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Abstract In this paper, in order to test whether changes have occurred in
a nonlinear parametric regression, we propose a nonparametric method based
on the empirical likelihood. Firstly, we test the null hypothesis of no-change
against the alternative of one change in the regression parameters. The asymp-
totic behaviour of the empirical likelihood statistic under the null hypothesis
and its alternative is studied. Under null hypothesis, the consistency and the
convergence rate of the regression parameter estimators are proved. The criti-
cal value is chosen so that the test has a small probability of a false alarm
and asymptotic power one. The epidemic model, a particular model with
two change-points under the alternative hypothesis, is also studied. Numeri-
cal studies by Monte-Carlo simulations show the performance of the proposed
test statistic, compared to an existing method in literature, for models without
change or with one or two change-points.

Keywords Change-point · Nonlinear parametric model · Empirical likelihood
test · Asymptotic behaviour.

1 Introduction

We consider a classical model of parametric nonlinear regression :

Yi = f(Xi;β) + εi, i = 1, · · · , n, (1)

where a possible change in the regression parameters could occurs. This is
called, change-point problem.
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Change-point detection problems fall in two categories. The first type is a
posteriori : after that the n all observations are realized, we study if, a certain
moment k ∈ {2, · · · , n − 1}, the model (parameter β, to be more precise) is
changed :

Yi =

{

f(Xi;β1) + εi i = 1, · · · , k
f(Xi;β2) + εi i = k + 1, · · · , n. (2)

The second type of change-points model is sequential (a priori), where the
change detection is performed in real time. If in the first k − 1 observations
no change in the parameter regression has occurred, at observation k we test
that there is no change in the model: Yi = f(Xi;β) + εi, for all i = 1, · · · , k,
against the hypothesis that the model has the form :

Yi = f(Xi;β) + εi for i = 1, · · · , k − 1
Yk = f(Xk;β

∗) + εk,
(3)

with β 6= β∗.
In this paper, we consider a posteriori change-point problem.
For the two types of problems, the number of publications in the last years
is every extensive. Let us mention some references concerning the sequential
change-point problem. If the function f is linear, f(x,β) = xtβ, in the papers
[10], [11], the CUSUM method is used to find a test statistic for detecting
the presence or absence of a change. The results have been generalized by [6]
for a nonlinear model. We can also mention the papers [12], [15], [16] for the
sequential detection of a change-point.
For a posteriori change-point problem, in order to detect a change-point pres-
ence, model (1) is tested against model (2). The non-identifiability of model
under the null hypothesis makes classical test techniques unusable. In many
articles in the literature, the authors propose criteria: see for example [17], [4],
[21]. Various hypothesis tests have been proposed only for the linear models.
The likelihood-ratio test method is used in [1] and [13]. A non-parametric ap-
proach based on Empirical Likelihood (EL) for testing a change in a linear
model is considered by [14]. Always using the EL method, the papers [23], [22]
construct the confidence region for the coefficient difference of a two-sample
linear regression model. For a linear quantile model, [18] proposes two types of
statistics: one based on the subgradient and an another based on Wald statis-
tic.
In this paper, we consider the change-point problem in a general nonlinear
model, by the EL method. Then, the framework of [14] is generalized. One of
the major difficulties for nonlinear model (beside the linear model approach)
is that, for finding the test statistic, the corresponding score functions de-
pend on the regression parameters, and above all, the analytical form of these
derivatives is unknown. On the other hand, for linear models, many proofs are
based on the convexity of the regression function with respect to the param-
eter regression, then, the extreme value of a convex function is attained on
the boundary. These two factors lead to a more difficult theoretical study of
the test statistics for nonlinear model. Another difficulty to study the prop-
erties of the test statistic, for detecting a change in model, is due to the
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dependence on the change-points of the regression parameter estimator. To
the authors’ knowledge, the only paper which studies a hypothesis test in a
change-point nonlinear model is [3]for very smooth nonlinear functions, using
the least square method. But the least square method, in respect to the EL
method, has the disadvantage that is less efficient for outliers data. This oc-
curs in the case of fatter tailed distributions of the error term. Moreover, we
will see in Section 2 that the considered assumptions in [3] are stronger than
in the present paper.
Recall also the paper [9] which tests the structural stability in a nonlinear
model by a generalized method of moments, but where the alternative hy-
pothesis is not a change in the regression parameters.
I would emphasize that in the present paper, we have obtained an interest-
ing result concerning the numerical simulations. The EL test outperforms the
change detection by least square(LS) test proposed by [3]. The LS test does
not work when the change-point is off-centred in the measurement interval.
The proposed EL test does not this defect.

The paper is organized as follows. We first construct in Section 2 a statistic,
in order to test the change in the regression parameters of the nonlinear model.
The asymptotic behaviour of the test statistic under the null hypothesis as well
as under the alternative hypothesis is studied. A particular case of two change-
point model, the epidemic model, is considered in Section 3. In Section 4,
simulations results illustrate the performance of the proposed test, concerning
the empirical size, the asymptotic power and the estimation of the time of
change, in particular when the error distribution is not Gaussian, when it has
outliers or a large standard deviation. Some lemmas and their proofs are given
in the last section (Appendix, Section 5).

2 Test with one change-point

In this section, for a nonlinear model we are going to test the hypothesis that
there is no change in the parameters of model (1) against the hypothesis that
the parameters change from β1 to β2 at an unknown observation k (model
(2)).

2.1 Model, notations, assumptions

For each observation i, Yi denotes the response variable, Xi is a p× 1 random
vector of regressors with distribution function H(x), with x ∈ Υ , Υ ⊆ IRp,
and εi is the error.
The continuous random vector sequence (Xi, εi)1≤i≤n is independent identi-
cally distributed (i.i.d), with the same joint distribution as (X, ε). For all i, εi
is independent of Xi.
The regression function f : Υ×Γ → R, with Υ ⊆ R

p, and Γ ⊆ R
d, is known up
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to a d-dimensional parameter β. The parameter set Γ is supposed compact.
With regard to the random variable ε we make following assumption :
(A1) IE[εi] = 0 and IE[ε2i ] <∞, for all i = 1, · · · , n.
The regression function f : Υ × Γ → R and the random vector X satisfy the
conditions :
(A2) for all x ∈ Υ and for β ∈ Γ , the function f(x,β) is thrice differentiable
in β and continuous on Υ .

In following, for x ∈ Υ and β ∈ Γ , we use notation
.

f(x,β) ≡ ∂f(x,β)/∂β,
..

f (x,β) ≡ ∂2f(x,β)/∂β2 and f (3)(x,β) ≡ ∂3f(x,β)/∂β3.

(A3) ‖
..

f (x,β)‖2, ‖f(3)(x,β)‖2 are bounded for any x ∈ Υ and β in a neigh-
bourhood of β0.

(A4) IE[
.

f(X,β)] <∞ and IE[
.

f(X,β)
.

f
t
(X,β)] <∞, for β in a neighbourhood

of β0.

Assumptions (A3), (A4) are standard conditions, which are used in non-
linear models, for example see paper [19]. We remark that assumption (A4) is
weaker than the corresponding assumption employed in paper [3], where the

least square method is used to test H0 against H1 : supx,β IE[
.

f(x,β)]2s <∞,

supx,β IE[
..

f (x,β)]2s <∞, for some s > 2.

We are interested in testing of the null hypothesis of no change in the
model (2). Then the model has the form (1), that is
H0: β1 = β2 = β.
The alternative hypothesis assumes that one change occurs in the regression
parameters, that is
H1: β1 6= β2.
Let β0 denote the true (unknown) of the parameter β under hypothesis H0

and β0
1, β

0
2 (also unknown) the true parameters under hypothesis H1.

In addition to the notations introduced above, we define notations which
will be used under hypothesis H0. Let us consider the following d-random

vectors g(Xi,β) ≡ gi(β) ≡
.

f(Xi,β)[Yi − f(Xi,β)]. We remark that, under

the hypothesis H0, we have gi(β
0) =

.

f(Xi,β
0)εi, for all i = 1, · · · , n and

IE[gi(β
0)] = 0. Consider also the d × d matrix V ≡ IE[

.

f(Xi,β
0)

.

f
t
(Xi,β

0)].

Then σ2V = Var (εi
.

f(Xi,β
0)).

Let y1, · · · , yk, yk+1, · · · , yn be observations for the random variables Y1, · · · , Yk,
Yk+1, · · · , Yn. Consider the following sets I ≡ {1, ..., k} and J ≡ {k+1, ..., n},
which contain the observation subscripts of the two segments for the model
(2). Corresponding to these sets, let be the probability vectors : (p1, · · · , pk)
and (qk+1, · · · , qn). These vectors contained the probability to observe the
value yi (respectively yj) for the dependent variable Yi (respectively Yj) :
pi ≡ IP [Yi = yi], for i = 1, · · · , k and qj ≡ IP [Yj = yj ], for j = k + 1, · · · , n.
Obviously,

∑

i∈I pi = 1,
∑

j∈J qj = 1.
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All throughout the paper, C denotes a positive generic constant which
may take different values in different formula or even in different parts of
the same formula. All vectors are column and vt denotes the transposed of
v. All vectors and matrices are in bold. Concerning the used norms, for a
m-vector v = (v1, · · · , vm), let us denote by ‖v‖1 =

∑m
j=1 |vj | its L1-norm

and ‖v‖2 = (
∑m

j=1 v
2
j )

1/2 its L2-norm. For a matrix M = (aij)16i6m1
16j6m2

, we

denote by ‖M‖1 = maxj=1,··· ,m2(
∑m1

i=1 |aij |), the subordinate norm to the

vector norm ‖.‖1. Let L−→
n→∞

,
IP−→

n→∞
,

a.s.−→
n→∞

represent convergence in distribution,

in probability and almost sure, respectively, as n→ ∞.
For coherence, we try to use the some notations as in the paper [14], where
the linear model was considered. This will allow to highlight the difficulties
and results due to the nonlinearity.

2.2 Test statistic

Under hypothesis H0, the profile empirical likelihood (EL) for β is

R0(β) = sup(p1,··· ,pk)
sup(qk+1,··· ,qn)

{

∏

i∈I pi
∏

j∈J qj ;
∑

i∈I pi = 1,
∑

j∈J qj = 1,

∑

i∈I pigi(β) =
∑

j∈J qjgj(β) = 0d

}

,

with 0d the d-vector with all components zero. Without constraints
∑

i∈I pigi(β) =
0d, the maximum of

∏

i∈I pi,
∏

j∈J qj are attained for pi = k−1, qj = (n−k)−1,
respectively. Then, the profile EL ratio for β has the form

R′
0(β) = sup(p1,··· ,pk)

sup(qk+1,··· ,qn)

{

∏

i∈I kpi
∏

j∈J(n− k)qj ;
∑

i∈I pi = 1,

∑

j∈J qj = 1,
∑

i∈I pigi(β) =
∑

j∈J qjgj(β) = 0d

}

.
(4)

Similarly, under hypothesis H1, the profile EL is

R1(β1,β2) = sup(p1,··· ,pk)
sup(qk+1,··· ,qn)

{

∏

i∈I pi
∏

j∈J qj ;
∑

i∈I pi = 1,

∑

j∈J qj = 1,
∑

i∈I pigi(β1) = 0d,
∑

j∈J qjgj(β2) = 0d

}

.

Then, the profile EL ratio for β1,β2 has the form

R′
1(β1,β2) = sup(p1,··· ,pk)

sup(qk+1,··· ,qn)

{

∏

i∈I kpi
∏

j∈J(n− k)qj ;
∑

i∈I pi = 1,

∑

j∈J qj = 1,
∑

i∈I pigi(β1) = 0d,
∑

j∈J qjgj(β2) = 0d

}

.
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Thus, using an idea similar to the maximum likelihood test for testing H0

against H1, we consider the profile EL ratio

R0(β)

R1(β1,β2)
=

R′
0(β)

R′
1(β1,β2)

, (5)

but, under this form, it has a complicated expression. In order to find a sim-
pler form for the test statistic, we will study the denominator behaviour of the
process given by (5).

The following result is a generalization of the nonparametric version of the
Wilks theorem. More specifically, under H1 due to the observation indepen-
dence, on each segment we have a Wilks theorem. The profile EL ratio for β1,
β2 has a χ2 asymptotic distribution.

Theorem 1 Suppose that assumptions (A1)-(A3) hold. Under the hypothesis
H1, we have

−2 logR′
1(β1,β2)

L−→
n→∞

χ2(2d).

Proof. Under H1, on the first segment generated by the observations for i ∈ I,
the profile EL function for β1, for fixed k, is

sup
(p1,··· ,pk)

{

∏

i∈I

kpi; 0 ≤ pi ≤ 1,
∑

i∈I

pi = 1,
∑

i∈I

pigi(β1) = 0d

}

.

Using the Lagrange multiplier method, we consider the following random pro-
cess

∑

i∈I log pi+ η(
∑

i∈I pi− 1)− kλt
1(
∑

i∈I pigi(β1)), with λ1 ∈ R
d, η ∈ R.

Taking derivative with respect to pi of this process equal to zero, we obtain

pi =
1

kλt
1gi(β1)− η

. (6)

Then, 1 + ηpi − kpiλ
t
1gi(β1) = 0, and summing for i = 1, · · · , k, we obtain

that η = −k. Hence, the probability pi given by (6) becomes

pi =
1

k(1 + λt
1gi(β1))

.

Similarly, the profile EL function on the second segment generated by the
observations for j ∈ J , is

sup
(qk+1,··· ,qn)

{

∏

j∈J

(n− k)qj ; 0 ≤ qj ≤ 1,
∑

j∈J

qj = 1,
∑

j∈J

qjgj(β2) = 0d

}

.

This function is maximed for qj = (n− k − λt
2gi(β2))

−1, with λ2 ∈ R
p. Then

the empirical log-likelihood ratio statistic can be written

−2 logR′
1(β1,β2) = 2

∑

i∈I

log
[

1 + λt
1gi(β1)

]

+ 2
∑

j∈J

log
[

1− λt
2gi(β2)

]

. (7)
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In view of Theorem 4.1 of [7], using assumptions (A1), (A2) and (A3), each
sum of the right-hand side of (7) converges in law to χ2(d). Taking into account
that the two terms of relation (7) involved two independent sets of random
vectors we obtain the theorem. �

Consequently of this theorem, the denominator of the EL ratio given by
(5), is not asymptotically depend on the parameters β1 and β2, under hy-
pothesis H1. Then, from now on, we are going to consider that test statistic
−2 logR′

0(β).

Taking into account the expression of R′
0(β) given by (4), and using the

Lagrange multiplier method, we have that maximizing −2 logR′
0(β) is equiv-

alent to maximizing the following statistic with respect to β, η1, η2, λ1, λ2,

∑

i∈I

[

log pi−nλt
1pigi(β)

]

+
∑

j∈J

[

log qj+nλ
t
2qjgj(β)

]

+η1
(

∑

i∈I

pi−1
)

+η2
(

∑

j∈J

qj−1
)

(8)
where β ∈ Γ , η1, η2 ∈ R and λ1,λ2 ∈ R

d.
Since the derivatives of (8) with respect to pi, qj are null, using a similar
argument as in the proof of Theorem 1, we obtain that

pi =
1

k + nλt
1gi(β)

qj =
1

n− k − nλt
2gj(β)

. (9)

Then, the statistic −2 logR′
0(β) becomes

2
∑

i∈I

log
[

1 +
n

k
λt
1gi(β)

]

+ 2
∑

j∈J

log
[

1− n

n− k
λt
2gj(β)

]

. (10)

Taking into account relation (9), for the probabilities pi and qj , the derivative
with respect to β of (10) is 2n

[
∑

i∈I piλ
t
i

.
gi(β)−

∑

j∈J qjλ
t
2

.
gj(β)

]

= 0, with
.
gi(β) the d×d matrix of the derivatives of vector gi(β) with respect to β, for
i = 1, · · · , k. In order to have single parameters λ, we restrict the study to a
particular case, when λ1 and λ2 satisfy the constraint V1(β)λ1 = V2(β)λ2,
with V1(β) ≡ k−1

∑

i∈I

.
gi(β), V2(β) ≡ (n − k)−1

∑

j∈J

.
gj(β). In the case

of the true parameter β0, this two last matrices become V0
1 ≡ V1(β

0) and
V0

2 ≡ V2(β
0). Considering this constraint, statistic (10) becomes

2
∑

i∈I

log
[

1 +
n

k
λtgi(β)

]

+ 2
∑

j∈J

log
[

1− n

n− k
λtV1(β)V

−1
2 (β)gj(β)

]

. (11)

In order that the parameters belong a bounded set, in the place of k, we
consider θnk ≡ k/n, and we denote statistic (11) by Znk(θnk,λ,β). Under hy-
pothesis H1, if k0 is the point where the model change, we denote θ0n = k0/n.
Similar to the classical maximum likelihood test, but for models without
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change-points, we will study the maximum of empirical log-likelihood test
statistic. Then, we calculate the score functions of test statistic (11)

φ1n(θnk,λ,β) ≡
∂Znk(θnk,λ,β)

2∂λ
(12)

=
∑

i∈I

gi(β)

θnk + λtgi(β)
−
∑

j∈J

V1(β)V
−1
2 (β)gj(β)

1− θnk − λtV1(β)V
−1
2 (β)gj(β)

.

φ2n(θnk,λ, β) ≡
∂Znk(θnk,λ,β)

2∂β

=
∑

i∈I

.
gi(β)λ

θnk + λt(β)gi(β)
(13)

−
∑

j∈J

λt(β)V̇1(β)V2(β)
−1gj(β) + λt(β)V1(β)V̇

−1
2 (β)gj(β)

1− θnk − λtV1(β)V
−1
2 (β)gj(β)

−
∑

j∈J

(β)V1(β)V
−1
2 (β)

.
gj(β)λ

1− θnk − λtV1(β)V
−1
2 (β)gj(β)

.

Then, solving the system φ1n(θnk,λ,β) = 0d and φ2n(θnk,λ,β) = 0d, the ob-

tained solutions λ̂(θnk) and β̂(θnk) are the maximizers of the statistic (11). We

so obtain the profile maximum empirical likelihood function Znk(θnk, λ̂(θnk), β̂(θnk)),
which depends only on the change-point parameter θnk.
We emphasise that, compared with a linear model, in our case, matrix V1(β),
V2(β) and derivative

.
g(β) depend on β. These, besides the nonlinearity of

g(β) involve difficulties in the study of the statistic Znk(θnk,λ,β) and of the

solutions λ̂(θnk), β̂(θnk).

2.3 Asymptotic behaviour of the test statistic

In this section, for the probabilities given by (9), under the constraintV1(β)λ1 =
V2(β)λ2, we will first prove that kpi, (n− k)qj , can be framed by two strictly

positive constants. This implies that the test statistic Znk(θnk, λ̂(θnk), β̂(θnk))
is well defined.
Properties established for λ̂(θnk) and β̂(θnk) will allow to consider instead of
(11), a more simple statistical test, given by relation (25). Next, we will study
the asymptotic behaviour of this statistic, firstly under the hypothesis H0 and
next under H1.

2.3.1 Asymptotic behaviour under H0

We will first study kpi, for i ∈ I, and (n− k)qj , for j ∈ J .
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Proposition 1 Let the η-neighbourhood of β0, Vη(β
0) = {β ∈ Γ ; ‖β−β0‖2 ≤

η}, with η → 0. Under hypothesis H0, suppose that assumptions (A1)-(A4)
hold. Then we have
(i) For all i ∈ I, for all ǫ > 0, there exist two constants M1,M2 > 0, such that,
for all β ∈ Vη(β

0),

IP
[ 1

M2
≤ 1

1 + λt

θnk
gi(β)

≤ 1

M1

]

≥ 1− ǫ. (14)

(ii) For all j ∈ J , for all ǫ > 0, there exist two constants M3,M4 > 0, such
that, for all β ∈ Vη(β

0),

IP
[ 1

M4
≤ 1

1− λt

1−θnk
V1(β)(V2(β))−1gj(β)

≤ 1

M3

]

≥ 1− ǫ. (15)

Proof. (i) We consider the following decomposition for the Lagrange multiplier:
λ = ρφ, such that ρ ≥ 0 and ‖φ‖1 = 1. Lemma 2 implies that, there exists
M2 > 0, such that

1

1 + λt

θnk
gi(β)

≥ 1

1 + ρ
θnk

‖φtgi(β)‖1
≥ 1

1 + ρ
θnk

‖gi(β)‖1
≥ 1

M2
,

with probability close to 1, that is, for all ǫ > 0,

IP [
1

1 + ρ
θnk

‖gi(β)‖1
≥ 1

M2
] ≥ 1− ǫ

2
. (16)

For the right-hand side of relation (14), we assume the contrary, that is, there
exists M1 > 0 such that

sup
i∈I,β∈Γ

1

1 + λt

θnk
gi(β)

≥ 1

M1
.

This is equivalent to the fact that there exists M̃ > 0, such that

inf
i∈I,β∈Γ

λt

θnk
gi(β) ≤ −M̃.

Since λ = ρφ, ρ > 0, and 0 < θnk < 1, therefore exists ˜̃M > 0 such that

inf
i∈I,β∈Γ

φtgi(β) ≤ − ˜̃M. (17)

On the other hand, we have that infi∈I,β∈Γ φtgi(β) ≥ − infi∈I,β∈Γ ‖gi(β)‖1,
with probability 1. Taking into account relation (17), there exists ˜̃M > 0 such

as − infi∈I,β∈Γ ‖gi(β)‖1 ≤ − ˜̃M again too supi∈I,β∈Γ ‖gi(β)‖1 ≥ ˜̃M , which is
in contradiction with relation ( 2). Then, the relation (14) holds.
(ii) Relation (15) can be proved in a similar way. �
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By the following result, we show that λ̂(θnk) and β̂(θnk), the solutions of
the score equations φ1n(θnk,λ,β) = 0d and φ2n(θnk,λ,β) = 0d, have suitable

properties. More precisely, we show that ‖λ̂(θnk)‖2 → 0, as n → ∞ and that

β̂(θnk) is a consistent estimator of β0, under hypothesis H0. We also obtain
their convergence rate.

Theorem 2 Suppose that the assumptions (A1)-(A4) hold. Under the hypoth-

esis H0, we have λ̂(θnk) = min {θnk, 1− θnk}OIP ((n min {θnk, 1− θnk})−1/2)

and β̂(θnk)− β0 = OIP ((n min {θnk, 1− θnk})−1/2).

Proof. The structure of the proof is similar to that of linear model (Lemma A1
of [14]) but important modifications and supplementary results are necessary,
due to the model nonlinearity. Without loss of generality, we assume that
min{θnk, 1− θnk} = θnk. The other case is similar.
By the definition of the profile empirical likelihood ratio R′

0(β), we have the
following constraints

0d =
∑

i∈I

pigi(β) =
∑

j∈J

qjgj(β). (18)

We recall that, under hypothesis H0, the expression of pi is given by (9), and
it is equal to (θnk + nλtgi(β))

−1, for i = 1, · · · , nθnk. Then, by elementary
calculations, we obtain

0d =
1

nθnk

∑

i∈I

gi(β)−
1

nθ2nk

∑

i∈I

gi(β)g
t
i(β)

1 + λt(β)
θnk

gi(β)
λ(β). (19)

Let us make the remark that we denote λ by λ(β) in order to indicate that for
each value of β, solution of (19), we will have a different value for λ. We take
β = β0 ± (nθnk)

−r1d, with 1d the d-vector with all components 1 and r > 0
will be specified later. Therefore, ‖β − β0‖2 = (nθnk)

−r → 0, as nθnk → ∞.
For the first sum of the right-hand side of (19), by Lemma 3, we have

1

nθnk

∑

i∈I

gi(β) = OIP ((nθnk)
−1/2) +V0

1(β − β0) + oIP (β − β0).

Now, we consider the second term of the right-hand side of relation (19).
From Proposition 1, we have that for all ǫ > 0, there exists M1,M2 > 0, such
that

IP
[ 1

M1

∑

i∈I

gi(β)g
t
i(β) ≤

∑

i∈I

gi(β)g
t
i(β)

1 +
λt

(
β)

θnk
gi(β)

≤ 1

M2

∑

i∈I

gi(β)g
t
i(β)

]

< ǫ.

This implies that, in order to study the second term of the right-hand side of
the relation (19), we must study only (nθnk)

−1
∑

i∈I gi(β)g
t
i(β). By a Taylor’s

expansion of gi(β) in a neighbourhood of β0, using an argument similar to
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the one used for the first term of (19), together with the assumption (A3), we
obtain

1

nθnk

∑

i∈I

gi(β)g
t
i(β) =

1

nθnk

∑

i∈I

gi(β
0)gt

i(β
0)(1 + oIP (1)). (20)

Taking into account Lemma 3 and relation (20), the relation (19) becomes

0d =
[

OIP ((nθnk)
−1/2)+V0

1(β−β0)− 1

nθ2nk

nθnk
∑

i=1

gi(β
0)gt

i(β
0)λ(β)

]

(1+oIP (1))

(21)
We consider a constant r such that 1/3 ≤ r < 1/2. If β = β0 + (nθnk)

−r1d,
then (β − β0)t1d > 0, and if β = β0 − (nθnk)

−r1d then (β − β0)t1d < 0.
Then, the relation (21) implies

λ(β0 ± (nθnk)
−r1d) = ±

[

θnk

( 1

nθnk

∑

i∈I

ε2i
.

f i(β
0)

.

f
t

i(β
0)
)−1

V0
1(nθnk)

−r1d

+OIP ((nθnk)
−1/2)

]

(1 + oIP (1)). (22)

For the observations j ∈ J , let us consider the function v : Γ → IRd defined
by

v(β) =
∑

j∈J

qjgj(β) =
1

n− nθnk

∑

j∈J

gj(β)

1− λt(β)
1−θnk

V1(β)V
−1
2 (β)gj(β)

.

Note that v(β̂(θnk)) = 0d. For v(β), we have the following decomposition

V1(β)V
−1
2 (β)

n(1− θnk)2

∑

j∈J

gj(β)g
t
j(β)

1− λt(β)
1−θnk

V1(β)V
−1
2 (β)gj(β)

λ(β)+
1

n(1− θnk)

∑

j∈J

gj(β).

To facilitate writing, we consider the following d× d squares matrices, defined
by

D0
1 =

1

nθnk

∑

i∈I

gi(β
0)gt

i(β
0), D0

2 =
1

n− nθnk

∑

j∈J

gj(β
0)gt

j(β
0). (23)

As for the observations i ∈ I, we obtain, similarly as for relation (21), v(β) =
[

V0
2(β−β0) + 1

1−θnk
V0

1(V
0
2)

−1D0
2λ(β) +OIP ((n(1− θnk))

−1/2)

]

(1 + oIP (1)).

Replacing λ(β) by the value obtained in (22), we obtain v(β) = [V0
2(β−β0)+

(θnk)(1 − θnk)
−1V0

1(V
0
2)

−1D0
2(D

0
1)

−1V0
1(β − β0) + OIP ((n(1 − θnk))

−1/2) +
OIP ((nθnk)

−1/2)](1 + oIP (1)). Because β = β0 ± (nθnk)
−r1d, 1/3 ≤ r < 1/2

and min{θnk, 1− θnk} = θnk, then v(β) becomes

[(V0
2+

θnk
1− θnk

V0
1(V

0
2)

−1D0
2(D

0
1)

−1V0
1)(β−β0)+OIP ((nθnk)

−1/2))](1+oIP (1)).

(24)
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This implies that v(β0 + (nθnk)
−r1d) and v(β0 − (nθnk)

−r1d) have a differ-
ent signs, component by component. Moreover, because v contains continuous
functions in the neighbourhood of β0, there exists a β such that v(β) = 0d.

But v(β̂(θnk)) = 0d, then β̂(θnk) ∈ [β0−(nθnk)
−r1d,β

0+(nθnk)
−r1d], which

implies, because r < 1/2, that β̂(θnk)−β0 = OIP ((nθnk)
−r) ≥ OIP ((nθnk)

−1/2).

This last relation, together with the relation (24), since β̂(θnk)−β0 is the coeffi-

cient of a matrix strictly positive, implies that in order to have v(β̂(θnk)) = 0d,

we must have β̂(θnk)−β0 = OIP ((nθnk)
−1/2). Considering this result, for the

relation (22), we obtain λ(β̂(θnk)) = θnkOIP ((nθnk)
−1/2). The theorem is com-

pletely proved. �

Remark 1 In view of the proof of Theorem 2, under hypothesis H0, we can
consider instead of Znk(θnk,λ,β), given by (11), the following test statistic

Tnk(θnk,λ,β) = 2
∑

i∈I

log(1 +
1

θnk
λtgi(β)) + 2

∑

j∈J

log(1− 1

1− θnk
λtgj(β)).

(25)

Because the regression function is nonlinear, and in order to the maxi-
mum empirical likelihood always exists, we consider that the parameter θnk ∈
[Θ1n, Θ2n] ⊂ (0, 1), such that nΘ1n → ∞, n(1−Θ2n) → ∞, as n→ ∞ for ex-
ample. The reader can find a discussion concerning the possible values of Θ1n,
Θ2n in the papers [24], [14]. Finally, the test statistic for testing the hypothesis
H0 against H1 is

T̃n ≡ max
θnk∈[Θ1n,Θ2n]

Tnk(θnk, λ̂(θnk), β̂(θnk)). (26)

Then, we can consider as estimator for the time of change k0, the maximum
empirical likelihood estimator: k̃n ≡ nθ̃n ≡ nmin{θ̃nk; θ̃nk = argmaxθnk∈[Θ1n,Θ2n]

Tnk(θnk, λ̂(θnk), β̂(θnk))}. Recall that λ̂(θnk) and β̂(θnk) are the solutions of
the score equations (12) and (13).

The following result gives the asymptotic distribution of the test statistic
T̃n given by (26), under the null hypothesis of no-change. For this purpose, we
consider functions: A(x) ≡ (2 log x)1/2, D(x) = 2 log x + log log x and u(n) =
1−Θ1nΘ2n

Θ1n(1−Θ2n)
→ ∞ as n→ ∞.

Theorem 3 Under the assumptions (A1)-(A4), if the hypothesis H0 is true,
then we have, for all t ∈ R

lim
n→∞

IP{A(log u(n))(T̃
1
2
n ≤ t+D(log u(n))} = exp(−e−t). (27)

Proof. The proof is similar to that of Theorem 1.3.1 of [8], combining Theorem
A.3.4 of [8] with Lemma 5. �
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Corollary 1 Consequence of this theorem, for a fixed size α ∈ (0, 1), we can
deduct the critical test region :

(T̃n)
1/2 ≥ − log(− logα) +D(log u(n))

A(log u(n))
.

Using this result to applications is quite complicated; we must first solve equa-
tion system (12) and (13) where the nonlinearity in parameter β up to and
including in matrices V1(β), V2(β), V

−1
2 (β) causes numerical difficulties and

long computation time. Moreover, it must then find θnk that maximizes statis-
tic (26). We can propose an approached form for the test statistic much simpler
to use in practice, but which preserves the theoretical properties of (26).

Remark 2 Taking into account the last relation of Lemma 5, Theorem 3 im-
plies that, in practice, for testing the hypothesis H0 against H1, we will use an
approximate form

T (θnk) =

(

nσ−2θnk(1− θnk)(w1 −w2)
tV−1(w1 −w2)

)(

1 + oIP (1)

)

, (28)

where : w1 = (nθnk)
−1
∑

i∈I gi(β
0) and w2 = (n(1−θnk))−1V0

1(V
0
2)

−1
∑

j∈J gj(β
0).

Under H0, error variance σ2 is estimated by n−1
∑n

i=1[Yi − f(Xi, β̂(θnk))]
2

and matrix V by n−1
∑n

i=1

.

f(Xi, β̂(θnk))
.

f
t
(Xi, β̂(θnk)). The approached max-

imum empirical likelihood estimator for the time of change k0 is k̂n = nθ̂n =
nmin{θ̂nk; θ̂nk = argmaxΘ1n≤θnk≤Θ2n

T (θnk)}.

2.3.2 Asymptotic behaviour under H1

We consider now that the hypothesis H1 is true. If k0 is the true time of
change, we denote by θn0 = k0/n and we suppose that θ0 ≡ limn→∞ θn0.
For x ∈ Υ and e ∈ IR, let F (x, e) and G(x, e) the conditional distributions of
g(Xi,β) when Xi = x for i ∈ I and j ∈ J , respectively. Let 11(.) the indicator
function. Recall that, the distribution function of X is H(x). For x and θ fixed,
we define
dP (x, e) ≡ (θ11{θ≤θ0} + θ011{θ>θ0})dF (x, e) + (θ − θ0)11{θ>θ0}dG(x, e),
dQ(x, e) ≡ ((1−θ)11{θ≥θ0}+(1−θ0)11{θ<θ0})dG(x, e)+(θ0−θ)11{θ<θ0}dF (x, e),
dR(x, e) ≡ 11{θ<θ0}dF (x, e) + 11{θ>θ0}dG(x, e).

Since under H0, we proved that instead of EL statistic (11) we can consider
statistic (25), let us define the following statistic

Λnk(θnk) = Tnk(θnk, λ̃(θnk), β̃(θnk))/(2n), Λn(0) = Λn(1) = 0, (29)

with Tnk given by relation (25), and λ̃(θnk), β̃(θnk) solutions of the system






∂Tnk(θnk,λ,β)
2∂λ =

∑

i∈I
gi(β)

θnk+λtgi(β)
−∑j∈J

gj(β)
1−θnk−λtgj(β)

= 0d,

∂Tnk(θnk,λ,β)
2∂β =

∑

i∈I

.
gi(β)λ

θnk+λtgi(β)
−∑j∈J

.
gj(β)λ

1−θnk−λtgj(β)
= 0d.

(30)
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For any λ and β, let the function K : Υ × IR× (0, 1) defined by

K(x, e, θ) = θ + λt
.

f(x,β)[e− f(x,β) + f(x,β0)].

Let also ψ(θ,λ,β) =
∫

Υ

(

∫

IR
logK(x, e, θ)dP (x, e)+

∫

IR
log(1−K(x, e, θ))dQ(x, e)

)

dH(x)

−θ log θ − (1 − θ) log(1 − θ). We will prove by Theorem 4 that ψ is the limit

process of Λnk, under H1. Then consider, for a fixed θ ∈ (0, 1),
˜̃
λ(θ),

˜̃
β(θ) the

solutions to the following score equations







z1(θ,λ,β) =
∫

Υ

(

∫

IR
g(x,β)

K(x,e,θ)dP (x, e)−
∫

IR
g(x,β)

1−K(x,e,θ)dQ(x, e)
)

dH(x) = 0d,

z2(θ,λ,β) =
∫

Υ

(

∫

IR

.
g(x,β)λ
K(x,e,θ)dP (x, e)−

∫

IR

.
g(x,β)

1−K(x,e,θ)dQ(x, e)
)

dH(x) = 0d,

(31)
where, z1(θ,λ,β) = ∂ψ(θ,λ,β)/∂λ and z2(θ,λ,β) = ∂ψ(θ,λ,β)/∂β.

We require the following assumptions for the next theorems :

(A5) The matrix

(

−∂z1(θ,λ,β)
∂λ −∂z1(θ,λ,β)

∂β

−∂z2(θ,λ,β)
∂λ −∂z2(θ,λ,β)

∂β

)

is nonsingular for all θ ∈ (0, 1).

(A6)
∫

Υ

∫

IR
(g(x,β)gt(x,β)

K2 + g(x,β)gt(x,β)
(1−K)2 )d(F (x, e) +G(x, e)) <∞,

∫

Υ

∫

IR
(

.
g(x,β)

.
g(x,β)

K2 +
.
g(x,β)

.
g(x,β)

(1−K)2 )d(F (x, e) +G(x, e)) <∞, and

∫

Υ

∫

IR
(

..
g(x,β)
K2 +

..
g(x,β)
(1−K)2 )d(F (x, e) +G(x, e)) <∞.

(A7) The functions f(x,β) and
.

f(x,β) are equicontinuous in β on Γ .

Remark 3 A sufficient condition for the equicontinuity of the functions f(x,β)

and
.

f(x,β) is that they are Lipschitzian with respect to β on Γ .

Following theorem shows that if θnk converges to the true value θ0, then the
maximum EL test statistic converges to the maximum of its limit distribution.

Theorem 4 Under the alternative hypothesis H1, if the assumptions (A1)-

(A7) are satisfied and limn→∞ θnk = θ ∈ (0, 1) then Λnk(θnk)
a.s.−→

n→∞
ψ(θ,

˜̃
λ(θ),

˜̃
β(θ)),

where ψ(θ,
˜̃
λ(θ),

˜̃
β(θ)) is a strictly increasing function on (0, θ0) decreasing on

(θ0, 1) and max0≤θ≤1 ψ(θ,
˜̃
λ(θ),

˜̃
β(θ)) = ψ(θ0,

˜̃
λ(θ0),

˜̃
β(θ0)).

Proof. We will prove this theorem in three steps.
Step 1. We first prove that, for all fixed θ ∈ (0, 1), we have

argmax
(λ,β)

Tnk(θ,λ,β)
a.s.−→

n→∞
argmax

(λ,β)

ψ(θ,λ,β). (32)
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Obviously, by the law of large numbers, for all (θ,λ,β) ∈ (0, 1) × IR × Γ , we

have (2n)−1Tnk(θ,λ,β)
a.s.−→

n→∞
ψ(θ,λ,β). On the other hand, by the assumption

(A5), argmax(λ,β) ψ(θ,λ,β) is the unique solution of the system (31). Seen the

assumptions (A6) and (A7), the function (2n)−1Tnk(θ,λ,β) is equicontinuous
and bounded in λ and β. Then, using Theorem 1.12.1 of [20], we have that
the convergence of (2n)−1Tnk(θ,λ,β) to ψ(θ,λ,β) is uniform in (λ,β). Taking
into account that the solution of system (30) is unique, we obtain relation (32).
Step 2. We show that

max
θnk

Λnk(θnk)
a.s.−→

n→∞
max

θ
ψ(θ,

˜̃
λ(θ),

˜̃
β(θ)), (33)

with
˜̃
λ(θ) and

˜̃
β(θ) the solutions of score equations (31). By similar calcula-

tions as in the proof of Theorem 2, taking into account the Step 1, we can
show that, for θ = limn→∞ θnk, we have

Λnk(θnk) =
1

n

∑

i∈I

log
[

θ +
˜̃
λt(θ)gi(

˜̃
β(θ))

]

+
1

n

∑

j∈J

log
[

(1− θ)− ˜̃
λt(θ)gj(

˜̃
β(θ))

]

−θ log θ − (1− θ) log(1− θ) + oIP (1).

The above equation, together with the law of large numbers, imply that

Λnk(θnk)
a.s.−→

n→∞
ψ(θ,

˜̃
λ(θ),

˜̃
β(θ)), where θ = limn→∞ θnk.

For θ /∈ {0, 1, θ0}, partial derivative ∂ψ(θ,λ,β)/∂θ becomes
∫

Υ

∫

IR

[

[logK(x, e, θ)11{θ<θ0}dF (x, e) + logK(x, e, θ)11{θ>θ0}dG(x, e)]

−[log(1−K(x, e, θ))11{θ<θ0}dF (x, e)+log(1−K(x, e, θ))11{θ>θ0}dG(x, e)]
]

dH(x)

+ log(1− θ)− log θ.
On the other hand, we have that, dR(x, e) = 11{θ<θ0}dF (x, e)+11{θ>θ0}dG(x, e).
Hence,

∂ψ(θ,λ,β)

∂θ
=

∫

Υ

∫

IR

[logK(x, e, θ)− log(1−K(x, e, θ))]dR(x, e)dH(x)

− log θ + log(1− θ).

Because
˜̃
λt(θ)g(x,

˜̃
β(θ)) = K(x, e, θ) − θ and

˜̃
λt(θ)z1(θ,

˜̃
λ(θ),

˜̃
β(θ)) = 0, we

obtain
∫

Υ

[

∫

IR

(1− θ

K(x, e, θ)
)dP (x, e) +

∫

IR

(1− 1− θ

1−K(x, e, θ)
)dQ(x, e)

]

dH(x) = 0.

(34)

On the other hand, we have z2(θ,
˜̃
λ(θ),

˜̃
β(θ)) = 0d. Then

∫

Υ

[ .
g(x,

˜̃
β(θ))

∫

IR

dP (x, e)

K(x, e, θ)

]

dH(x) =

∫

Υ

[ .
g(x,

˜̃
β(θ))

∫

IR

dQ(x, e)

1−K(x, e, θ)

]

dH(x) = 0.
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Since
∫

Υ

[ ∫

IR
dP (x, e) +

∫

IR
dQ(x, e)

]

dH(x) = 1, relation (34) becomes

1−θ
∫

Υ

∫

IR

[ dP (x, e)

K(x, e, θ)
− dQ(x, e)

1−K(x, e, θ)

]

dH(x)−
∫

Υ

∫

IR

dQ(x, e)

1−K(x, e, θ)
dH(x) = 0.

(35)
This relation is true for all θ ∈ (0, 1). If we take θ = 0 and afterward θ = 1,
relation (35) implies

∫

Υ

∫

IR

dP (x, e)

K(x, e, θ)
dH(x) =

∫

Υ

∫

IR

dQ(x, e)

1−K(x, e, θ)
dH(x) = 1. (36)

The relation (33) is proved in a similar way as the proof of Theorem 3.2 of
[14], using relations (35) and (37).
Step 3. Similar as in the proof of Theorem 3.2 of [14], we can prove that for
all γ ∈ (0,min(θ0, 1− θ0), we have

max
|k−nθ0|≥nγ

Λnk(θnk)
a.s.−→

n→∞
max

|θ−θ0|≥γ
ψ(θ,

˜̃
λ(θ),

˜̃
β(θ)). (37)

Which implies limn→∞ IP [| argmaxk Λnk(θnk)− θ0| ≥ γ] = 0. �

Corollary 1 The proof of Theorem 4 implies that maximum EL estimator of
θ0 defined by θ̃n ≡ min{θ̃nk; θ̃nk = argmaxθnk∈[Θ1n,Θ2n] Tnk(θnk, λ̂(θnk), β̂(θnk))}
satisfies the property that θ̃n − θn0

IP−→
n→∞

0. Taking into account Remark 2, we

have also θ̂n − θ − n0 → 0 in probability.

We prove by the following theorem that statistical test T̃n given by (26)
has the asymptotic power 1.

Theorem 5 Under assumptions (A1)-(A7), the power of the empirical likeli-
hood ratio test T̃n converges to 1.

Proof. By Theorem 3 and relation (25), in order to study the test power, we
consider the probability

1− IP
[

A(log u(n))T̃
1
2
n ≤ t+D(log u(n))

]

, (38)

where (λ̂(θnk), β̂(θnk)) are the solutions of score equations (12) and (13).
By Theorem 4 we have shown that, under H1, for limn→∞ θnk = θ ∈ (0, 1),
we have

Λnk(θnk)
a.s.−→

n→∞
ψ(θ,

˜̃
λ(θ),

˜̃
β(θ)).

Let us denote by vn the convergence rate of Λnk(θnk) to 0. By elementary
calculations, we obtain that

lim
n→∞

IP
[( log log u(n)

vn

)1/2( T̃n
2n

)1/2

≤ t√
2nvn

+
D(log u(n))√

2nvn

]

.
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Since vn is the convergence rate of Λnk(θ), we have n
−1T̃n = OIP (vn). Then for

all ǫ > 0, there exists ̺ > 0 such that IP [2−1n−1(vn)
−1|T̃n| ≥ ̺] ≤ ǫ. Which

implies that (vn)
−1/2(2n)−1/2T̃

1/2
n is bounded with a probability close to 1.

Hence, (log log u(n)/vn)
1/2(T̃n/2n)

1/2 is not bounded with a probability close
to 1. With this results, considering t = (2nvn)

1/2 in relation (38), we obtain

lim
n→∞

IP
[( log log u(n)

vn

)1/2( T̃n
2n

)1/2

≤ D(log u(n))√
2nvn

]

= 0.

The theorem follows. �

We emphasise that, similar results to Theorems 3, 4 and 5 were obtained
for simpler models : test to detecting a change in distribution sequence [24],
or a change in the parameters of a linear model [14].

3 Two change-points test

In this section, we consider the epidemic model. We assume under alternative
hypothesis, denoted H2, that the model have two change-points k1 and k2
(1 < k1 < k2 < n), such that the model of the first and the third segment is
the same. More specifically, the regression model can be written

H2 : Yi =







f(Xi,β1) + εi i = 1, · · · , k1
f(Xi,β2) + εi i = k1 + 1, · · · , k2
f(Xi,β1) + εi i = k2 + 1, · · · , n.

(39)

Therefore, we want to test the null hypothesis H0 of no-change, against the
alternative hypothesis H2.
Under the hypothesisH2, we consider the following two sets, I

′ = {1, ..., k1, k2+
1, ..., n} and J ′ = {k1 +1, ..., k2}, and we define the corresponding probability
vectors (u1 · · · , uk1 , uk2+1, · · · , un) and (vk1+1, · · · , vk2), where ui ≡ P [Yi =
yi], and vj ≡ P [Yj = yj ] denotes the probability to observe the value yi (re-
spectively yj), for the dependent variable Yi (respectively Yj), for i ∈ I ′ and
j ∈ J ′. Obviously,

∑

i∈I′ ui = 1 and
∑

j∈J ′ vj = 1.
Under hypothesis H0, the profile EL ratio for β is

U′
0(β) = sup

(u1,··· ,uk1
,uk2+1,··· ,un)

sup
(vk1+1,··· ,vk2

)

{

∏

i∈I′

(n− k2 + k1)ui
∏

j∈J ′

(k2 − k1)vj ;

∑

i∈I′

ui =
∑

j∈J ′

vj = 1
∑

i∈I′

uigi(β) =
∑

j∈J ′

vigj(β) = 0d

}

.

Under hypothesis H2, the profile EL ratio for β1, β2 has the form

U′
1(β1,β2) = sup

(u1,··· ,uk1
,uk2+1,··· ,un)

sup
(vk1+1,··· ,vk2

)

{

∏

i∈I′

(n− k2 + k1)ui
∏

j∈J ′

(k2 − k1)vj ;

∑

i∈I′

uigi(β1) =
∑

j∈J ′

vjgj(β2) = 0d

}

.
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Then, in order to testH0 againstH2, we consider the profile EL ratioU′
0(β)/U

′
1(β1,β2).

Similarly as in Section 2, when we tested a single change-point, using La-
grange multipliers, we obtain that under hypothesis H0,the probabilities ui,
vj are

ui =
1

(n− k2 + k1) + nλt
1gi(β)

vj =
1

(k2 − k1)− nλt
2gj(β)

. (40)

Using the similar arguments as in the proof of Theorem 1, we deduce
that the asymptotic distribution of −2 logU ′

1(β1,β2) is χ2(3d) and then we
can consider the test statistic −2 logU ′

0(β). We restricted to the case where
λ1 and λ2 satisfy the constraint Ṽ1(β)λ1 = Ṽ2(β)λ2, with Ṽ1(β) = (n +
k1 − k2)

−1
∑

i∈I′

.
g(β) and Ṽ2(β) = (k2 − k1)

−1
∑

j∈J ′

.
g(β). In this case,

considering the parameter θn,k1,k2
= n−1(n − k2 + k1), that depends on two

change-points k1, k2, we will consider the test statistic

2
∑

i∈I′

log
[

1 +
1

θn,k1,k2

λtgi(β)
]

+2
∑

j∈J ′

log
[

1− 1

1− θn,k1,k2

λtṼ1(β)Ṽ
−1
2 (β)gj(β)

]

.

(41)

and λ̂(θn,k1,k2
), β̂(θn,k1,k2

) solutions of the score equations of this random
process equal to zero. We can show, as in Section 2, that statistic (41) is,
under hypothesis H0, asymptotically equivalent to the statistic

U(θn,k1,k2 ,λ,β) ≡ 2
∑

i∈I′

log
[

1 + θ−1
n,k1,k2

λtgi(β)
]

+2
∑

j∈J ′

log
[

1− (1− θn,k1,k2)
−1λtgj(β)

]

.

Then, we will consider for testing null hypothesis H0 against H2 the test
statistic max1<k1<k2<n{U(θn,k1,k2

, λ̂(θn,k1,k2
), β̂(θn,k1,k2

))}.
In the case when k1 or k2 − k1 have a small value, the maximum empirical

likelihood may not exist. In this case, the proposed test may not detect the
presence of change in the model. For the empirical likelihood maximum always
exists, we consider two natural numbers Θn1 and Θn2, such as Θn1 < k1 <
k2 < n−Θn2. Finally, the test statistic for testing H0 against H2 becomes

max
Θn1<k1<k2<n−Θn2

{U(θn,k1,k2
, λ̂(θn,k1,k2

), β̂(θn,k1,k2
))}.

We easily obtain the corresponding statistic given in Remark 2 by relation
(28) to facilitate the practical utilization of the test statistic.

4 Simulation study

In this section, we report a simulation study by Monte Carlo method, in order
to evaluate the performance of the proposed test statistics. Firstly, when the
nonlinear regression model have a single change-point, secondly, when this
same model have two change-points.
All simulations were performed using the R language. The program codes are
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Table 1 Critical values cα, for α=0.05. Empirical asymptotic power on 500 Monte Carlo
replications, when ε ∼ N (0, 1).

n k0 cα power

1000 600 1.544 1
800 500 1.492 1
600 400 1.434 1
400 250 1.340 1
200 75 1.133 1

available from the authors.
We consider the nonlinear function

f(x,β) = a
1− xb

b
. (42)

with β = (a, b) ∈ [−100, 100]× [0.1, 20].

4.1 Model with a single change-point

For the nonlinear function of (42), the following two-phase (one change-point)
nonlinear model is considered under H1

Yi = a1
1−Xb1

i

b1
11i≤k0

+ a2
1−Xb2

i

b2
11i>k0

+ εi, i = 1, · · · , n (43)

with Xi = i/1000, n = 1000 and true value of parameters a01 = 10, b01 = 2,
a02 = 7, b02 = 1.75. Under hypothesis H0, the true parameters are a0 = 10,
b0 = 2. The same model was considered in [5], where the model was estimated
by the penalized least absolute deviation method.
The change absence against one-change in model is tested using the (ap-
proached) maximum empirical likelihood statistic T (θnk) given by (28).
In order to calculate the empirical test size, an without change-point model is
considered and we count, the number of times, on the Monte Carlo replications

when we obtain
(

maxθnk
T (θnk)

)1/2 ≥ cα. For a fixed size α ∈ (0, 1), critical
value cα is calculated in accordance with Corollary 1 :

cα =
− log(− logα) +D(log u(n))

A(log u(n))
.

For theoretical size α = 0.05, we first calculate critical values cα, varying the
sample size n from 200 to 1000 (see Table 1).
For model (43) with Gaussian standardized errors, 500 Monte Carlo replica-
tions were performed. We also present in Table 1 the empirical asymptotic
power, using statistic test (28) for different position of change-point. For any
change-point location, the asymptotic test power is 1.
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Table 2 Empirical size for four error distributions on 500 Monte Carlo replications, n=1000,
α=0.05.

Normal Exponential χ2 Student

Empirical size 0 0 0 0.08

We fix sample size n = 1000, theoretical test size α = 0.05 and we vary
error distribution. In order to calculate the empirical size of test (type I er-
ror probabilities), 500 Monte Carlo replications are realized for different error
distributions: εi = N (0, 1), εi = 2Exp(2) − 1, εi = 1/

√
6(χ2(3) − 3) and

εi = 2/
√
6t(6), where N (0, 1), Exp(2), χ2(3) and t(6) are standard normal

distribution, exponential distribution with mean 1/2, chi-square distribution
with degree of freedom 3 and Student distribution with degree of freedom 6,
respectively. In all cases, excepting for Student distribution (when the empir-
ical size is slightly larger than 0.05), the empirical size is 0 (see Tables 2).
For the same four error distributions, but for model with a change-point in
k0, by 500 Monte Carlo model replications, for different change-point location:
k0 ∈ {200, 400, 600, 800}, we obtain that the empirical power is 1, in any case.

As mentioned in Remark 2, one can also estimate the change-point location
by EL method. Table 3 shows descriptive statistics: minimal, maximal values,
mean and median of k̂n for 500 Monte Carlo replications. In view of the results
presented in Table 3, for different error distributions and for different positions
of the change in the measurement interval, we deduce that the proposed esti-
mation method approaches very well the true value k0, regardless of the error
distribution and of the change-point position on the interval [1 : n]. The results
are not influenced by error distribution, then outlier presence has no effect on
the estimate. Nevertheless, precision is influenced when the change is in the
right part of the measurement interval. Note that, in all situations the median
and the mean of the change-point estimations coincide or is very close to the
true value.

4.2 Model with two change-points

For nonlinear function of (42), under hypothesis H2, we consider the following
three-phase (two change-points) model

Yi = a1
1−Xb1

i

b1
11i≤k1

+ a2
1−Xb2

i

b2
11k1<i≤k2

+ a1
1−Xb1

i

b1
11k2<i≤n + εi, (44)

with Xi = i/1000, n = 1500 and the true value of parameters a01 = 10, b01 = 2,
a02 = 7, b02 = 1.75. Under null hypothesis H0 the true parameters are a0 = 10,
b0 = 2.
In Table 4 we give results after 150 Monte Carlo replications in order to calcu-
late the empirical power of test, for n = 1500. We deduce that empirical size
is zero and asymptotic test power is 1.
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Table 3 Descriptive statistics for k̂n by EL method( model with two phases). n = 1000,
500 Monte Carlo replications.

error distribution k0 k̂n
min(k̂n) max(k̂n) mean(k̂n) median(k̂n)

εi ∼ N (0, 1) 200 168 211 198 200
400 391 425 401 400
600 552 616 598 600
800 701 823 782 794

εi ∼ 2/
√
6t(6) 200 170 222 196 199

400 385 420 400 400
600 594 600 598 599
800 706 819 776 789

εi ∼ 2Exp(2)− 1 200 181 211 199 199
400 388 420 401 400
600 565 616 599 600
800 702 820 773 788

εi ∼ 1/
√
6(χ2(3)− 3) 200 153 224 198 200

400 390 422 401 400
600 557 621 598 600
800 700 820 785 795

Table 4 Test with two change-points.

k1 k2 power

no-change 0
100 900 1
200 500 1
400 600 1
600 900 1

4.3 Comparison with LS test

On data considered in sub-section 4.1 for ε ∼ N (0, 1) and n = 1000 we apply
the method proposed by [3], where the estimation method and the associated
test is least squares. This study is realized by computing the test statistic
supF (0 : 1) given in [3]. Under hypothesis H1 that the model has a change-
point in k0 = 600, 500 Monte Carlo simulations each time give that the test
statistic value exceeds critical value of 12.85 ( see [2]), then the null hypothesis
H0 is rejected and hence the power test is 1. Whereas if we generate the values
Yi without change-point for gaussian errors, then, the test statistic value always
exceeds critical. Hence the empirical size of the test proposed by [3] is 1, a
result significantly worse than that obtained by our test. We note that (see
Table 5) if under H1, the true change-point is off-centred in the measurement
interval, because of the function nonlinearity, numerical problem arise for the
LS estimation method. This is symbolised by ”???” in Table 5. The same
problem appears when the errors are not gaussian, regardless of the positionn
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Table 5 Descriptive statistics for the change-point estimations by LS method( model with
two phases) n = 1000, 500 Monte Carlo replications.

error distribution k0 k̂n
min(k̂n) max(k̂n) mean(k̂n) median(k̂n)

εi ∼ N (0, 1) 200 ??? ??? ??? ???
400 396 400 399 400
600 595 605 600 600
800 ??? ??? ??? ???

of the change-point in the measurement interval. In contrast, we have seen that
the EL test works for any error distribution and any change-point position.

5 Appendix

The following lemma will be used in the proof of propositions, theorems and
of other lemmas.

Lemma 1 Let X = (X1, · · · , Xp) a random vector (column), with the random
variables X1, · · · , Xp not necessarily independent, and M = (mij)1≤i,j≤p, such
that M = XXt. If for j=1, ..., p, we have

for all ηj > 0, there exists δj > 0 such that IP [|Xj | ≥ δj ] ≤ ηj , (45)

then
(i) IP

[

‖X‖1 ≥ pmax1≤j≤p δj
]

≤ max1≤j≤p ηj,

(ii) IP
[

‖X‖2 ≥ √
pmax1≤j≤p δj

]

≤ max1≤j≤p ηj,

(iii) IP
[

‖M‖1 ≥ pmax1≤i,j≤p{δ2i , δ2j }
]

≤ max1≤i,j≤p{η2i , η2j },
where ‖M‖1 = max1≤j≤p{

∑p
i=1 |mij |} is the subordinate norm to the vector

norm ‖.‖1.
Proof of Lemma 1. (i) Using the relation (45), we can write

IP [‖X‖1 ≥ p max
1≤j≤p

δj ] ≤ IP [p max
1≤j≤p

|Xj | ≥ p max
1≤j≤p

δj ] ≤ max
1≤j≤p

ηj .

(ii) The relation (45) is equivalent to IP
[

X2
j ≥ δ2j

]

≤ ηj , which implies that

IP [‖X‖22 ≥ p max
1≤j≤p

δ2j ] = IP [ max
1≤j≤p

X2
j ≥ max

1≤j≤p
δ2j ] ≤ max

1≤j≤p
ηj .

(iii) For 1 ≤ i, j ≤ p, we have

IP [|XiXj | ≥ max{δ2i , δ2j }] ≤ IP [max{X2
i , X

2
j } ≥ max{δ2i , δ2j }] ≤ max{η2i , η2j }.

Then, IP [|mij | ≥ max{δ2i , δ2j }] ≤ max{η2i , η2j }. Hence, for each 1 ≤ j ≤ p,

IP [

p
∑

i=1

|mij | ≥ pmax{δ2i , δ2j }
]

≤ IP
[

p max
1≤i≤p

|mij | ≥ pmax{δ2i , δ2j }] ≤ max{η2i , η2j }.

�
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Lemma 2 Let the η-neighbourhood of β0, Vη(β
0) = {β ∈ Γ ; ‖β−β0‖2 ≤ η},

with η → 0. Then, under assumptions (A1)-(A4), for all ǫ > 0, there exists a
positive constant M > 0, such that, for all β ∈ Vη(β

0),

IP
[

‖gi(β)‖1 ≥M
]

≤ ǫ.

Proof of Lemma 2. In the following, for simplicity, we denote the functions
.

f(Xi,β) by
.

f i(β), and
..

f (Xi,β) by
..

f i(β). The Taylor’s expansion up the order
2 of gi(β) at β = β0 is

gi(β) =
.

f i(β
0)εi +

1

2

..

f i(β̃i)(β − β0)εi −
1

2

.

f i(β
0)

.

f
t

i(β
0)(β − β0)

−1

6

.

f i(β
0)(β − β0)t

..

f i(
˜̃
βi)(β − β0)− 1

4

..

f i(β̃i)(β − β0)
.

f
t

i(β
0)(β − β0)

− 1

12

..

f i(β̃i)(β − β0)(β − β0)t
..

f i(
˜̃
βi)(β − β0), (46)

where, β̃i = β0 + u(β − β0),
˜̃
βi = β0 + v(β − β0), with u,v ∈ [0, 1]d. We

note that β̃i and
˜̃
βi are random vectors which depend on Xi.

For
.

f i(β
0)εi, because Xi and εi are independent, and IE(εi) = 0, we have that

IE[
.

f i(β
0)εi] = 0 and Var [

.

f i(β
0)εi] = σ2V. For the j-th component of

.

f i(β
0),

by the Bienaymé-Tchebychev’s inequality, for 1 ≤ j ≤ d, for all ǫ1 > 0, we
have

IP
[

|
.

f ij(β
0)εi| ≥ ǫ1

]

≤ σ2

ǫ21
Vjj , (47)

where Vjj is the j-th term diagonal of the matrix V.

Let ǫ > 0, taking ǫ1 = σ
√

6Vjj/ǫ in (47), we obtain IP
[

|
.

f ij(β
0)εi| ≥ σ

√

6Vjj/ǫ
]

≤
ǫ/6. Applying Lemma 1 (i), we obtain

IP
[

‖
.

f i(β
0)εi‖1 ≥ σd√

ǫ
max
1≤j≤d

√

6Vjj
]

≤ ǫ/6. (48)

For the second term of the right-hand side of (46), using assumption (A3),
we obtain that for 1 ≤ j ≤ d, for all ǫ > 0 there exists ǫ2 > 0, such that

IP
[

|
..

f ij(β̃i)| ≥ ǫ2
]

≤ ǫ/6. By Lemma 1 (iii), we have that for all ǫ > 0,

IP
[

‖
..

f i(β̃i)‖1 ≥ ǫ2
]

≤ ǫ

6
. (49)

Using Bienaymé-Tchebychev’s inequality, and assumption (A1), we obtain that
for all ǫ > 0

IP
[

|εi| > c
]

≤ σ2

c
. (50)

Recall that ‖β−β0‖2 < η, with η → 0. Then, using (49) and (50), we can write

that, for all ǫ > 0, there exists ǫ2 > 0 such that IP
[

‖
..

f i(β̃i)(β−β0)εi‖1 ≥ ǫ2
]

≤
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IP
[

‖
..

f i(β̃i)‖1|εi| ‖β − β0‖1 ≥ ǫ2
]

≤ IP
[

‖
..

f i(β̃i)‖1 ≥ ǫ2/cη
]

≤ IP
[

‖
..

f i(β̃i)‖1 ≥
ǫ2
]

≤ ǫ/6. Therefore, for all ǫ > 0, there exists ǫ2 > 0 such that

IP
[

‖
..

f i(β̃i)(β − β0)εi‖1 ≥ ǫ2
]

≤ ǫ

6
. (51)

We consider now the term
.

f i(β
0)

.

f
t

i(β
0)(β−β0) of relation (46). By Markov’s

inequality, taking also into account assumption (A4), we obtain for 1 ≤ j, l ≤ d,

for all ǫ3 > 0, that IP
[

|
.

f ij(β
0)

.

f
t

il(β
0)| ≥ ǫ3

]

≤ IE[
.

f ij(β
0)

.

f
t

il(β
0)]/ǫ3. We

choose, for all ǫ > 0, ǫ3 = 6IE[
.

f ij(β
0)

.

f
t

il(β
0)]/ǫ. Then, the last relation be-

comes IP
[

|
.

f ij(β
0)

.

f
t

il(β
0)| ≥ 6IE[

.

f ij(β
0)

.

f
t

il(β
0)/ǫ

]

≤ ǫ/6. Using Lemma 1 (iii),
we obtain

IP
[

‖
.

f i(β
0)

.

f
t

i(β
0)‖1 ≥ 6d

ǫ
max

1≤j,l≤d
IE[

.

f ij(β
0)

.

f
t

il(β
0)]
]

≤ ǫ

6
,

relation that involves, since ‖β − β0‖1 ≤ Cη for η → 0, that

IP
[

‖
.

f i(β
0)

.

f
t

i(β
0)(β − β0)‖1 ≥ 6d/ǫmax1≤j,l≤d IE[

.

f ij(β
0)

.

f
t

il(β
0)]
]

≤ IP
[

‖
.

f i(β
0)

.

f
t

i(β
0)‖1 ≥ 6d/ǫmax1≤j,l≤d IE[

.

f ij(β
0)

.

f
t

il(β
0)
]

] ≤ ǫ/6.
Then, for all ǫ > 0

IP
[

‖
.

f i(β
0)

.

f
t

i(β
0)(β − β0)‖1 ≥ 6d

ǫ
max

1≤j,l≤d
IE[

.

f ij(β
0)

.

f
t

il(β
0)]
]

≤ ǫ

6
. (52)

For
..

f i(β̃i)(β−β0)
.

f
t

i(β
0)(β−β0) of relation (46), using assumption (A3)

and the Markov’s inequality, we obtain for each j-th component
.

f ij(β
0) of

the vector
.

f i(β
0), for all ǫ4 > 0, that IP

[

|
.

f ij(β
0)| ≥ ǫ4

]

≤ IE[
.

f ij(β
0)]/ǫ4.

We choose, for all ǫ > 0, ǫ4 = 6IE[
.

f ij(β
0)]/ǫ and this last relation becomes

IP
[

|
.

f ij(β
0)| ≥ 6IE[

.

f ij(β
0)]/ǫ

]

≤ ǫ/6. Applying Lemma 1 (i), for all ǫ > 0 we
obtain

IP
[

‖
.

f i(β
0)‖1 ≥ 6d

ǫ
max
1≤j≤d

IE[
.

f ij(β
0)]
]

≤ ǫ

6
. (53)

Using assumption (A3), and relations (49), (53), we can write that

IP
[

‖
..

f i(β̃i)(β − β0)
.

f
t

i(β
0)(β − β0)‖1 ≥ 6d/ǫmax1≤j≤d IE[

.

f ij(β
0)]
]

≤ IP
[

‖
.

f
t

i(β
0)‖1 ≥ 6d/ǫmax1≤j≤d IE[

.

f ij(β
0)]
]

≤ ǫ/6.
Therefore, for all ǫ > 0,

IP
[

‖
..

f i(β̃i)(β − β0)
.

f
t

i(β
0)(β − β0)‖1 ≥ 6d

ǫ
max
1≤j≤d

IE[
.

f ij(β
0)]
]

≤ ǫ

6
. (54)

Taking into account assumptions (A3), (A4), by relations (49), (53), we
can prove in a similar way as for relation (54) that, for all ǫ > 0,

IP
[

‖
.

f i(β
0)(β − β0)t

..

f i(
˜̃
βi)(β − β0)‖1 ≥ 6d

ǫ
max
1≤j≤d

IE[
.

f ij(β
0)]
]

≤ ǫ

6
. (55)
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For the last term on the right-hand side of (46), since the function
..

f (X,β)
is bounded, by assumption (A3), we have that, for all β ∈ Vη(β

0), for all

ǫ > 0, there exists ǫ5 > 0, such that IP [‖
..

f i(β̃i)‖1‖
..

f i(
˜̃
βi)‖1 ≥ ǫ5] ≤ ǫ/6. Using

this relation, we show similarly, then, for all ǫ > 0, there exists ǫ5 > 0, such
that,

IP
[

‖
..

f i(β̃)(β − β0)(β − β0)t
..

f i(
˜̃
β)(β − β0)‖1 ≥ ǫ5

]

≤ ǫ

6
. (56)

Choosing

M = sup

{

σd√
ǫ
max
1≤j≤d

√

6Vjj , ǫ2,
6d

ǫ
max

1≤j,l≤d
{IE[

.

f ij(β
0)

.

f
t

il(β
0)], IE[

.

f ij(β
0)]}, ǫ5

}

,

and combining (48), (51), (52), (54), (55), (56) together, lemma yields. �

Lemma 3 Under the same assumptions of Theorem 2, we have

1

nθnk

∑

i∈I

gi(β) = OIP ((nθnk)
−1/2) +V0

1(β − β0) + oIP (β − β0).

Proof of Lemma 3. By the Taylor’s expansion up to the order 3 of gi(β) at
β = β0, we obtain

1

nθnk

∑

i∈I

gi(β) =
1

nθnk

∑

i∈I

.

f i(β
0)εi +

1

2nθnk

∑

i∈I

..

f i(β
0)(β − β0)εi

− 1

2nθnk

∑

i∈I

.

f i(β
0)

.

f
t

i(β
0)(β − β0)− 1

6nθnk

∑

i∈I

.

f i(β
0)(β − β0)t

..

f i(
˜̃
βi)(β − β0)

− 1

4nθnk

∑

i∈I

..

f i(β
0)(β − β0)

.

f
t

i(β
0)(β − β0) (57)

− 1

12nθnk

∑

i∈I

..

f i(β
0)(β − β0)(β − β0)t

..

f i(
˜̃
βi)(β − β0)

+
1

6nθnk

∑

i∈I

Miεi −
1

12nθnk

∑

i∈I

Mi(β − β0)t
..

f i(
˜̃
βi)(β − β0),

where Mi =

(

∑d
l=1

∑d
k=1

∂3
.

f i(β̃i)
∂βj∂βk∂βl

(βk −β0
k)(βl −β0

l )

)

1≤j,k,l≤d

is a vector

of dimension (d× 1), and
˜̃
βi = β0 + v(β − β0), with v ∈ [0, 1]d.

For the first term of the right-hand side of (57), by the central limit theorem,
and the fact that IE[gi(β

0)] = 0, we have

(nθnk)
−1
∑

i∈I

gi(β
0) = OIP ((nθnk)

−1/2). (58)

For the second term of the right-hand side of (57), by the law of large num-

bers, the term (nθnk)
−1
∑

i∈I

..

f i(β
0)(β−β0)εi converges almost surely to the
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expected of
..

f i(β
0)(β−β0)εi as n→ ∞. Furthermore, since εi is independent

of Xi and IE[εi] = 0, we have

1

nθnk

∑

i∈I

..

f i(β
0)(β − β0)εi = oIP (β − β0). (59)

For the third term of the right-hand side of (57), by the law of large numbers

and assumption (A4), the term (nθnk)
−1
∑

i∈I

.

f i(β
0)

.

f
t

i(β
0)(β−β0) converges

almost surely to the expected value of
.

f i(β
0)

.

f
t

i(β
0)(β − β0) as n → ∞. On

the other hand, since (nθnk)
−1
∑

i∈I

..

f i(β
0)εi

a.s−→ 0, we have

1

nθnk

∑

i∈I

.

f i(β
0)

.

f
t

i(β
0)(β − β0) = −V0

1(β − β0)(1 + oIP (1)). (60)

For the fourth term of the right-hand side of (57), by the law of large numbers,

using assumption (A3) and the relation (53), we can write (6nθnk)
−1‖∑i∈I

.

f i(β
0)

(β − β0)t
..

f i(
˜̃
βi)(β − β0)‖1 = OIP (‖β − β0‖22), which implies

1

6nθnk

∑

i∈I

.

f i(β
0)(β − β0)t

..

f i(
˜̃
βi)(β − β0) = oIP (β − β0). (61)

In the same way, using assumption (A3) and relation (53), we obtain, for the
fifth term on the right-hand side of (57), that

1

4nθnk

∑

i∈I

..

f i(β
0)(β − β0)

.

f
t

i(β
0)(β − β0) = oIP (β − β0). (62)

For the sixth term of the right-hand side of (57), using the assumption (A3),
we have

1

12nθnk

∑

i∈I

..

f i(β
0)(β − β0)(β − β0)t

..

f i(
˜̃
βi)(β − β0) = oIP (β − β0). (63)

For 1 ≤ j ≤ d, and for any fixed i, such that 1 ≤ i ≤ nθnk , denote by Mij

the following random variable designates the j-th component of the vector Mi,
such that

Mij =

d
∑

l=1

d
∑

k=1

∂3fi(β̃i)

∂βk∂βl∂βj

(βk − β0
k)(βl − β0

l ).

From assumption (A3), since the function f (3)(x,β) is bounded for all β ∈
Vη(β

0), we have with a probability one, |Mij | ≤ C‖β−β0‖22. Applying Lemma
1 (i), we obtain

‖M‖1 ≤ C‖β − β0‖22. (64)
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For the term (6nθnk)
−1
∑

i∈I Miεi, using relations (50) and (64), we have
(6nθnk)

−1‖∑i∈I Miεi‖1 ≤ (6nθnk)
−1
∑

i∈I ‖Mi‖1|εi| ≤ C(6nθnk)
−1nθnk‖β−

β0‖22 = C‖β − β0‖22. Then,

1

6nθnk

∑

i∈I

Miεi = oIP (β − β0). (65)

Finally, for the last term of the right-hand side of (57), using assumption (A3)
and relation (64), we obtain with probability 1, (12nθnk)

−1‖∑i∈I Mi(β −
β0)t

..

f i(
˜̃
βi)(β − β0)‖1 ≤ C‖β − β0‖22, which gives,

1

12nθnk

∑

i∈I

Mi(β − β0)t
..

f i(
˜̃
βi)(β − β0) = oIP (β − β0). (66)

Then, combining relations (58), (59), (60), (61), (62), (63), (65) and (66), we
obtain lemma. �

Lemma 4 Under the same assumptions as in Theorem 3, for all ̺ > 0, there
exist two positive constants C = C(̺), T = T (̺) such that

IP [maxT
n
≤θnk≤1−T

n
(nθnk/ log log nθnk)

1/2‖ λ̂(θnk)
min{θnk,1−θnk}

‖2 > C] ≤ ̺,

IP [maxT
n
≤θnk≤1−T

n
(nθnk/ log log nθnk)

1/2‖β̂(θnk)− β0‖2 > C] ≤ ̺,

IP [n−1/2 maxT
n
≤θnk≤1−T

n
nθnk‖ λ̂(θnk)

min{θnk,1−θnk}
‖2 > C] ≤ ̺,

IP [n−1/2 maxT
n
≤θnk≤1−T

n
nθnk‖β̂(θnk)− β0‖2 > C] ≤ ̺.

Proof of Lemma 4. The proof of this lemma is similar to that of Lemma 1.2.2
of [8]. �

In order, to prove Lemma 5, we consider Rk = nσ−2θnk(1 − θnk)(w1 −
w2)

tV−1(w1−w2). Recall thatV ≡ IE[
.

f(Xi,β
0)

.

f
t
(Xi,β

0)], for all i = 1, ..., n.

Lemma 5 Suppose that the assumptions (A1)-(A4) hold. Under the null hy-
pothesis H0, for all 0 ≤ α < 1/2 we have

(i) nα maxθnk∈Θnk
[θnk(1− θnk)]

α|Znk(θnk, λ̂(θnk), β̂(θnk))−Rk| = OIP (1).

(ii) maxθnk∈Θnk
[θnk(1−θnk)]|Znk(θnk, λ̂(θnk), β̂(θnk))−Rk| = OIP (n

−1/2(log log n)3/2).

Proof of Lemma 5. For the score function φ1n of relation (12), the two terms of
the right-hand side are replaced by their decomposition obtained by the rela-
tions (21) and (24). On the other hand, we have φ1n(θnk, λ̂(θnk), β̂(θnk)) = 0d.

Then, we can write [ 1
nθnk

∑

i∈I gi(β
0)+V0

1(β̂(θnk)−β0)− 1
nθ2

nk

∑

i∈I gi(β
0)gt

i(β
0)

·λ̂(θnk)](1+oIP (1))−V0
1(V

0
2)

−1[ 1
n(1−θnk)2

V1(V
0
2)

−1
∑

j∈J gj(β
0)gt

j(β
0)λ̂(θnk)+
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1
n(1−θnk)

·∑j∈J gj(β
0) +V0

2(β̂(θnk)− β0)](1 + oIP (1)) = 0d. Hence,

λ̂(θnk) =
( 1

θnk
D0

n1 +
1

1− θnk
(V0

1(V
0
2)

−1)(V0
1(V

0
2)

−1)tD0
n2

)−1

·
( 1

nθnk

∑

i∈I

gi(β
0)− V0

1(V
0
2)

−1

n(1− θnk)

∑

j∈J

gj(β
0)
)

(1 + oIP (1))

+oIP (β − β0),

with the matrices D0
1 and D0

2 given by relation (23).

On the other hand, by the law of large numbers, we have −V0
1

a.s−→ V and

−V0
2

a.s−→ V. Then, V0
1(V

0
2)

−1 a.s−→ Id. Always, by the law of large numbers,
D0

n1 and D0
n2 converge almost surely to σ2V as n→ ∞.

By Theorem 2, we proved that λ̂(θnk) = θnkOp((nθnk)
−1/2). Then, we obtain

λ̂(θnk) = σ−2θnk(1− θnk)V
−1(w1 −w2)(1 + oIP (1)) + oIP (β − β0). (67)

The limited development of the statistic Znk(θnk, λ̂(θnk), β̂(θnk)), specified by
the relation (11), in the neighbourhood of (λ,β) = (0,β0) up to order 2, can
be written
[

2λ̂
t
(θnk)
θnk

∑

i∈I gi(β
0)− 2λ̂

t
(θnk)

1−θnk
V0

1(V
0
2)

−1
∑

j∈J gi(β
0)
]

−
[

λ̂
t
(θnk)

(1−θnk)2
V0

1(V
0
2)

−1

·∑j∈J gj(β
0)gt

j(β
0)V0

1(V
0
2)

−1λ̂(θnk) +
λ̂

t
(θnk)
θ2
nk

∑

i∈I gi(β
0)gt

i(β
0)λ̂(θnk)

]

+
[

2λ̂
t
(θnk) · (β̂(θnk) − β0)

(

− 1
1−θnk

V0
1(V

0
2)

−1
∑

j∈J

.
gj(β

0)V0
1(V

0
2)

−1 + 1
θnk

·∑i∈I

.
gi(β

0) +
∂[V0

1(V
0
2)

−1]
∂β

∑

j∈J gj(β
0)
)]

.

Replacing λ̂(θnk) in the first term on the right-hand side of the last re-
lation, by the value obtained in (67) ,we find that this term is equal to
2nσ−2θnk(1−θnk)(w1−w2)

tV−1(w1−w2)+oIP (‖β−β0‖2). Similarly, using
the fact that D0

n1 and D0
n2 converge to σ2V, as n → ∞, we can demon-

strate that the second term is equal to nσ−2θnk(1− θnk)(w1−w2)
tV−1(w1−

w2) + oIP (‖β − β0‖2). Finally, by the central limit theorem, we have that
(n(1 − θnk))

−1
∑

j∈J gj(β
0) = OIP ((nθnk)

−1/2). We obtain that the third

term is oIP (nσ
−2θnk(1 − θnk)(w1 − w2)

tV−1(w1 − w2)). Combining the ob-

tained results, we have Z(θnk, λ̂(θnk), β̂(θnk)) =
(

nσ−2θnk(1 − θnk)(w1 −
w2)

tV−1(w1−w2)
)(

1+oIP (1)
)

+OIP (‖β̂(θnk)−β0)‖+‖λ̂(θnk)/min{θnk, 1−
θnk}‖). This last relation, together with Lemma 4 imply Lemma 5. �
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