players in ω steps is in the form

ϕ((ni)i≥1) = (11)n
′

10(11)n
′

20 . . . (11)n
′

i0(11)n
′

i+10 . . .

then the letters 0 have been written alternatively by Player 1 and by Player 2 and the writing of

these letters 0 determines the integers n′i and therefore also the integers ni. Thus the integers

n2i+1, i ≥ 0, have been chosen by Player 1 and the integers n2i, i ≥ 1, have been chosen by

Player 2.

We can now see that D2 is the set of plays where Player 2 write the (2n + 1) th letter 0 while

it was Player 1’s turn to do this. The set D3 is the set of plays where Player 2 does not write any

letter 0 for the rest of the play when it is his turn to do this. And the set D4 is the set of plays

where Player 2 writes a letter 0 immediately after Player 1 writes a letter 0, while Player 2 should

then writes a letter 1 to respect the codes of integers given by the function ϕ.

Moreover it is easy to see that the mapping ϕ is a recursive isomorphism between the Baire

space ωω and its image ϕ(ωω) ⊆ {0, 1}ω which is an arithmetical Π0
2-subset of {0, 1}ω . And it is

easy to see that D2 and D4 are ω-regular (arithmetical) Σ0
1-subsets of {0, 1}ω , and that D3 is an

ω-regular (arithmetical) Σ0
2-subset of {0, 1}ω . Therefore this implies the following facts:

(1) If L is a Σ1
1-subset (respectively, a ∆1

1-subset, a Σ0
1-subset) of ωω then ϕ(L) is a Σ1

1-subset

(respectively, a ∆1
1-subset, a ∆0

3-subset) of {0, 1}ω .

(2) If L is a Σ1
1-subset (respectively, a ∆1

1-subset, a Σ0
1-subset) of ωω then L′ is a Σ1

1-subset

(respectively, a ∆1
1-subset, a ∆0

3-subset) of {0, 1}ω .
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We now prove that Player 1 (respectively, Player 2) has a w.s. in the game G(L) iff Player 1

(respectively, Player 2) has a w.s. in the game G(L′).

Assume firstly that Player 1 has a w.s. F1 in the game G(L). Consider a play in the game

G(L′). If the two players alternatively write letters 0 or 1 and the infinite word written by the

players in ω steps is in the form

ϕ((ni)i≥1) = (11)n
′

10(11)n
′

20 . . . (11)n
′

i0(11)n
′

i+10 . . .

then we have already seen that the integers n′2i+1, i ≥ 0, have been chosen by Player 1 and the

integers n′2i, i ≥ 1, have been chosen by Player 2, and this is also the case for the corresponding

integers n2i+1, i ≥ 0, and n2i, i ≥ 1. Thus the game is like a game where each player writes some

integer at each step of the play, and Player 1 can apply the strategy F1 to ensure that (ni)i≥1 ∈ L
and this implies that ϕ((ni)i≥1) ∈ ϕ(L) ⊆ L′, so Player 1 wins the play. On the other hand we

have seen that if the two players alternatively write letters 0 or 1 and the infinite word x written

by the players in ω steps is out of the set ϕ(ωω), due to the letters written by Player 2, then the

ω-word x is in D2 ∪D3 ∪D4, and thus Player 1 wins also the play. Finally this shows that Player

1 has a w. s. in the game G(L′).

Assume now that Player 2 has a winning strategy F2 in the game G(L).
Consider a play in the game G(L′). If the two players alternatively write letters 0 or 1 and the

infinite word written by the players in ω steps is in the form

ϕ((ni)i≥1) = (11)n
′

10(11)n
′

20 . . . (11)n
′

i0(11)n
′

i+10 . . .

then we have already seen that the integers n′2i+1, i ≥ 0, have been chosen by Player 1 and the

integers n′2i, i ≥ 1, have been chosen by Player 2, and this is also the case for the corresponding

integers n2i+1, i ≥ 0, and n2i, i ≥ 1. Thus the game is like a game where each player writes some

integer at each step of the play, and Player 2 can apply the strategy F2 to ensure that (ni)i≥1 /∈ L
and this implies that ϕ((ni)i≥1) /∈ ϕ(L), and also ϕ((ni)i≥1) /∈ L′ because L′ ∩ ϕ(ωω) = ϕ(L),
so Player 2 wins the play. On the other hand we can easily see that if the two players alternatively

write letters 0 or 1 and the infinite word y written by the players in ω steps is out of the set ϕ(ωω),
due to the letters written by Player 1, then the ω-word y is not in D2 ∪ D3 ∪ D4, and thus y is

not in L′ and Player 2 wins also the play. Finally this shows that Player 2 has a w. s. in the game

G(L′).

Conversely assume now that Player 1 has a w.s. F ′
1 in the game G(L′). Consider a play in the

game G(L′) in which Player 2 does not make that the final ω-word x written by the two players

is in D2 ∪D3 ∪D4. Then Player 1, following the strategy F ′
1, must write letters so that the final

ω-word x belongs to ϕ(ωω). Then the game is reduced to the game G(L) in which the two players

alternatively write some integers ni, i ≥ 1. But Player 1 wins the game and this implies that Player

1 has actually a w.s. in the game G(L).

Assume now that Player 2 has a w.s. F ′
2 in the game G(L′). By a very similar reasoning as in

the preceding case we can see that Player 2 has also a w.s. in the game G(L); details are here left

to the reader.

From the construction of the strategies given in the previous paragraphs, it is now easy to see

that if F is a winning strategy for Player 1 (respectively, Player 2) in the game G(L) then one can
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construct a w.s. F ′ for Player 1 (respectively, Player 2) in the game G(L′) such that F ′ is recursive

in F . And conversely, if F ′ is a winning strategy for Player 1 (respectively, Player 2) in the game

G(L′) then one can construct a w.s. F for Player 1 (respectively, Player 2) in the game G(L) such

that F is recursive in F ′. �

We can now give the proof of the above Theorem 3.11.

Proof of Theorem 3.11. We know from Stern’s Theorem 3.12 that there exists an effective coana-

lytic set L1 ⊆ ωω such that the Gale-Stewart game G(L1) is determined if and only if the ordinal

ωL
1 is countable. Moreover if the game G(L1) is determined then Player 2 has a winning strategy.

Then Lemmas 3.13 and 3.14 imply that there exists a effective analytic set L ⊆ {0, 1}ω such that

G(L) is determined if and only if the ordinal ωL
1 is countable. And moreover if the game G(L)

is determined then Player 1 has a winning strategy. We can now infer from Propositions 3.8 and

3.10 that there there exists a real-time 1-counter Büchi automaton A, reading words over a finite

alphabet X, and a 2-tape Büchi automaton B, reading words over a finite alphabet Y , such that the

game G(L(A)) (respectively, G(L(B))) is determined if and only if ωL
1 is countable. Moreover if

the game G(L(A)) (respectively, G(L(B))) is determined then Player 1 has a winning strategy.

Assume now that V1 is a model of ZFC in which ωL
1 is countable, i.e. is a model of (ZFC +

ωL
1 < ω1). Then Player 1 has a winning strategy in the game G(L(A)). This strategy is a mapping

F : (X2)⋆ → X hence it can be coded in a recursive manner by an infinite word XF ∈ {0, 1}ω

which may be identified with a subset of the set N of natural numbers. We now claim that this

strategy is not constructible, or equivalently that the set XF ⊆ N does not belong to the class LV1

of constructible sets in the model V1. Recall that a real-time 1-counter Büchi automaton A has a

finite description to which can be associated, in an effective way, a unique natural number called

its index, so we have a Gödel numbering of real-time 1-counter Büchi automata. We denote Az

the real time Büchi 1-counter automaton of index z reading words over X. Then there exists an

integer z0 such that A = Az0 . If x ∈ Xω is the ω-word written by Player 2 during a play of

the game G(L(A)), and Player 1 follows a strategy G, the ω-word (G ⋆ x) ∈ Xω is defined by

(G⋆x)(2n) = x(n) and (G⋆x)(2n+1) = G((G⋆x)[2n]) for all integers n ≥ 1 so that (G⋆x) is

the ω-word composed by the two players during the play. We can now easily see that the sentence:

“G is a winning strategy for Player 1 in the game G(L(Az))” can be expressed by the following

Π1
2-formula P (z,G) : ∀x ∈ Xω [ (G ⋆ x) ∈ L(Az) ]

Recall that x ∈ L(Az) can be expressed by a Σ1
1-formula (see [Fin09b]). And (G ⋆ x) ∈ L(Az)

can be expressed by ∃y ∈ Xω(y = (G ⋆ x) and y ∈ L(Az)), which is also a Σ1
1-formula since

(G ⋆ x) is recursive in x and G. Finally the formula P (z,G) is a Π1
2-formula (with parameters z

and G).

Towards a contradiction, assume now that the winning strategy F for Player 1 in the game

G(L(A)) belongs to the class L
V1 of constructible sets in the model V1. The relation PF ⊆ N

defined by PF (z) iff P (z, F ) is a Π1
2(F )-relation, i.e. a relation with is Π1

2 with parameter F .

By Shoenfield’s Absoluteness Theorem (see [Jec02, page 490]), the relation PF ⊆ N would be

absolute for the models L
V1 and V1 of ZFC. This means that the set {z ∈ N | PF (z)} would be

the same set in the two models L
V1 and V1. In particular, the integer (z0) belongs to PF in the

model V1 since F is a w.s. for Player 1 in the game G(L(A)). This would imply that F is also a

w.s. for Player 1 in the game G(L(A)) in the model LV1 . But LV1 is a model of ZFC + V=L so

in this model ωL
1 = ω1 holds and the game G(L(A)) is not determined. This contradiction shows
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that the w.s. F is not constructible in V1. On the other hand every set A ⊆ N which is Π1
2 or Σ1

2 is

constructible, see [Jec02, page 491]. Thus XF is neither a Π1
2-set nor a Σ1

2-set; in particular, the

strategy F is not recursive and not even hyperarithmetical, i.e. not ∆1
1.

The case of the game G(L(B)), for the 2-tape Büchi automaton B, is proved in a similar way.

�

Remark 3.15 The 1-counter Büchi automaton A and the 2-tape Büchi automaton B, given by

Theorem 3.11, can be effectively constructed, although the automata might have a great number

of states. Indeed the effective coanalytic set L1 ⊆ ωω such that the Gale-Stewart game G(L1)
is determined if and only if the ordinal ℵL

1 is countable is explicitly given by a formula ψ. Then

the effective analytic set L ⊆ {0, 1}ω such that G(L) is determined if and only if the ordinal ℵL
1

is countable is also given by a Σ1
1-formula from which on can construct a Büchi Turing machine

and thus a 2-counter Büchi automaton accepting it. The constructions given in the proofs of

Propositions 3.8 and 3.10 lead then to the effective construction of A and B.

Remark 3.16 In the above proof of Theorem 3.11 we have not used any large cardinal axiom or

even the consistency of such an axiom, like the axiom of analytic determinacy.

We now prove some lemmas which will be useful later to give some answer to Question 2.

Lemma 3.17 Let L ⊆ Σω be a ∆0
3-subset of a Cantor space, accepted by a Büchi 2-counter

automaton A and let B be the real time Büchi 1-counter automaton which can be effectively

constructed from A by Proposition 3.8. Then L(B) is also a ∆0
3-subset of a Cantor space Y ω for

some finite alphabet Y containing Σ.

Proof. We refer now to the proofs of Proposition 3.2 and Theorems 3.3 and 3.4 in [Fin13], and we

use here the same notations as in [Fin13].

In the proof of Proposition 3.2 it is firstly proved that, from a Büchi 2-counter automaton A
accepting L, one can construct a real time Büchi 8-counter automaton A3 accepting θS(L) ∪ L

′,

where θS : Σω → (Σ ∪ {E})ω is a function defined, for all x ∈ Σω, by:

θS(x) = x(1).ES .x(2).ES2
.x(3).ES3

.x(4) . . . x(n).ESn

.x(n+ 1).ESn+1
. . .

It is easy to see that θS is a recursive homeomorphism from Σω onto the image θS(Σ
ω) which is a

closed subset of the Cantor space (Σ ∪ {E})ω . It is then easy to se that if L is a ∆0
3-subset of Σω

then θS(L) is also a ∆0
3-subset (Σ∪{E})ω . Moreover the ω-language L′ is defined as the set of ω-

words y ∈ (Σ∪{E})ω for which there is an integer n ≥ 1 such that y[2n−1] ∈ Pref(θS(Σ
ω)) and

y[2n] /∈ Pref(θS(Σ
ω)). Then it is easy to see that L′ is an arithmetical Σ0

1-subset of (Σ ∪ {E})ω ,

and thus the union θS(L) ∪ L
′ is a ∆0

3-set as the union of two ∆0
3-sets.

Recall also that Player 1 (respectively, Player 2) has a w.s. in the game G(L) iff Player 1

(respectively, Player 2) has a w.s. in the game G(θS(L) ∪ L
′).

In a second step, in the proof of Theorem 3.3, it is proved that, from a real time Büchi 8-

counter automaton A accepting an ω-language L(A) ⊆ Γω , where Γ is a finite alphabet, one can

construct a Büchi 1-counter automaton A4 accepting the ω-language

L = h(L(A)) ∪ [h(Γω)− ∩H] ∪ V.Cω ∪ U.(Γ1)
ω
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Moreover it is proved that Player 1 (respectively, Player 2) has a w.s. in the game G(L(A)) iff

Player 1 (respectively, Player 2) has a w.s. in the game G(L).
On the other hand the mapping h is a recursive homeomorphism from Γω onto its image

h(Γω) ⊆ (Γ1)
ω where Γ1 is the finite alphabet Γ ∪ {A,B,C} and A,B,C , are additional letters

not in Γ. It is then easy to see that if L(A) ⊆ Γω is a ∆0
3-set then h(L(A)) is a ∆0

3-subset of (Γ1)
ω .

On the other hand the ω-language H is accepted by a deterministic Büchi automaton and hence

it is an arithmetical Π0
2-set, see [PP04, LT94]. Thus [h(Γω)− ∩H] is also a Π0

2-set since it is the

intersection of a Σ0
1-set and of a Π0

2-set. Moreover it is easy to see that V.Cω is a Σ0
2-set since it is

accepted by a deterministic automaton with co-Büchi acceptance condition, and that U.(Γ1)
ω is a

Σ0
1-subset of (Γ1)

ω since U is regular and hence recursive. Finally this shows that if L(A) ⊆ Γω

is a ∆0
3-set then L is a ∆0

3-subset of (Γ1)
ω .

In a third step, in the proof of Theorem 3.4, it is proved that, from the Büchi 1-counter au-

tomaton A4 accepting the ω-language L, one can construct a real time Büchi 1-counter automaton

B′′ accepting the ω-language φK(L(A4)) ∪ L
′′. It is easy to see, as in the above first step, that if

L = L(A4) is a ∆0
3-subset of (Γ1)

ω , then the ω-language φK(L(A4))∪L
′′ is also a ∆0

3-subset of

(Γ1 ∪ {F})ω . Moreover Player 1 (respectively, Player 2) has a w.s. in the game G(L) iff Player 1

(respectively, Player 2) has a w.s. in the game G(φK(L) ∪ L′′). �

Lemma 3.18 Let A be a real time Büchi 1-counter automaton accepting a ∆0
3-set L ⊆ Σω and

let B be the 2-tape Büchi automaton which can be effectively constructed from A by Proposition

3.10. Then L(B) is a ∆0
3-subset of the Cantor space (Σ∪{0, A})ω×Γω, where 0, A are additional

letters not in Σ and Γ = {0, A}.

Proof. We refer now to the proof of the above Theorem 3.5 and we use here the same notations.

We showed above that, from a a real-time 1-counter Büchi automaton A accepting an ω-language

L = L(A) ⊆ Σω , we can effectively construct a 2-tape Büchi automaton D accepting the infinitary

rational relation L ⊆ (Σ∪{0, A})ω ×Γω, where the letters 0, A are not in Σ and Γ = {0, A}, and

L = L(B′) ∪ L(C) ∪ L(C′)

where

L(B′) = [h(L(A))× {α}] ∪ [(h(Σω)× {α})− ∩H ×H ′]

L(C) = [V.0ω × Cl(H ′)] ∪ [Cl(H)× V ′.0ω]

L(C′) = U.[(Σ ∪ {0, A})ω × Γω]

We now assume that L = L(A) is a ∆0
3-subset of Σω.

It is easy to see that the mapping h is a recursive homeomorphism from Σω onto its image

h(Σω) ⊆ (Σ ∪ {0, A})ω . Moreover α is recursive and {α} is a Π0
1-subset of Γω . Therefore

h(L(A)) × {α} is a ∆0
3-subset of (Σ ∪ {0, A})ω × Γω. On the other hand (h(Σω) × {α}) is a

Π0
1-set, and so (h(Σω) × {α})− is a Σ0

1-subset of (Σ ∪ {0, A})ω × Γω. And it is easy to see that

H and H ′ are accepted by deterministic Büchi automata and thus are (arithmetical) Π0
2-sets. Thus

[(h(Σω)× {α})− ∩H ×H ′] is also a Π0
2-set and finally this shows that L(B′) is a ∆0

3-set.

The ω-languages H and H ′ being ω-regular, their closures Cl(H) and Cl(H’) are closed and ω-

regular and thus they are (arithmetical) Π0
1-sets (see [PP04, LT94]) . On the other hand the finitary

languages V and V ′ are regular thus V.0ω and V ′.0ω are (arithmetical) Σ0
2-sets. This implies that

L(C) = [V.0ω × Cl(H ′)] ∪ [Cl(H)× V ′.0ω] is also a ∆0
3-set.
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The ω-language L(C′) is an open ω-regular set since the finitary language U is regular. Thus

L(C′) is also an (arithmetical) Σ0
1-set.

Finally the ω-language L is the union of three ∆0
3-sets and thus it is also a ∆0

3-set. �

We can now state the following result which gives an answer to Question 2.

Theorem 3.19 There exist a real-time 1-counter Büchi automaton A and a 2-tape Büchi automa-

ton B such that the ω-language L(A) and the infinitary rational relation L(B) are arithmetical

∆0
3-sets and such that Player 2 has a winning strategy in the games G(L(A)) and G(L(B)) but

has no hyperarithmetical winning strategies in these games.

Proof. It is proved in [Bla72, Theorem 3] that there exists an arithmetical Σ0
1-set L ⊆ ωω such

that Player 2 has a winning strategy in the game G(L) but has no hyperarithmetical winning

strategies in this game. Using Lemmas 3.14, 3.17, 3.18, we see that one can construct a real-time

1-counter Büchi automaton A and a 2-tape Büchi automaton B such that the ω-language L(A) and

the infinitary rational relation L(B) are arithmetical ∆0
3-sets and such that Player 2 has a winning

strategy in the games G(L(A)) and G(L(B)).
Moreover, by Propositions 3.9 and 3.10, if F was an hyperarithmetical winning strategy for

Player 2 in the game G(L(A)) or G(L(B)) then there would exist a winning strategy T for Player

2 in the game G(L) which would be recursive in F and thus also hyperarithmetical. This implies

that F can not be hyperarithmetical since Player 2 has no hyperarithmetical winning strategies in

the game G(L). �

The above negative results given by Theorems 3.11 and 3.19 show that one cannot effectively

construct winning strategies in Gale-Stewart games with winning sets accepted by 1-counter Büchi

automata or 2-tape Büchi automata. We are going to see that, even when we know that the games

are determined, one cannot determine the winner of such games.

Theorem 3.20 There exists a recursive sequence of real time 1-counter Büchi automata An,

(respectively, of 2-tape Büchi automata Bn), n ≥ 1, such that all games G(L(An)) (respec-

tively, G(L(Bn))) are determined. But it is Π1
2-complete (hence highly undecidable) to determine

whether Player 1 has a winning strategy in the game G(L(An)) (respectively, G(L(Bn))).

Proof. We first define the following operation on ω-languages. For x, x′ ∈ Σω the ω-word x⊗ x′

is defined by : for every integer n ≥ 1 (x ⊗ x′)(2n − 1) = x(n) and (x ⊗ x′)(2n) = x′(n).
For two ω-languages L,L′ ⊆ Σω, the ω-language L ⊗ L′ is defined by L ⊗ L′ = {x ⊗ x′ | x ∈
L and x′ ∈ L′}. Let now Σ = {0, 1} and let Tn be the Büchi Turing machine of index n reading

ω-words over the alphabet Σ. Let also Tn be a Büchi Turing machine constructed from Tn such

that L(Tn) = Σω ⊗ L(Tn). Notice that Tn can easily be constructed in a recursive manner from

Tn, and that on can also construct some Büchi 2-counter automata Cn such that L(Tn) = L(Cn).

Consider now the game G(L(Cn)). It is easy to see that this game is always determined.

Indeed if L(Tn) = Σω then Player 1 always wins the play so Player 1 has an obvious winning

strategy. And if L(Tn) 6= Σω then Player 2 can win by playing an ω-word not in L(Tn) so that

the final ω-word written by the two players will be outside L(Cn) = Σω ⊗ L(Tn). Recall now

that Castro and Cucker proved in [CC89] that it is Π1
2-complete (hence highly undecidable) to
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determine whether L(Tn) = Σω. Thus it is Π1
2-complete (hence highly undecidable) to determine

whether Player 1 has a winning strategy in the game G(L(Cn)).

Using the constructions we made in the proofs of Theorems 3.4 and 3.5 and Propositions 3.8

and 3.10, we can effectively construct from Cn a real time Büchi 1-counter automaton An and

a 2-tape Büchi automaton Bn such that Player 1 (respectively, Player 2) has a w.s. in the game

G(L(Cn)) iff Player 1 (respectively, Player 2) has a w.s. in the game G(L(An)) iff Player 1

(respectively, Player 2) has a w.s. in the game G(L(Bn)). This implies that it is Π1
2-complete

(hence highly undecidable) to determine whether Player 1 has a winning strategy in the game

G(L(An)) (respectively, G(L(Bn))). �

We now consider the strength of determinacy of a game G(L(A)), where A is a Büchi 1-

counter automaton or a 2-tape Büchi automaton. We first recall that there exists some effective

analytic set L♯ ⊆ {0, 1}ω such that the determinacy of the game G(L♯) is equivalent to the effec-

tive analytic determinacy, i.e. to the determinacy of all effective analytic Gale-Stewart games: a

first example was given by Harrington in [Har78], Stern gave another one in [Ste82]. We can now

infer from this result a similar one for games specified by automata.

Theorem 3.21 There exists a real time 1-counter Büchi automaton A♯ (respectively, a 2-tape

Büchi automaton B♯) such that the game G(A♯) (respectively, the game G(B♯)) is determined

iff the effective analytic determinacy holds iff all 1-counter games are determined iff all games

specified by 2-tape Büchi automata are determined.

Proof. The effective analytic set L♯ ⊆ {0, 1}ω is defined by a Σ1
1-formula from which one can

construct a Büchi Turing machine and a 2-counter Büchi automaton C♯ accepting it. Using the

constructions we made in the proofs of Theorems 3.4 and 3.5, we can effectively construct from

C♯ a real time Büchi 1-counter automaton A♯ and a 2-tape Büchi automaton B♯ such that the

game G(L(C♯)) is determined iff the game G(L(A♯)) is determined iff the game G(L(B♯)) is

determined. �

This shows that there exists a real time 1-counter Büchi automaton A♯ (respectively, a 2-tape

Büchi automaton B♯) such that the determinacy strength of the game G(L(A♯)) (respectively,

G(L(B♯))) is the strongest possible. Then the following question naturally arises.

Question 3. Are there many different strengths of determinacy for games specified by 1-counter

Büchi automata (respectively, by 2-tape Büchi automata) ?

We now give a positive answer to this question, stating the following result. Notice that below

Det(G(L)) means “the game G(L) is determined”. We recall that ωCK
1 is the Church-Kleene

ordinal, which is the first non-recursive ordinal.

Theorem 3.22 There is a transfinite sequence of real-time 1-counter Büchi automata (Aα)α<ωCK
1

,

(respectively, of 2-tape Büchi automata (Bα)α<ωCK
1

), indexed by recursive ordinals, s.t.:

∀α < β < ωCK
1 [ Det(G(L(Aβ))) =⇒ Det(G(L(Aα))) ]

∀α < β < ωCK
1 [ Det(G(L(Bβ))) =⇒ Det(G(L(Bα))) ]

but the converse is not true:
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For each recursive ordinal α there is a model Vα of ZFC such that in this model the game

G(L(Aβ)) (respectively, G(L(Bβ))) is determined iff β < α.

Proof. It follows from Stern’s Theorem 3.12 and from Lemmas 3.13 and 3.14 that for each re-

cursive ordinal ξ there exists an effective analytic set Lξ ⊆ {0, 1}ω such that the game G(Lξ) is

determined if and only if the ordinal ℵL

ξ is countable. Notice that each set Lξ is accepted by a

Büchi Turing machine Tξ and by a 2-counter Büchi automaton Cξ.

Using the constructions we made in the proofs of Theorems 3.4 and 3.5 and Propositions 3.8

and 3.10, we can construct from Cξ a real time Büchi 1-counter automaton A′
ξ and a 2-tape Büchi

automaton B′
ξ such that Player 1 (respectively, Player 2) has a w.s. in the game G(L(Cξ)) iff

Player 1 (respectively, Player 2) has a w.s. in the game G(L(A′
ξ)) iff Player 1 (respectively, Player

2) has a w.s. in the game G(L(B′
ξ)). Thus the game G(L(A′

ξ)) is determined if and only if the

game G(L(B′
ξ)) is determined if and only if the ordinal ℵL

ξ is countable. We set Aξ = A′
ξ+1 and

Bξ = B′
ξ+1.

The first part of the theorem follows easily from the obvious implication [ℵL

ξ is countable ]

=⇒ [ℵL
α is countable, for all ordinals α < ξ].

Let now α be a recursive ordinal and V be a model of ZFC + V=L. The cardinal ℵα+1 in V is a

successor cardinal hence also a regular cardinal (the reader may find these notions in any textbook

of set theory like [Kun80] or [Jec02]). One can then construct from the model V, using a forcing

method due to Lévy, a generic extension Vα of V which is another model of ZFC in which the

cardinal ℵα+1 has been “collapsed” in such a way that in the new model ℵα+1 becomes ωVα

1 .

Notice that the two models have the same ordinals, and the above sentence means that the ordinal

of V which plays the role of ℵα+1 in V plays the role of the cardinal ℵ1 in Vα (we refer the reader

to [Kun80, page 231] for more details about Lévy’s forcing).

Another crucial point here is that the two models V and Vα have the same constructible sets

(this is always true for generic extensions obtained by the method of forcing), i.e. L
V = L

Vα .

Notice also that ℵL
α+1 = ℵα+1 since V is a model of ZFC + V=L. For a recursive ordinal β, we

have now the following equivalences:

[ ℵL

β+1 is countable in Vα ] ⇐⇒ [ℵL

β+1 < ωVα

1 = ℵL
α+1 ] ⇐⇒ β + 1 < α+ 1⇐⇒ β < α

And thus G(L(Aβ)) (respectively, G(L(Bβ)) is determined in the model Vα if and only if

β < α. �

Remark 3.23 We can add the real time 1-counter Büchi automaton A♯ and the 2-tape Büchi au-

tomaton B♯ to the sequences given by Theorem 3.22. The determinacy of G(L(A♯)) (respectively,

G(L(B♯))) implies the determinacy of all games G(L(Aα)) (respectively, G(L(Bα)), α < ωCK
1 ,

but the converse is not true. Then we get a transfinite sequence of real time 1-counter Büchi

automata (respectively, of 2-tape Büchi automata) of length ωCK
1 + 1.

Remark 3.24 One can actually see from [McA79] that the situation is even more complicated.

Indeed Mc Aloon proved that there exists some analytic game whose determinacy is equivalent to

the fact that the first inaccessible cardinal in the constructible universe L of a model V of ZFC

is countable in V. And this property implies that ℵL
α, for a recursive ordinal α, is countable in V,

but does not imply the existence of 0♯. We refer the interested reader to [Jec02] for the notion of

inaccessible cardinals and of other large cardinals, and to [McA79] for more results of this kind.
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4 Wadge games between 2-tape automata

The now called Wadge games have been firstly considered by Wadge to study the notion of re-

duction of Borel sets by continuous functions. We firstly recall the notion of Wadge reducibility;

notice that we give the definition in the case of ω-languages over finite alphabets since we have

only to consider this case in the sequel.

Definition 4.1 (Wadge [Wad83]) LetX, Y be two finite alphabets. ForL ⊆ Xω and L′ ⊆ Y ω ,L
is said to be Wadge reducible toL′ (L ≤W L′) iff there exists a continuous function f : Xω → Y ω ,

such that L = f−1(L′). L and L′ are Wadge equivalent iff L ≤W L′ and L′ ≤W L. This will be

denoted by L ≡W L′. And we shall say that L <W L′ iff L ≤W L′ but not L′ ≤W L.

The relation ≤W is reflexive and transitive, and ≡W is an equivalence relation.

The equivalence classes of ≡W are called Wadge degrees.

We now recall the definition of Wadge games.

Definition 4.2 (Wadge [Wad83]) Let L ⊆ Xω and L′ ⊆ Y ω. The Wadge game W (L,L′) is a

game with perfect information between two players, Player 1 who is in charge of L and Player 2

who is in charge of L′. Player 1 first writes a letter a1 ∈ X, then Player 2 writes a letter b1 ∈ Y ,

then Player 1 writes a letter a2 ∈ X, and so on. The two players alternatively write letters an of

X for Player 1 and bn of Y for Player 2. After ω steps, Player 1 has written an ω-word a ∈ Xω

and Player 2 has written an ω-word b ∈ Y ω. Player 2 is allowed to skip, even infinitely often,

provided he really writes an ω-word in ω steps. Player 2 wins the play iff [a ∈ L ↔ b ∈ L′], i.e.

iff: [(a ∈ L and b ∈ L′) or (a /∈ L and b /∈ L′ and b is infinite)].

Recall that a strategy for Player 1 is a function σ : (Y ∪ {s})⋆ → X. And a strategy for Player

2 is a function f : X+ → Y ∪ {s}. The strategy σ is a winning strategy for Player 1 iff she

always wins a play when she uses the strategy σ, i.e. when the nth letter she writes is given by

an = σ(b1 . . . bn−1), where bi is the letter written by Player 2 at step i and bi = s if Player 2 skips

at step i. A winning strategy for Player 2 is defined in a similar manner.

The gameW (L,L′) is said to be determined if one of the two players has a winning strategy. In

the sequel we shall denote W-Det(C), where C is a class of ω-languages, the sentence: “All Wadge

games W (L,L′), where L ⊆ Xω and L′ ⊆ Y ω are ω-languages in the class C, are determined”.

Recall that the determinacy of Borel Gale-Stewart games implies easily the determinacy of

Wadge games W (L,L′), where L ⊆ Xω and L′ ⊆ Y ω are Borel ω-languages. Thus it follows

from Martin’s Theorem that these Wadge games are determined. We also recall that the determi-

nacy of effective analytic Gale-Stewart games is equivalent to the determinacy of effective analytic

Wadge games, i.e. Det(Σ1
1) ⇐⇒ W-Det(Σ1

1), see [LSR88].

The close relationship between Wadge reducibility and Wadge games is given by the following

theorem.

Theorem 4.3 (Wadge) Let L ⊆ Xω and L′ ⊆ Y ω where X and Y are finite alphabets. Then

L ≤W L′ if and only if Player 2 has a winning strategy in the Wadge game W (L,L′).

The Wadge hierarchy WH is the class of Borel subsets of a set Xω , where X is a finite set,

equipped with ≤W and with ≡W . Using Wadge games, Wadge proved that, up to the complement

and ≡W , it is a well ordered hierarchy which provides a great refinement of the Borel hierarchy.
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Theorem 4.4 (Wadge) The class of Borel subsets of Xω , for a finite alphabet X, equipped with

≤W , is a well ordered hierarchy. There is an ordinal |WH|, called the length of the hierarchy,

and a map d0W from WH onto |WH| − {0}, such that for all L,L′ ⊆ Xω:

d0WL < d0WL
′ ↔ L <W L′ and

d0WL = d0WL
′ ↔ [L ≡W L′ or L ≡W L′−].

We proved in [Fin13] the following result on the determinacy of Wadge games between two

players in charge of ω-languages of one-counter automata.

Theorem 4.5 Det(Σ1
1) ⇐⇒ W-Det(r-BCL(1)ω).

Using this result we are now going to prove the following one on determinacy of Wadge games

between two players in charge of ω-languages accepted by 2-tape Büchi automata.

Theorem 4.6 Det(Σ1
1) ⇐⇒ W-Det(RATω).

In order to prove this theorem, we first recall the notion of operation of sum of sets of infinite

words which has as counterpart the ordinal addition over Wadge degrees, and which will useful

later.

Definition 4.7 (Wadge) Assume that X ⊆ Y are two finite alphabets, Y −X containing at least

two elements, and that {X+,X−} is a partition of Y −X in two non empty sets. Let L ⊆ Xω and

L′ ⊆ Y ω , then

L′ + L =df L ∪ {u.a.β | u ∈ X⋆, (a ∈ X+ and β ∈ L′) or (a ∈ X− and β ∈ L′−)}

Notice that a player in charge of a set L′ + L in a Wadge game is like a player in charge of

the set L but who can, at any step of the play, erase his previous play and choose to be this time in

charge of L′ or of L′−. But he can do this only one time during a play. This property will be used

below.

We now recall the following lemma, proved in [Fin13].

Lemma 4.8 Let L ⊆ Σω be an analytic but non Borel set. Then it holds that L ≡W ∅+ L.

Notice that in this lemma, ∅ is viewed as the empty set over an alphabet Γ such that Σ ⊆ Γ and

cardinal (Γ − Σ) ≥ 2. Recall also that the emptyset and the whole set Γω are located at the first

level of the Wadge hierarchy and that their Wadge degree is equal to 1.

proof of Theorem 4.6.

The implication Det(Σ1
1) =⇒W-Det(RATω) is obvious since Det(Σ1

1) is known to be equiv-

alent to W-Det(Σ1
1) and RATω ⊆ Σ1

1.

To prove the reverse implication, we assume that W-Det(RATω) holds and we are going to

show that every Wadge gameW (L,L′), where L ⊆ (Σ1)
ω and L′ ⊆ (Σ2)

ω are ω-languages in the

class r-BCL(1)ω , is determined. Then this will imply that Det(Σ1
1) holds by Theorem 4.5. Notice

that if the two ω-languages are Borel we already know that the gameW (L,L′) is determined; thus

we have only to consider the case where at least one of these languages is non-Borel.

We now assume that the letters 0 and A do not belong to the alphabets Σ1 and Σ2, and recall

that we have used in the proof of Theorem 3.5 a mapping h1 : (Σ1)
ω → (Σ1 ∪ {0, A})ω to

code ω-words over Σ1 by ω-words over Σ1 ∪ {0, A}; and we can define similarly h2 : (Σ2)
ω →

(Σ2 ∪ {0, A})ω . Recall also that we have defined an ω-word α ∈ {0, A}ω = Γω.
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It follows from Lemmas 3.6 and 3.7 that one can effectively construct, from real-time Büchi 1-

counter automata A1 and A2 accepting L and L′, some 2-tape Büchi automata B1 and B2 accepting

the ω-languages

L1 = [h1(L)× {α}] ∪ [h1(Σ
ω
1 )× {α}]−

and

L2 = [h2(L
′)× {α}] ∪ [h2(Σ

ω
2 )× {α}]−

Then the Wadge game W (L1,L2) is determined. We consider now the two following cases:

First case. Player 2 has a w.s. in the game W (L1,L2).
If L′ is Borel then h2(L

′) × {α} is easily seen to be Borel and then L2 is also Borel since

h2(Σ
ω
2 ) × {α} is a closed set and hence [h2(Σ

ω
2 ) × {α}]− is an open set. Then L1 is also Borel

because L1 ≤W L2 and thus L is also Borel and the game W (L,L′) is determined.

Assume now that L′ is not Borel, and consider the Wadge game W (L, ∅+ L′).
We claim that Player 2 has a w.s. in that game which is easily deduced from a w.s. of Player 2

in the Wadge game W (L1,L2). Consider a play in this latter game where Player 1 remains in the

closed set h1(Σ
ω
1 )× {α}: she writes a beginning of a word in the form

(0.Ax(1).02 .x(2).03.A.x(3) . . . 02n.x(2n).02n+1 . . . ; 0.AA.02.A.03.AA. . . . AA.02n.A.02n+1 . . .)

Then player 2 writes a beginning of a word in the form

(0.Ax′(1).02.x′(2).03.A.x′(3) . . . 02p.x′(2p).02p+1 . . . ; 0.AA.02.A.03.AA. . . . AA.02p.A.02p+1 . . .)

where p ≤ n. Then the strategy for Player 2 inW (L, ∅+L′) consists to write x′(1).x′(2) . . . x′(p).
when Player 1 writes x(1).x(2) . . . x(n).. If the strategy for Player 2 in W (L1,L2) was at some

step to go out of the set h2(Σ
ω
2 ) × {α} then this means that his final word is surely inside L2,

and that the final word of Player 1 is also surely inside L1, because Player 2 wins the play. Then

Player 2 in the Wadge game W (L, ∅ + L′) can make as he is now in charge of the wholeset and

play anything (without skipping anymore) so that his final ω-word is also inside ∅+L′. So we have

proved that Player 2 has a w.s. in the Wadge gameW (L, ∅+L′) or equivalently that L ≤W ∅+L′.

But by Lemma 4.8 we know that L′ ≡W ∅+L′ and thus L ≤W L′ which means that Player 2 has

a w.s. in the Wadge game W (L,L′).

Second case. Player 1 has a w.s. in the game W (L1,L2).
Notice that this implies that L2 ≤W L−

1 . Thus if L is Borel then L1 is Borel, L−
1 is also Borel,

and L2 is Borel as the inverse image of a Borel set by a continuous function, and thus L′ is also

Borel, so the Wadge game W (L,L′) is determined. We assume now that L is not Borel and we

consider the Wadge game W (L,L′). Player 1 has a w.s. in this game which is easily constructed

from a w.s. of the same player in the game W (L1,L2) as follows. For this consider a play in this

latter game where Player 2 does not go out of the closed set h2(Σ
ω
2 )× {α}. Then player 2 writes

a beginning of a word in the form

(0.Ax′(1).02.x′(2).03.A.x′(3) . . . 02p.x′(2p).02p+1 . . . ; 0.AA.02.A.03.AA. . . . AA.02p.A.02p+1 . . .)

Player 1, following her w.s. composes a beginning of a word in the form

(0.Ax(1).02 .x(2).03.A.x(3) . . . 02n.x(2n).02n+1 . . . ; 0.AA.02.A.03.AA. . . . AA.02n.A.02n+1 . . .)

28



where p ≤ n. Then the strategy for Player 1 in W (L,L′) consists to write x(1).x(2) . . . x(n)
when Player 2 writes x′(1).x′(2) . . . x′(p).

If the strategy for Player 1 in W (L1,L2) was at some step to go out of the closed set h1(Σ
ω
1 )×

{α} then this means that her final word is surely inside L1, and that the final word of Player 2 is

also surely outside the set L2 (at least if he produces really an infinite word in ω steps). This case

is actually not possible because Player 2 can always go out of the closed set h2(Σ
ω
2 ) × {α} and

then his final word is surely in the set L2.

We have then proved that Player 1 has a w.s. in the Wadge game W (L,L′). �

In order to prove our next result we recall that the following result was proved in [Fin09a].

Theorem 4.9 There exists a 2-tape Büchi automaton A, which can be effectively constructed,

such that the topological complexity of the infinitary rational relation L(A) is not determined by

the axiomatic system ZFC. Indeed it holds that :

(1) (ZFC + V=L). The ω-language L(A) is an analytic but non-Borel set.

(2) (ZFC + ωL
1 < ω1). The ω-language L(A) is a Π

0
2-set.

We now state the following new result.

Theorem 4.10 Let B be a Büchi automaton accepting the regular ω-language (0⋆.1)ω ⊆ {0, 1}ω .

Then one can effectively construct a 2-tape Büchi automaton A such that:

(1) (ZFC + ωL
1 < ω1). Player 2 has a winning strategy F in the Wadge game W (L(A), L(B)).

But F can not be recursive and not even in the class (Σ1
2 ∪Π1

2).

(2) (ZFC + ωL
1 = ω1). The Wadge game W (L(A), L(B)) is not determined.

Proof. It is very similar to the proof of [Fin13, Theorem 4.12], replacing “1-counter automaton”

by “2-tape Büchi automaton” and using the above Theorem 4.9 instead of the corresponding result

for a real-time 1-counter automaton proved in [Fin09a]. In the proof we use in particular the above

Theorem 4.9, the link between Wadge games and Wadge reducibility, the Π
0
2-completeness of the

regular ω-language (0⋆.1)ω ⊆ {0, 1}ω , the Shoenfield’s Absoluteness Theorem, and the notion of

extensions of a model of ZFC. �

Notice that every model of ZFC is either a model of (ZFC + ωL
1 < ω1) or a model of (ZFC

+ ωL
1 = ω1). Thus there are no models of ZFC in which Player 1 has a winning strategy in the

Wadge game W (L(A), L(B)).

Notice also that, to prove Theorems 4.9 and 4.10, we do not need to use any large cardinal

axiom or even the consistency of such an axiom, like the axiom of analytic determinacy.

5 Concluding remarks

We have proved that the determinacy of Gale-Stewart games whose winning sets are accepted by

non-deterministic 2-tape Büchi automata is equivalent to the determinacy of (effective) analytic

Gale-Stewart games which is known to be a large cardinal assumption equivalent to the existence

of the real 0♯. Then we have proved that the winning strategies in these games, when they exist,

may be very complex, i.e. highly non-effective. Moreover we have proved that, even if we know
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that some of these games are determined, it may be highly undecidable to determine whether

Player 1 has a winning strategy.

On the other hand, we know that the infinitary rational relations accepted by deterministic

2-tape Büchi automata are always Borel ∆0
3-sets. Thus this implies that Gale-Stewart games

whose winning sets are accepted by deterministic 2-tape Büchi automata are always determined.

It would be interesting to study these games for which the following questions naturally arises:

can we decide who the winner is in such a game? can we compute a winning strategy given by a

transducer?
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VII, Paris, 1979.

[Odi89] P.G. Odifreddi. Classical Recursion Theory, Vol I, volume 125 of Studies in Logic

and the Foundations of Mathematics. North-Holland Publishing Co., Amsterdam,

1989.

[Odi99] P.G. Odifreddi. Classical Recursion Theory, Vol II, volume 143 of Studies in Logic

and the Foundations of Mathematics. North-Holland Publishing Co., Amsterdam,

1999.

31



[PP04] D. Perrin and J.-E. Pin. Infinite words, automata, semigroups, logic and games,

volume 141 of Pure and Applied Mathematics. Elsevier, 2004.

[Rog67] H. Rogers. Theory of Recursive Functions and Effective Computability. McGraw-

Hill, New York, 1967.

[Sam99] R. L. Sami. Analytic determinacy and 0♯. A forcing-free proof of Harrington’s theo-

rem. Fundamenta Mathematicae, 160(2):153–159, 1999.

[Sel03] V.L. Selivanov. Wadge degrees of ω-languages of deterministic Turing machines.

RAIRO-Theoretical Informatics and Applications, 37(1):67–83, 2003.

[Sel08] V. Selivanov. Wadge reducibility and infinite computations. Mathematics in Com-

puter Science, 2(1):5–36, 2008.

[Sta97] L. Staiger. ω-languages. In Handbook of formal languages, Vol. 3, pages 339–387.

Springer, Berlin, 1997.

[Sta00] L. Staiger. On the power of reading the whole infinite input tape. In Finite Versus

Infinite: Contributions to an Eternal Dilemma, Discrete Mathematics and Theoretical

Computer Science, pages 335–348. Springer-Verlag London, 2000.

[Ste82] J. Stern. Analytic equivalence relations and coanalytic games. In Patras Logic Sym-

posion (Patras, 1980), volume 109 of Studies in Logic and the Foundations of Math-

ematics, pages 239–260. North-Holland, Amsterdam, 1982.

[Tho95] W. Thomas. On the synthesis of strategies in infinite games. In Proceedings of the

International Conference STACS 1995, volume 900 of Lecture Notes in Computer

Science, pages 1–13. Springer, 1995.

[Tho08] W. Thomas. Church’s problem and a tour through automata theory. In Arnon

Avron, Nachum Dershowitz, and Alexander Rabinovich, editors, Pillars of Com-

puter Science, Essays Dedicated to Boris (Boaz) Trakhtenbrot on the Occasion of

His 85th Birthday, volume 4800 of Lecture Notes in Computer Science, pages 635–

655. Springer, 2008.

[Wad83] W. Wadge. Reducibility and determinateness in the Baire space. PhD thesis, Univer-

sity of California, Berkeley, 1983.

[Wal00] I. Walukiewicz. Pushdown processes: games and model checking. Information and

Computation, 157:234–263, 2000.

32


