Samuel Deleplanque
email: deleplan@isima.fr

Blaise Pascal

Jean-Pierre Derutin
email: derutin@univ-bpclermont.fr

Alain Quilliot
email: quilliot@isima.fr

Anticipation in the Dial-a-Ride Problem: an introduction to the robustness

The Dial-a-Ride Problems (DARP) models an operation research problem related to the on demand transport. This paper introduces one of the fundamental features of this type of transport: the robustness. This paper solves the Dial-a-Ride Problem by integrating an Inserability measurement. The technique used is a greedy insertion algorithm based on time constraint propagation (time windows, maximum ride time and maximum route time). In the present work, we integrate a new way to measure the impact of each insertion on the other not inserted demands. We propose its calculation, study its behavior, discuss the transition to dynamic context and present a way to make the system more robust.

I. INTRODUCTION

Today, the Dial-a-Ride Problems are used in transportation services for elderly or disabled people. Also, the recent evolution in the transport field such as connected cars, autonomous transportation, and the emergence of the shared service might need to use this type of problem at much larger scales. But this type of transport is expensive and the management of the vehicles requires as much efficiency as possible, however the number of requests included in the vehicles planning can vary depending on the resolution used.

In [START_REF] Deleplanque | Insertion techniques and constraint propagation for the DARP[END_REF] we solve the DARP by using constraint propagation in a greedy insertion heuristic. This technique obtains good results, especially in a reactive context, and is easily adaptable to a dynamic context. But, each demand is inserted one after another and the process doesn't take into account the impact of each insertion on the other not inserted demands, and so, in a dynamic context, the future demands. In this work, we present a measure of an insertion capacity named Inserability. We introduce its calculation by integrating the impact of an insertion on the time constraints (time windows, maximum route time and maximum ride time).

This measurement may be used in different ways: selection of the demand to insert, selection of the insertion parameters, and exclusion of a demand. These three uses may be related to static as well as dynamic contexts by anticipating the future demands. The goal is to insert the current demand in order to build flexible routes for the future ones.

This paper is organized in the following manner: after a literature review, the next section will propose a model of the classic DARP. Then, we will review how to handle Fig. 1. Times windows' contraction the temporal constraints with a heuristic solution based on insertion techniques using propagation constraints. We will continue by explaining the way to measure the Inserability, a calculation based on the evolution of the time windows after an insertion. Then, we will give some uses of this measurement including making an appointment which minimize the time windows (cf. Figure 1). In the last part of the paper, the computational results will show the efficiency of our Inserability's measurement and we will report the evolution of the number of demands inserted in a resolution of some instances' sets.

II. LITERATURE REVIEW

The first works of the transportation optimization problem are related to the Traveling Salesman Problem ([START_REF] Menger | Das botenproblem[END_REF]). Since that time, other transporation problems have emerged as the vehicle routing and scheduling problems, and the Pick-up and Delivery Problem (PDP). The PDP is the ancestor of the problem of the Dial-a-ride problem which has been studded since the 1970's. DARP can be modeled in different ways. There are a number of integer linear programmings [START_REF] Cordeau | The dial-a-ride problem: models and algorithms[END_REF], but the problem complexity is too high to use, most of which are NP-Hard because it also generalizes the Traveling Salesman Problem with Time Windows (TSPTW). Therefore, the problem must be handled through heuristic techniques. [START_REF] Cordeau | A tabu search heuristic algorithm for the static multi-vehicle dial-a-ride problem[END_REF] is an important work on the subject and uses the Tabu search to solve it. Other techniques work well like dynamic programming (e.g. [START_REF] Psaraftis | An exact algorithm for the single vehicle many-to-many dial-a-ride problem with time windows[END_REF] and [START_REF] Chevrier | Comparison of three algorithms for solving the convergent demand responsive transportation problem[END_REF]) or variable neighborhood searches (VNS) (e.g. [START_REF] Parragh | Variable neighborhood search for the dial-a-ride problem[END_REF] and [START_REF] Healy | A new extension of local search applied to the dial-aride problem[END_REF]). Moreover, a basic feature of DARP is that it usually derives from a dynamic context. So, algorithms for static DARP should be designed in order to take into account the fact that they will have to be adapted to dynamic and reactive contexts, which means synchronization mechanisms, interactions between the users and the vehicles, and uncertainty about forcoming demands. [START_REF] Psaraftis | A heuristic algorithm for the multi-vehicle many-to-many advance request dial-a-ride problem[END_REF], and [START_REF] Madsen | A heuristic algorithm for the a diala-ride problem with time windows, multiple capacities, and multiple objectives[END_REF] later, developed the most used technique in dynamic context or in a real exploitation is heuristics based on insertion techniques. These techniques are a good solution when the people's requests have to be taken into account in a short period of time.

III. THE DIAL-A-RIDE PROBLEM: MODEL AND INSERTION

GREEDY ALGORITHM

A. The general notations

This section lets to set notations used throughout this document. For any sequence (or list) Γ k we set:

• for any z in Γ k :

-

Succ(Γ k , z) = Successor of z in Γ k ; -Pred(Γ k , z) = Predecessor of z in Γ k ; • for any z, z' in Γ k : -z ≪ k z ′ if z is located before z' in Γ k ; -z ≪ = k z ′ if z ≪ k z ′ or z = z'.

B. The model

A Dial a Ride Problem instance is defined by a Demand set D = (D i , i ∈ I) , a fleet of K vehicles with a common capacity CAP , and a transit network G = (V, E) . V contains some specific node Depot and demands' nodes (DepotD for the departure and DepotA for the arrival). Each arc e ∈ E is endowed with riding times give by a distance function DIST (e) . Each demand includes o i an origin node, d i a destination node, F (o i) and F (d i) two time windows, ∆ i a maximum ride timeand Q i a description of the load such that Q i = q i = -q i with q the load related a node. Finally, the total time of the K vehicles planning are limited by ∆ k , k ∈ K . Solving a DARP with such an instance means creating a scheduling for each vehicle handling demands of D. The routes are constructed while optimizing a performance, which could be a mix of costs (e.g. total distance) and QoS criteria (e.g. ride time).

C. A greedy insertion algorithm: the insertion mechanism

In [START_REF] Deleplanque | Insertion techniques and constraint propagation for the DARP[END_REF], we present an insertion greedy algorithm based on constraint propagation in order tocontract time windows according to the time constraints. An insertion which does not imply constraint violation is said valid if Γ∪ k∈K Γ k , the resultant collection of routes, if load-valid and time-valid.A route is load-valid if the capacity is not exceed, so, the load-validity is obtained if ChT k (x) ≤ CAP with ChT k (x) = y≪ = k x Q y , x and y nodes in the route k. The time-validity is obtained if there is no violation of the time constraints modeling by, for each demand i, i ∈ D, ∆ i the maximum ride time, ∆ k , k ∈ K the maximum route time and the constraints modeled by each time window

F (o i) = [F .min(o i), F .max (o i)] and F (d i) = [F .min(d i), F .max (d i)] .
Checking the load-validity on Γ = ∪ k∈K Γ k is easy, and we show the efficiency of the constraint propagation in order to prove to time-validity after each planned insertion once the load-validity is proved. According to a current time window set FP = {FP(x) = [FP.min(x), FP.max(x)], x ∈ Γ k , k = 1..K } the time-validity may be performed through propagation of the five following inference rules Ri, i = 1..5 in a given route Γ k :

for each (x,y) pair of nodes such that y is the successor of x:

• R1 : FP .min(x) + DIST (x, y) > FP .min(y) | = (FP .min(y) ← FP .min(x) + DIST (x, y)),

• R2 : FP .max (y) -DIST (x, y) < FP .max (x) | = (FP .max (x) ← FP .max (y) -DIST (x, y)) ;
for each (x,y) pair of nodes such that both are related to the same demand, one is the origin so the other the destination :

• R3 : mathitF P.min(x) < FP .min(y) -∆(x) | = (FP .min(x) ← FP .min(y) -∆(x)), • R4 : FP .max (y) > FP .max (x) + ∆(x) | = (FP .max (y) ← FP .max (x) + ∆(x)) ; and for each x, x ∈ Γ k , k = 1..K : • R5 : FP .min(x) > FP .max (x)| = REJET ← true.
These 5 rules are propagated in a loop while there no time windows exists FP modified at the last iteration. The tour Γ k , k = 1..K is time-valid according to the input time window set FP if and only if the REJET Boolean value is equal to false as initialized at the beginning of the process. In such a case, any valid time value set t related to Γ k [F020?]and FP is such that: for any x in Γ k , t(x) is the appointment's date in FP(x).

The greedy insertion algorithm includes this propagation constraint technique in order to evaluate each possible insertion. Each iteration of the algorithm selects one demand according to the number of vehicle able to integrate it. Once a demand is selected, the process chooses the insertion's parameters that are the vehicle and the location of the origin and destination nodes.

IV. Inserability OPTIMIZATION

A. State of the system

In the above algorithm, each iteration selects a demand, and then, it finds the way to insert while optimizing the performance. This greedy algorithm doesn't take in account the impact of this actual insertion on the future demands integration, but only the effect on the demands already inserted. In this section, we introduce a Inserability calculation by integrating this impact of an insertion related to the time constraints (time windows, maximum ride time and maximum route time).

During the insertion process, the state of the system is given by:

• A set of demands D-D1 already integrated in the routes, and D1 is the set of demands not inserted, • a collection Γ = ∪ k∈K Γ k of routes including a list of nodes related the Depot, origin and destination nodes, • a exhaustive list of insertion's parameters sets. Each set gathers 5 elements : k the vehicle, i the demand, (x, y) the pair of insertion nodes (locating respectively o i between x and the successor of x, and d i between y and the successor of y), and v the evolution of the collection Γ = ∪ k∈K Γ k 's cost.

B. Insertion's parameters

Given that the difficulty of the instances' problem is linked to the time constraints, we introduce an Inserability calculation related to the times windows contractions. During an insertion's assessment, these reductions appear once the inference rules are propagated. Here, we try to find a good 3-uple (k, x, y), the vehicle and the location of the origin/destination nodes, in order to give enough space to the future demands (which have to be integrated in Γ = ∪ k∈K Γ k).

We set INSER(i, Γ) the Inserability measurement of the demand I. The quantity U k n (z) denotes the vehicle k time windows' amplitude of the node n once it has been inserted to the right of node z. INSER is calculated as follows:

• INSER(i, Γ) = k∈K INSER1 (i, Γ k) ; • INSER1 (i, γ) = Max (x,y) INSER2 (i, γ, x, y), γ a tour of Γ ; • INSER2 (i, γ, x, y) = U γ o d (x).U γ d d (y).
We set Inserted (Γ, i 0 , k, x, y) the updated collection of tours Γ with the insertion of the selected demand i 0 at the locations x and y in the vehicle k. The INSER(i, Γ) measurement allows us to write the Optimization Inserability Problem which consists to find the best insertion parameters in order to keep the vehicles' scheduling more flexible:

Optimization Inserability Problem. Find the optimal parameters (k,x,y) inserting i 0 and maximizing the value Min i∈D1 -i0 INSER(i, Inserted (Γ, i 0 , k, x, y)) .

For

instance, the value Min i∈D1 -i0 INSER(i, Inserted (Γ, i 0 , k, x, y)) may be used if all the demands have to be inserted. Another optimization may be process as the maximization of the sum i∈D1 -i0 INSER(i, Inserted (Γ, i 0 , k, x, y)). The choice is made according to the homogeneity of the demands and if the problem requires to insert all the set D. This problem only optimizes the variation of the Inserability values and doesn't include other performance criteria like the minimization of the ride times, waiting times or distances. The Inserability criterion can be integrate in a mix of economical cost (point of view of the fleet manager) and of QoS criteria (point of view of the users). Then, the process maximizes the function Perf = µ. i∈D1 -i0 INSER(i, Inserted (Γ, i 0, k, x, y))v(Inserted (Γ, i 0, k, x, y)) with µ a criterion coefficient and v the performance value function mixing the costs related to the both points of view.

C. Other uses of the Inserability measurement

So far, we select the demand i 0 according to the number of vehicles available (taking in account all the time and load constraints). The Inserability measurement INSER(i 0 , Γ) may be also used in order to select the next request i 1 to insert. This application could be used in a context where all the demands of D have to be integrated. The selection is based on the smallest Inserability measurement. Once a demand is selected, the problem may solve the Optimization Inserability Problem.

Here, the two steps may be written in a non-deterministic way. The demand may be selected randomly through a set of N1 elements with the smallest INSER value. The same scheme may be applied on a set of a insertion parameters of N2 elements with a best (k, x, y) elements maximizing the quantity Min i∈D1 -i0 INSER(i, Inserted (Γ, i 0 , k, x, y)).

Also, INSER(i 0 , Γ) may be useful for a larger set D. If the instance doesn't have any solution integrating all the set D, it is preferable to identify requests to exclude as soon as possible. The exclusion of a demand i 0 may be set up if its insertion results in Γ not enough flexible to include the other elements of D1 . In other words, the demands excluded will be those that will have the most impact of future insertions. The difference

i∈D1 -i0 (INSER(i, Γ)-INSER(i, Inserted (Γ, i 0 , k, x, y)))
of the inequality (4) takes in account the Inserabilty measurement of D1 -i 0 before and after the insertion of i 0 in the routes of Γ. If this difference is larger than the threshold ξ, the demand is excluded. In the experimentation' section, we will discuss the fact this threshold should be dynamic and decreases over the execution.

i∈D1 -i0 (INSER(i, Γ) -INSER(i, Inserted (Γ, i 0 , k, x, y))) > ξ (1)

D. The Inserability optimization suited to the greedy insertion algorithm

The calculation of INSER(i, Γ), i ∈ D, begins to be time consuming starting from a medium size of D once the INSER2 value is based on the time windows' amplitude obtained after the propagation of the time constraints. So, this is important to spot each step of the process where the Inserability measurement doesn't have to be updated. When i 0 is selected, INSER2 (i, Γ k , x, y), INSER1 (i, Γ k) and INSER(i, Γ) are known for all demand in D1 -i 0 and all k = 1..K. Once i 0 is about to be inserted, the process computed the value H(i), i ∈ D1 -i 0 (cf. formulation (2)). Then, the algorithm tries the insertion of each i from D1 -i 0 in Inserted (Γ, i 0 , k, x, y) and deduce the value K(i) given in formula (3) for all i ∈ D1 -i 0 and ultimately the quantity Val (k, x, y) = Min i∈D1 -i0 (K(i) + H(i)).

H(i) = INSER(i, Γ) -INSER1 (i, Γ k) (2)
K(i) = INSER(i, Inserted (Γ, i 0 , k, x, y)) = H(i) + INSER1 (i, Inserted (Γ, i 0, k, x, y) k) (3)
Other calculation may be avoided. We set W 1 such that

W 1 = Min i∈D1 i0 INSER(i, Γ). If the quantity INSER(i, Γ)- INSER1 (i, Γ k) is larger than W 1 ,
there is no need to test the impact of the insertion of i 0 on i.

Finally, we're able to use INSER(i, Γ) once we integrate the future demands presented in the next section. In a dynamic context, the Inserability measurement helps the routes to be enough flexible for the next insertion process. Moreover, the making an appointment have to be set with the same purpose and INSER(i, Γ) is able to help to do it.

V. INTRODUCTION TO THE ROBUSTNESS IN THE DARP: ANTICIPATION OF THE FUTURE DEMANDS AND Inserability

MEASUREMENT INTEGRATION

The problem may have to be handled according to a dynamic context and the greedy insertion algorithm is easily adaptable to this context. Once the Inserability measurement is included in the performance criteria, the system may increase its robustness. In order to accomplish this, we need to exploit knowledge about future demands. In our case, this knowledge is related to the type of on demand transportation service. In this paper, we will use a simple extrapolation of this probable demands based on the demand already broadcasted.

We won't take into account the way the system supervises its various communication components with the users. In reality, there are eventual divergences between the data which were used during the planning phases and the situation the system.

We set D -V the virtual demands, D -R the real demands, and D -Rejet the set of the ones excluded from the insertion algorithm such that D -Rejet = DV -Rejet ∪ DR -Rejet. The D -V formulation is given in [START_REF] Cordeau | A tabu search heuristic algorithm for the static multi-vehicle dial-a-ride problem[END_REF]. p i gives us the number of times the demand i ∈ D will appear for each period of each discrete planning horizon.

D -V = i∈D i.p i (4)
Then, we're able to update the formula (5) the performance function Perf.

Perf = α. i p i INSER(i, Inserted (Γ, i 0, k, x, y)) +µ. i∈D1 -i0 INSER(i, Inserted (Γ, i 0 , k, x, y)) -v(Inserted (Γ, i 0 , k, x, y)) (5)
As in the previous sections, the process may exclude some demands taking in account the future requests. We updated the inequality (1) by the [START_REF] Chevrier | Comparison of three algorithms for solving the convergent demand responsive transportation problem[END_REF]. α is a coefficient based on the importance of the future demands.

α. i p i .(INSER(i, Inserted (Γ, i 0, k, x, y)) -INSER(i, Γ)) + i∈D1 -i0 (INSER(i, Γ) -INSER(i, Inserted (Γ, i 0 , k, x, y))) > ξ (6)

VI. DISCUSSION ABOUT THE MAKING AN APPOINTMENT AND THE DYNAMIC CONTEXT

Most work on vehicle scheduling problems including time window studies how to integrate a set of demands in the vehicle planning. Making an appointment anticipating the future is especially rare. Previous sections explained how to select and integrate user's request while keeping enough space for the next set of demands.

Once routes are built and integrated a first set D, the users expect the date when the vehicle selected will pick them up. In the lists forming the K routes, each node has a time window. After the appointment's date is set, each time window becomes tight with zero amplitude or equals a very small delay. How the appointments' dates are made is very important for the next insertion's process. For instance, we consider a fleet of 2 vehicles with two plannings including 5 demands while the distances are minimized (cf. Figure VI). The time windows are relatively wide so, while the distance traveled is minimized, the difference of each appointment's time between two nodes is the exact time to join them. The vehicle k=2 from the Figure VI may integrated the node o 7 between its depot node and o 5 even if its time windows have a zero amplitude (the vehicle will only have to leave the depot earlier). On the other hand, if the difference on the appointment' times given to the users related to the nodes d 5 and o 3 equals to DIST (d 5, o 3), the insertion of d 7 will be forbidden. In the same way, there will be a violation of some constraint once nodes o 6 and d 6 will be inserted in the vehicle k = 1. One more time, the INSER(i, Γ) values may be used in order to set the appointment dates without to have the problem above. The appointment's dates may be calculated once the process have inserted the virtual demands D -V and the real demands D -R.

The previous section shows the way to anticipate the future demands D -V . These demands are related to a dynamic context. Note again that our greedy algorithm is easily adaptable to this context. More specifically, the technique doesn't change unlike the state of each route. The first node isn't a depot node anymore but a dynamic node related to the vehicle's location. The entire constraint propagation process is applied on these new routes. A simulation will be necessary to evaluate the anticipation of the future demands including in the dynamic context.

VII. COMPUTATIONAL EXPERIMENTS

In this section, we study the behavior of our Inserability measurement used in the resolution of Dial-a-Ride instances. The algorithms were implemented in C++ and compiled with GCC 4.2. In [START_REF] Deleplanque | Insertion techniques and constraint propagation for the DARP[END_REF], we solve the [START_REF] Cordeau | A tabu search heuristic algorithm for the static multi-vehicle dial-a-ride problem[END_REF]'s instances by our greedy insertion algorithm based on constraint propagation. We obtained good results in the majority of instances, but, only 1% of the replications gave us a of feasible solution on the R10a instance. The CPU time was smallest or equal to the best times in the literature; we don't work on this feature for this experiment.

A. First experimentation: the optimization of the selection of the demand to insert 1) INSER's measurement used in the selection of a demand:

We note by T DARP the rate of 100 replications which give us a feasible solution obtained by using the solution of [START_REF] Deleplanque | Insertion techniques and constraint propagation for the DARP[END_REF]. Here, the selection of the demand is based on the lowest number of cars which are able to accept it. T DARP Rob is the rate obtained with the same process except that each demand is selected at each iteration by the lowest Inserability value INSER.

The Inserability measurement is already efficient once it's used in the selection of the demands to insert. The rate 2) The INSER's measurement behaviour: Each time a replication can't integrate all the request, the INSER value of the demands not inserted has to be null. In Figure VII-A2, throughout resolution process applied to the R10a instance, we note the evolution of more than 4500 INSER's demands not inserted. The technique used is the second approach selecting the demand by the smallest Inserability. The values noted are from a failed replication.

One can observe big gaps between some INSER's until the 4000 first values. After that, for the remaining requests, the Inserability values decrease strongly because the routes begin to be not flexible. Between the 2500 th and the 3500 th , for some demands, the INSER are very low at the beginning just before to increase strongly. This is explained by the fact the process inserts the demand with the lowest INSER but their insertion don't make a big impact on the other demands not inserted. This impact is related to the Optimization Inserability Problem studied below.

B. Second experimentation: the optimization of the insertion parameters

In a second experimentation, we compare the [START_REF] Deleplanque | Insertion techniques and constraint propagation for the DARP[END_REF]'s approach and another algorithm based on the optimization of the parameters (x,y,k). The selection of the request to insert is the same for both solutions. For the second one, once a demand i 0 is selected, we maximize the sum i∈D1 -i0 INSER(i, Inserted (Γ, i 0 , k, x, y)) in order the find the best parameter (x,y,k) which will integrate i 0 in the route k. We don't optimize Min i∈D1 -i0 INSER(i, Inserted (Γ, i 0 , k, x, y)) because we create instances especially with a set D too large for inserting all the requests. So, the demand with the smallest value INSER for a given parameters (x,y,k) could never be integrated into the routes.

The two algorithms were applied to five sets of 5 randomly generated instances. All the instances have their time constraints related to the interval [0;400] and all the load was unit. We set by e F (o) and e F (d) the amplitude of the time windows at the origin and the destination given by the users, respectively. The other parameters are given in table II For this set of instance, we also tried to integrated a new feature in our algorithm: we've added the ability to exclude a request if the impact of one insertion involving a significant drop of the general Inserability's demands from D1 -i 0 .

Before that, we study the threshold which limits the variation of Inserability. We used this type of dynamic threshold for the third set of instances with 100 demands. We exclude an request if the current ξ is exceeded, and only this feature is added in the second approach. We obtained a gain of 1,3% in average (from 85,3% to 86,6%) meaning approximately one more demand is able to be inserted.

VIII. CONCLUSION

The Dial-a-Ride Problem is one of the transport problems with the highest number of hard constraints like time windows.

The insertion techniques are able to obtain a good solution in a reasonable time. Its adaptability to a dynamic context is easy but a lack of robustness could appear once the goal is to integrate requests as much as possible.

We have introduced a way to measure the impact of each insertion on the other demands not inserted. This Inserability measurement could be used in order to exclude a demand, to select a demand to insert and also to calculate the best insertion parameters. This value, named INSER, leads to a large amount of work opportunities. We have introduced a simple way to make the model of the future demands, and how to adapt our greedy insertion algorithm based on the constraint propagation to the dynamic context. In future work, we will develop a simulation which is necessary to show the efficiency of the demands anticipation. The final goal will be to develop the most robust algorithm possible in order to adapt it to a real context.

Fig. 2 .

 2 Fig. 2. New insertions after the making an appointment

Fig. 3 .

 3 Fig. 3. INSER values on the not inserted demands

Fig. 4 .

 4 Fig. 4. Variation of the Inserability values between each insertion

 i∈D1 -i0 (INSER(i, Γ) -INSER(i, Inserted (Γ, i 0 , k, x, y)))> ξ is true with ξ a threshold. The calculation of the threshold is a difficult problem. In the figure VII-B, we report thei∈D1 -i0 (INSER(i, Γ) -INSER(i, Inserted (Γ, i 0 , k, x, y))) Variation with INSERav and INSERap the values i∈D1 -i0 INSER(i, Γ) and i∈D1 -i0 INSER(i, Inserted (Γ, i 0 , k, x, y)),respectively. This figure shows us that the threshold ξ have to be dynamic and calculate according to the average of INSER.

 . We set by T Insert and by T Insert the demand inserted's rate the first resolution and the second technique, respectively. Finally Gap Insert in the gap in percentage between each rate. Its calculation is given by Gap Insert = 100.(T Insert Rob -T Insert)/T Insert . We launched 100 replications of each technique on the 5 sets. The results are provided by the table III.In future experiments, we need to optimize the value Perf = µ. i∈D1 -i0 INSER(i, Inserted (Γ, i 0, k, x, y)) -

	K	e F (o)	e F (d)	∆	CAP
	10	35	10	∞	10
			TABLE II		
		PARAMETERS' INSTANCES
	We generate 5 different sets of 5 instances with a variation
	of the number of demands |D|. |D| 50 75	100	150	200
	T Insert	100 93.2 78.9 64.2 52.6
	T Insert Rob	100 96.8 85.3 66.4 54.1
	Gap Insert	0	3.86 8.11 3.43 2.81
			TABLE III	
	GAP BETWEEN THE INSERT RATES

ACKNOWLEDGMENT

This work was founded by the French National Research Agency, the European Commission (Feder funds) and the Region Auvergne in the Framework of the LabEx IMobS3.