
HAL Id: hal-00918253
https://hal.science/hal-00918253v1

Submitted on 13 Dec 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Intersecting singularities for multi-structured estimation
Emile Richard, Francis Bach, Jean-Philippe Vert

To cite this version:
Emile Richard, Francis Bach, Jean-Philippe Vert. Intersecting singularities for multi-structured esti-
mation. ICML 2013 - 30th International Conference on Machine Learning, Jun 2013, Atlanta, United
States. �hal-00918253�

https://hal.science/hal-00918253v1
https://hal.archives-ouvertes.fr


Intersecting singularities for multi-structured estimation

Emile Richard emile.richard@mines-paristech.fr

CBIO Mines ParisTech, INSERM U900, Institut Curie

Francis Bach francis.bach@inria.fr
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Abstract

We address the problem of designing a con-
vex nonsmooth regularizer encouraging mul-
tiple structural effects simultaneously. Focus-
ing on the inference of sparse and low-rank
matrices we suggest a new complexity index
and a convex penalty approximating it. The
new penalty term can be written as the trace
norm of a linear function of the matrix. By
analyzing theoretical properties of this fam-
ily of regularizers we come up with oracle in-
equalities and compressed sensing results en-
suring the quality of our regularized estima-
tor. We also provide algorithms and support-
ing numerical experiments.

1. Introduction

Estimating high-dimensional simple objects from a few
measurements has been widely investigated in statis-
tics and optimization due to the large body of potential
applications. In biology, where measurements are ex-
pensive to obtain and the data very complex, building
reliable predictors from the limited amount of avail-
able data plays an increasing role in medicine. In web
applications building recommender systems presents
the same kind of challenges with huge economic im-
pacts. In some applications such as breakpoint detec-
tion (Vert & Bleakley, 2010), clique detection (Alon
et al., 1998; Doan & Vavasis, 2010) that is closely
related to recommender systems, compressed sensing
(Golbabaee & Vandergheynst, 2012) and sparse prin-
cipal component analysis (d’Aspremont et al., 2007),
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the goal is to capture rich objects on which multiple
structural informations are available. In such cases, at
the first glance, one would expect the inference to be
simpler when more structural information is known, as
we search for the solution in a smaller space: the inter-
sections of the multiple low-complexity sets. However,
to the best of our knowledge, no general methodology
exists for combining multiple priors to recover objects
having simultaneously the different structures.

A popular methodology for incorporating particular
effects in the solution is to use convex regularizers
R(w) that are nondifferentiable at points w that ful-
fill the structural constraints, such as sparse vectors or
low-rank matrices (Bach et al., 2011; Chandrasekaran
et al., 2012). Assume we are given nonsmooth regu-
larizers R1 and R2, each inducing a particular desired
behavior, and we want to build a new regularizer in-
ducing both properties. A natural approach is to add
together both regularizers to form a joint regularizer
R+ = R1 +R2, to enforce both constraints (Richard
et al., 2012). However adding regularizers encourages
objects having one or the other property, not neces-
sarily both at the same time. The infimal convolution
R⋆(w) = infw1+w2=wR1(w1)+R2(w2) corresponds to
modelling objects as the sum of two terms, each of
them respectively penalized by one of the original reg-
ularizer (Candès et al., 2009; Chandrasekaran et al.,
2011). This is again different from finding objects pre-
senting the two properties simultaneously. Taking the
maximum R∨ = max(R1,R2) as suggested by Oymak
et al. (2012) has the obvious drawback of promoting
points on which regularizers take equal value, which is
not the goal.

In this paper, we propose a new approach to combine
structure-inducing penalties, focusing on the problem
of inferring sparse and low-rank matrices. Our ap-
proach is based on analyzing the geometry of the space
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around singular points. To combine two regularizers,
we suggest to intersect singularities and relax the new
index measuring simultaneously both properties rather
than adding regularizers. The subdifferential of a con-
vex function at a singular point is a convex set not
reduced to a singleton. We consider the cases where
this convex set lies in a well characterized subspace,
and by intersecting singularities we mean intersecting
the subspaces corresponding to each penalty term. We
aim at expanding the intersection or equivalently re-
ducing the complement. We study the case of sparse
low-rank matrices where by intersecting the subspaces
in which subdifferentials of each of the regularizers lie
we build a new measure for matrices which we call
ranksity : the dimension of the complement to the in-
tersection space (Section 2).

We consider a convex relaxation of ranksity as the
trace norm of a linear function of the unknown, and
show that the standard sum of regularizers can be writ-
ten in a similar way. In Section 3 we provide a theoret-
ical analysis of this family of regularizers from statisti-
cal and compressed sensing point of views. In Section
4 we provide algorithmic schemes to solve problems of
interest and finally show in Section 5 numerical exper-
iments showing the applicability of our regularizer and
comparison with baselines.

In the sequel, n andm are integers and w.l.o.g. n ≥ m.
For any matrix X ∈ R

n×m the notations ‖X‖F , ‖X‖1,
‖X‖∞, ‖X‖0, ‖X‖∗ and ‖X‖op, rank(X) stand for the
Frobenius norm, the entry-wise ℓ1 and ℓ∞ norms, the
number of nonzero elements, the trace-norm (or nu-
clear norm, the sum of the singular values), the op-
erator norm (the largest singular value) and the rank
of X. The letters r and s denote the rank and the
sparsity index of X. Given matrices A and B, we de-
note by 〈A,B〉 = tr(A⊤B), A ◦B and A⊗B the inner
product, the Hadamard and the Kronecker products
of matrices. A vector in R

d is always understood as a
d×1 matrix and vec(X) denotes the vectorized version
of X, Diag(x) and diag(X) are respectively the matrix
having the vector x at its diagonal and 0s elsewhere
and the vector formed by Xi,is. The matrix |X| con-
tains the absolute values of entries of X and sgn(X)
is the sign matrix associated with X with the conven-
tion sgn(0) = 0. We denote by UXΣXVX the singu-
lar value decomposition of X, and we define the sub-
spaces of Rn×m, span(X) and supp(X) as the ranges
of linear applications (A,B) 7→ AX + XB ∈ R

n×m

and C 7→ C ◦X respectively. We denote by PX , P⊥
X ,

QX and Q⊥
X the orthogonal projectors onto span(X),

span⊥(X), supp(X) and supp⊥(X) respectively.

2. Add or intersect singularities?

Nonsmooth convex regularizers (Bach et al., 2011;
Chandrasekaran et al., 2012) have recently received
tremendous interest for estimating objects having par-
ticular structural properties. Indeed, their convexity
makes them computationally attractive: they lead to
polynomially converging algorithmic schemes that are
easy to implement. From a statistical point of view
their analysis benefits from a relatively good under-
standing of the behaviors and a series of theoretical
results ensure the quality of the provided estimators.
The nondifferentiable points of such penalties attract
the minimizers of optimization procedures and this
is the key to their success. The location and the
strength of these promoted points can be read in the
penalty’s subgradients expressions. The subgradients
of the trace-norm and the ℓ1 norm, which are widely
used to infer respectively low-rank and sparse matri-
ces, are the sets

UXV ⊤

X + P⊥
X(Bop) and sgn(X) +Q⊥

X(B∞),

Bop and B∞ being the unit balls of the operator and
ℓ∞ norms respectively. A point is nondifferentiable
when the subgradient at this point is not reduced to a
singleton. To understand the strength of the nondiffer-
entiability we recall that the normal cone of a convex
function at a given point is the set of points obtained
by multiplying an element of the subgradient by a non-
negative real number. Let us define the dimension of a
cone as the dimension of its affine hull. The dimension
of the normal cone is a fair measure of the singular-
ity at a given point. From the subgradient expressions
one can see that the singularity of the ℓ1 norm at X is
reflected onto the dimension of supp(X)⊥ through the
range of Q⊥

X , and similarly, the nondifferentiability of
the trace norm at X is reflected onto dim(span(X)⊥)
through P⊥

X . This makes the subspaces span(X) and
supp(X) privileged subspaces for trace-norm and ℓ1
norm penalized estimation procedures. In fact they
are respectively the tangent spaces to the manifolds
of rank r = rank(X) matrices and s = ‖X‖0 sparse
matrices at X. In the following we discuss two alter-
native possibilities for building a regularizer for sparse
low-rank estimation.

2.1. Summing: the “Trace + 1” penalty

For estimating sparse low-rank matrices, previous
approaches (Richard et al., 2012; Oymak et al.,
2012; Doan & Vavasis, 2010) have suggested to add
regularizers resulting in the “trace + 1” penalty
X 7→ (1 − β)‖X‖∗ + β‖X‖1. The subgradient of this
penalty is not reduced to a singleton as soon as the
subgradient of the ℓ1 or the trace norm component is
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not a singleton, i.e., when the matrix is either sparse
or low-rank. By letting

Π(X) =

(
(1− β)X 0n×nm

0nm×m β Diag(vec(X))

)
,

the trace + 1 penalty can be reformulated as
‖Π(X)‖∗, the trace norm of Π(X). It can be
thought of as a convex relaxation of the index
rankΠ(X) = rank(X) + ‖X‖0. This index measures
the sparsity and the rank by taking its maximal value
nm+ n∧m when X is full rank and dense. Note that
this index does not penalize density and high-rank in a
disjunctive manner, in the sense that it does not have
large values when X is dense or full-rank.

2.2. Intersecting: the ranksity index

A drawback of adding nonsmooth penalties is that the
singularities of the sum are located on the union of
singularities of each of the components and not at the
intersection of them. We argue that if the goal is to
measure matrices having both the sparse and low-rank
properties, the penalty to use should be nondifferen-
tiable at points which are both sparse and low-rank,
namely at the intersection of the singularities of the ℓ1
and singularities of the trace norm. For building such
a penalty we will build a norm such that the dimension
of its normal cone at a given pointX is given by the di-
mension of span(X)⊥∩supp(X)⊥, the intersection of
the normal cones of both individual penalties. To this
end let us first define the ranksity index as the dimen-
sion of the orthogonal space to span(X)⊥∩supp(X)⊥

that is precisely span(X) + supp(X):

ranksity(X) = dim (span(X) + supp(X)) . (1)

ranksity(X) takes its maximum value nm on matri-
ces X that are either dense (possibly low-rank) or
full rank (possibly sparse). In fact if X is dense,
then supp(X) = R

n×m, and if X is full rank, then
span(X) = R

n×m. Providing a closed form expres-
sion for ranksity is not straightforward in general,
but for instance in the case of block-diagonal adja-
cency (binary-valued) matrices X having r nonzero
non-overlapping blocks of size ki × li we can obtain
by recursion that

ranksity(X) = r(m+ n− r) +

r∑

i=1

(ki − 1)(li − 1) .

It is convenient to have in mind the relationships with
the rank and the sparsity index:

dim(supp(X)) = s , dim(span(X)) = (n+m−r)r

Figure 1. Unit balls of the block norm for β = .7,
{X , ‖Φ(X)‖∗ ≤ 1} (red) and of the “trace +1” with

β = .5 {X , ‖Π(X)‖∗ ≤ 1} (blue) where X =

(

x y
y z

)

.

based on which we can easily derive the bounds

s ∨ (m+ n− r)r ≤ ranksity ≤ s+ (m+ n− r)r

which show that this nonconvex discontinuous func-
tion is sandwiched by two non-decreasing functions of
the rank and the sparsity index.

2.3. A convex regularizer for low ranksity
estimation

Recall that vec(AX) = (X⊤ ⊗ In)vec(A) and
vec(XB) = (Im ⊗X)vec(B). It follows that for any
(A,B,C) ∈ R

n×n × R
m×m × R

n×m, we have

vec(AX +XB +X ◦ C) =

[X⊤ ⊗ In , Im ⊗X , Diag(vec(X))]



vec(A)
vec(B)
vec(C)


 ;

the term inside the vec on the left hand side de-
scribes precisely the sum of the subspaces span(X)
and supp(X) used to define ranksity in (1). This is
why, after weighting the terms to control the tradeoffs,
we define

Φ(X) =

[(1− β)X⊤ ⊗ In , (1− β)Im ⊗X , β Diag(vec(X))] .

This lifting is built so that for any β ∈ ]0, 1[,
the range of the matrix Φ(X) is isomorphic to
span(X) + supp(X). Using this fundamental prop-
erty we can state the closed-form expression (valid for
β ∈ ]0, 1[):

rankΦ(X) = ranksity(X) .

This property suggests in turn to consider ‖Φ(X)‖∗
as a convex surrogate of ranksity(X), which we call
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block norm and which can be used as a regular-
izer to infer low-ranksity matrices. Notice that for
β = 0, ‖Φ(X)‖∗ = ‖Π(X)‖∗ = ‖X‖1 and for β = 1,
‖Φ(X)‖∗ ≤ (n +m)‖X‖∗ and ‖Π(X)‖∗ = ‖X‖∗. For
β ∈ ]0, 1[, ‖Φ(·)‖∗ has no singularities on matrices that
are full-rank and sparse or low-rank and dense as op-
posed to ‖Π(·)‖∗ which has this undesirable property.
In Figure 1 one can clearly see that in the case of the

“trace + 1” penalty on X =

(
x y
y z

)
, the singularities

mimic the shapes of a cylinder that represents the unit
ball of the trace norm and that of the unit ball of the
ℓ1 norm. As opposed, the block norm ball has only

4 nonsmooth points located at

(
±1 0
0 0

)
,

(
0 0
0 ±1

)

that exactly correspond to the intersections of the sin-
gularities of the ℓ1 and trace norm balls.

3. Theoretical guarantees for lifted

trace norm regularized estimation

We reformulated the “trace + 1” penalty using a linear
mapping Π and introduced a new penalty, the block
norm, using Φ. Using the general formalism of lifted
trace norms we state theoretical results that help us
better understand the behaviour of each of the two
norms and compare them more easily. Due to space
constraints, all proofs are postponed to appendices
available as supplementary materials.

3.1. Lifted trace norms

We call lifting a linear mapping Λ : Rn×m → R
n′×m′

and call the penalty induced by ‖Λ(X)‖∗ on the ma-
trix X the Λ-trace or lifted trace norm. Such penalties
have been used in compressed sensing (Hosseini Ka-
mal & Vandergheynst, 2013), in statistics (Grave
et al., 2011), and have similarities with fused spar-
sity inducing type of penalties ‖Λ(X)‖1 studied for
instance by Dalalyan & Chen (2012); Vert & Bleak-
ley (2010); Vaiter et al. (2012). Note that a lifted
trace norm is not necessarily a norm. It verifies tri-
angle inequality and positive homogeneity, but only
separates points so becomes a norm if Λ is injec-
tive (i.e., Λ(X) = 0 ⇒ X = 0). We denote by
‖Λ‖ = max‖X‖F≤1 ‖Λ(X)‖F the operator norm of the
linear map Λ. The mapping Λ∗ denotes the adjoint
operator of Λ. If Λ(X) = UΛ(X)ΣΛ(X)V

⊤

Λ(X) is the sin-

gular value decomposition of Λ(X), the subgradient of

the Λ-trace at X is given by

∂‖Λ(X)‖∗ =

{
Λ∗

(
UΛ(X)V

⊤

Λ(X) + P⊥
Λ(X)(Z)

)
where

Z ∈ R
N×M and ‖Z‖op ≤ 1

}
.

From this expression one can see that when Λ(X) is
rank deficient then ‖Λ(X)‖∗ is nondifferentiable, in
cases where the image of Λ∗ is the whole space R

n×m.
This makes the rank of Λ(X) a particularly interesting
quantity in this context.

In the following X⋆ denotes the target matrix to be
estimated and ω : Rn×m → R

d a set of linear mea-
surements:

ω(X) =
(
〈Ω1, X〉, · · · , 〈Ωd, X〉

)
⊤

.

We call the Ωis design matrices and we will be inter-
ested in the estimation procedures (i) minimizing the
least squares loss ℓ(X) = 1

d
‖ω(X)−y‖22 penalized with

lifted trace norm and (ii) minimizing the Λ-trace sub-
ject to ω(X) = ω(X⋆).

3.2. Least squares regression with lifted
trace-norm penalty

We consider linear regression and prove oracle inequal-
ities for the estimation procedure using techniques in-
troduced by Koltchinskii et al. (2011). That is, we
consider the model

y = ω(X⋆) + ǫ ∈ R
d

where ǫ ∈ R
d having i.i.d zero mean entries.

Assumption 1 We assume that the lifting Λ is or-
thogonal, that is Λ∗Λ = ‖Λ‖2Id, which is for instance
the case of Φ and Π.

For the two orthogonal liftings of interest Π and
Φ, the operator norms respectively are given by
‖Π‖2 = (1−β)2+β2 and ‖Φ‖2 = (n+m)(1−β)2+β2.

Definition 1 The cone of restriction C(X,κ,Λ) is the
set of matrices B ∈ R

n×m satisfying

‖P⊥
Λ(X)(Λ(B))‖∗ ≤ κ‖PΛ(X)(Λ(B))‖∗ . (2)

The restricted eigenvalue of ω at X is

µκ,Λ(X) = inf

{
µ > 0 such that

‖PΛ(X)(Λ(B))‖F ≤
µ√
d
‖ω(B)‖2 , ∀B ∈ C(X,κ,Λ)

}
.
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Define the objective

L(X) =
1

d
‖ω(X)− y‖22 + λ‖Λ(X)‖∗ , (3)

and consider the following estimation procedure

X̂ = argmin
X∈S

L(X) , (4)

where S ⊂ R
n×m is the convex cone of admissible

solutions. We can state the following oracle inequality
on the estimate X̂.

Proposition 1 Under Assumption 1, for
λ ≥ 3

d
‖Λ(M)‖op/‖Λ‖2, where M =

∑d
i=1 ǫiΩi,

the following holds:

‖ω(X̂ −X⋆)‖22 ≤

inf
X∈S

{
‖ω(X −X⋆)‖22 + λ2µ5,Λ(X)2 rank(Λ(X))

}
.

Note that as (see the proof) X̂ − X⋆ ∈ C(X⋆, 5,Λ)
and by orthogonality of Λ, we bound the
estimation error by the prediction error

‖X̂ −X⋆‖2F ≤
36µ5,Λ(X)2 rank(Λ(X⋆)

‖Λ‖2d
‖ω(X̂ −X⋆)‖22 and

hence the oracle inequality of Proposition 1 provides
a abound on the estimation error.

We point out that using similar techniques, and un-
der the stronger assumption called Restricted Isometry
Property that assumes there exists µ > 0 such that for
any X1, X2 ∈ S

1

d
‖ω(X1 −X2)‖22 ≥ µ−2‖X1 −X2‖2F ,

one can state that for λ ≥ 2
d
‖Λ(M)‖op/‖Λ‖2, we have

µ−2‖X̂ −X⋆‖2F ≤ ‖ω(X̂ −X⋆)‖22 ≤

inf
X∈S

{
‖ω(X −X⋆)‖22 + µ2c20λ

2 rank(Λ(X))

}

where c0 =
√
2+1
2 and the first inequality being true

if X⋆ ∈ S. In particular in the case of denoising
ω = id, y = X⋆ + M considered for instance by
Chandrasekaran & Jordan (2012), this proves that if
λ ≥ 2

nm
‖Λ(M)‖op/‖Λ‖2

1√
nm
‖X̂ −X⋆‖F ≤ c0λ

√
rank(Λ(X⋆)) .

3.3. Probabilistic results

The theoretical analysis of penalized estimation pro-
cedures by a norm highlights that when the dual norm

of the noise is low the result is more attractive. This
motivates us to understand the behavior of ‖Λ(G)‖op
where G denotes the noise which we assume to Gaus-
sian in this work. To this end let us first define the
variance of a lifting using canonical matrices Ei,j hav-
ing 1 at the (i, j) entry and 0 everywhere else as

v2Λ = ‖
∑

i,j

Λ(Ei,j)Λ(Ei,j)
⊤‖op∨‖

∑

i,j

Λ(Ei,j)
⊤Λ(Ei,j)‖op .

Using results stated in (Tropp, 2010), we know that
for a matrix G having i.i.d. centered normal entries

E [‖Λ(G)‖op] ≤
√

2v2Λ log(N +M) ,

and we can control the deviation for t > 0 as

P

[
‖Λ(G)‖op ≥

√
2v2Λ(log(N +M) + t)

]
≤ e−t .

We can bound the Πs variance v2Π(β) ≤ β2 ∨n(1−β)2

and observe that by setting β =
√
n

1+
√
n
we get the up-

per bound on the expectation over standard normal
matrices G

E‖Π(G)‖op ≤
√

2n

(1 +
√
n)2

log(n+m+ 2nm) .

The variance of Φ can be controlled by
v2Φ(β) ≤ (1 + n)(1 − β)2 + β2, which suggests to
set β = n+1

n+2 in order to obtain

E‖Φ(G)‖op ≤ 2

√
n+ 1

n+ 2
log(n+m) .

We also define the observable variance under the linear
map ω as

v2ω,Λ =
1

d

∥∥∥∥
d∑

i=1

Λ(Ωi)Λ(Ωi)
⊤

∥∥∥∥
op

∨
∥∥∥∥

d∑

i=1

Λ(Ωi)
⊤Λ(Ωi)

∥∥∥∥
op

,

which is a function of β for Π and Φ and equal to
1

nm
v2Λ in case of denoising ω = id. We finally assume

the noise vector elements ǫi are independently drawn
from N (0, σ2).

Corollary 1 (Block norm) Consider the Φ-trace
penalty and calibrate for t > 0

λ =
6σvΦ,ω

β2 + (n+m)(1− β)2

√
log(n+m) + t

d
,

then with probability at least 1− e−t,

‖ω(X̂ −X⋆)‖22 ≤ inf
X∈S

{
‖ω(X −X⋆)‖22

+ c2
log(n+m) + t

d
ranksity(X)

}
,

where c =
6σσvΦ,ωµ5,Φ(X)
β2+(n+m)(1−β)2 depends on β.
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Corollary 2 (Trace + 1) Consider the Π-trace
penalty and calibrate for t > 0

λ =
3σvΠ,ω

β2 + (1− β)2

√
2 log(n+m+ 2nm) + t

d
,

then with probability at least 1− e−t,

‖ω(X̂ −X⋆)‖22 ≤ inf
X∈S

{
‖ω(X −X⋆)‖22

+ c2
log(n+m+ 2nm) + t

d

(
rank(X) + ‖X‖0

)}
,

where c =
3
√
2σvΠ,ωµ5,Π(X)
β2+(1−β)2 .

In both cases it is the minimizer of respectively

β 7→ vΦ,ω(β)
β2+(n+m)(1−β)2 and

vΠ,ω(β)
β2+(1−β)2 that calibrates β.

The two corollaries are interesting because they show
that after a natural calibration of the tuning parameter
λ, the convex estimation procedure (4) outputs the op-
timal estimators for the nonconvex penalties rank+ℓ0
and ranksity, respectively. In addition the multiplica-
tive factor behind these estimators sharply reminds us
of known optimal rates, such as (log n)/p for the Lasso.

3.4. Compressed sensing and exact recovery

Consider the constrained convex optimization problem

min
X
‖Λ(X)‖∗ s.t. ω(X) = ω(X⋆) , (5)

where the design matrices Ωi are i.i.d. Gaussians. We
have the following bound on the minimum required
such observations for perfect recovery of X⋆.

Proposition 2 The minimum required number of
Gaussian i.i.d. observations for achieving perfect re-
covery of X⋆ with overwhelming probability by solving
(5) where Λ is an orthogonal lifting is at most

dΛ = E

[
‖P⊥

Λ(X⋆)(Λ(G))‖2op
]
rank(Λ(X⋆)) + 1 ,

the expectation being taken over the set of i.i.d. stan-
dard normal matrices G.

In the case of the orthogonal lifting Φ, the quan-
tity ‖P⊥

Φ(X⋆)(Φ(G))‖op can be naively bounded by

‖Φ(G)‖2op for which we already have an upper bound.

Corollary 3 (Block norm) For the Φ-trace
penalty, by taking β = (n + 1)/(n + 2),
dΦ ≤ 1 + 4 ranksity(X⋆) log(n+m) i.i.d. Gaussian
observations are enough to achieve with overwhelming
probability perfect recovery of X⋆ by solving (5).

For Π the situation is simpler as we have a better un-
derstanding of the behavior of P⊥

Π(X⋆)(Π(G)). In fact

‖P⊥
Π(X⋆)(Π(G))‖op =

∥∥∥∥
(
(1− β)P⊥

X⋆(G) 0
0 β Diag(vec(Q⊥

X⋆(G)))

)∥∥∥∥
op

.

allows us to analyze the terms separately and state

Corollary 4 (Trace + 1) In the case of Π-trace
penalty, take β = 1− 1√

n+m−2r
, and assume r < m−2,

we have

dΠ ≤ 1 + c1(r + s) log

(
c2 +

nm− s

2

)

where c1 = 8
3 and c2 = 1 + e

3

4β2 ≤ 2.3.

On a bi-clique of size (k, l) we get dΠ ≤ c1kl log(nm−s)
and dΦ ≤ 4{(n+m− 1) + (k− 1)(l− 1)} log(n+m).

4. Algorithms for minimizing Λ-trace

penalized objectives

4.1. A Chambolle-Pock algorithm for general
losses

The Λ-trace penalties have similarities with total vari-
ation minimization as in both cases a simple (having
an easy to compute proximal operator) norm of a lin-
ear function of the variable is being minimized. In our
case the unconstrained optimization problem

min
X

ℓ(X) + λ‖Λ(X)‖∗

can be re-written as a primal-dual problem

min
X

max
Z
〈λΛ(X), Z〉 − δBop

(Z) + ℓ(X) ,

where δBop
is the indicator of the unit ball of the oper-

ator norm. The Chambolle-Pock framework (Cham-
bolle & Pock, 2011) applies and we can derive the
Algorithm 1 for cases where ℓ is convex and simple.
The accelerated algorithm applies for cases where ℓ
in addition to being convex has a Lipschitz continu-
ous gradient, for instance in least squares regression.
In these settings, the second prox step is replaced by a
gradient descent step and the tuning parameters α, ξ, θ
are updated at each step. We refer to Chambolle &
Pock (2011) for technical details such as the choices
of tuning parameters that were set according to the
paper’s remarks in our experiments. In numerical ex-
periments following the lifting Λ it can be convenient
to use other algorithms, for instance in case of Π we
used ADMM (see Boyd et al., 2011, for a survey) in
our experiments.
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Algorithm 1 Chambolle-Pock algorithm for Λ-trace
penalized optimization

Initialize X,Z, X̄, α, ξ, θ
Repeat until convergence

Z ← projBop
(Z + αλΛ(X̄))

Xnew ← proxξℓ(X − ξλΛ∗(Z))

X̄ ← Xnew + θ(Xnew −X)

X ← Xnew

4.2. A Frank-Wolfe algorithm for smoothly
differentiable losses and orthogonal
liftings

In cases where the loss function ℓ to minimize has a
Lipschitz continuous gradient (least squares regression
is a standard example) rather than penalizing the loss
by the lifted trace norm one can solve the following
constrained optimization problem:

min
X

ℓ(X) s.t. ‖Λ(X)‖∗ ≤ C ,

where C is a constant replacing the tuning parame-
ter λ in this setting. The advantage of this equiva-
lent formulation is in the possibility to use algorithmic
schemes offered by Frank-Wolfe or conditional gradient
algorithm (see Jaggi, 2013, for a recent survey). We
argue that these algorithms allow to save both com-
putational and memory resources as they require only
the top singular vectors of a n′×m′ matrix rather than
the full SVD of it at each iteration. Frank-Wolfe algo-
rithm in this situation requires at each iteration k to
solve the following linear subproblem

min
S
〈∇ℓ(Xk), S〉 s.t. ‖Λ(S)‖∗ ≤ C ,

which in the case of orthogonal liftings (i.e.
Λ∗Λ = ‖Λ‖2id such as Π and Φ) can be written using
the variable Σ = Λ(S) as

min
Σ
〈∇ℓ(Xk),Λ

∗(Σ)〉 s.t. ‖Σ‖∗ ≤ C

and therefore reduces to

min
Σ
〈Λ (∇ℓ(Xk)) ,Σ〉 s.t. ‖Σ‖∗ ≤ C .

The latter optimization problem is a linear problem
to solve over an atomic set. We know that the top
singular vectors of Λ (∇ℓ(Xk)) provide a fairly good
approximate solution to the problem and in addition
they present the advantage of being extremely fast to
obtain thanks to the Lanczos method. The pseudo
code can be found in Algorithm 2 and we refer to Jaggi
(2013) for further technical details such as variants us-
ing refined step-sizes and the stopping criterion.

Algorithm 2 Frank-Wolfe algorithm for Λ-trace pe-
nalized optimization

Initialize X0 = 0
for k = 0 · · · K do
Compute top singular vectors of Λ(∇ℓ(Xk)): u, v
Update Xk+1 = (1−γ)Xk−γ C

‖Λ‖2Λ
∗(uv⊤) where

γ = 2
k+2

end for

5. Numerical experiments

5.1. Nonsmooth ℓ: decomposing simply
structured noise and doubly structured
signal

We know from Chandrasekaran et al. (2011) that a
matrix that is built by adding a sparse matrix to a
low-rank matrix can be decomposed onto its compo-
nents by solving the so-called robust PCA problem. It
is known however that robust PCA fails in recovering
the additive components when the two types of struc-
ture are present in one of the components e.g. when
the low rank component is itself sparse. In this work
we specifically focus on the two following challenging
tasks:

1. [SL +S] The observation is the sum of a sparse
component representing the noise, and a sparse
low-rank component which is the signal. The
problem is closely related to the planted clique
(Alon et al., 1998) problem that is popular in
theoretical computer science: the simply sparse
component can be seen as the adjacency matrix
of the random graph and the adjacency matrix of
the clique is sparse and has rank 1. In this setup,
if Y denotes the observation, the objective func-
tion to minimize is L(X) = ‖X−Y ‖1+λ‖Λ(X)‖∗
where we refer to robust PCA, trace + 1 and block
norm to choices of Λ being the identity, Π and Φ.

2. [SL + L] In this setup the observation is the sum
of a sparse-low rank (signal) and a low-rank and
dense (noise) matrix. The goal is to separate the
two. Such a situation is met in high dimensional
underdetermined settings when estimating a co-
variance matrix based on the sample covariance,
and we know that some groups of highly related
variables are present forming blocks in the covari-
ance matrix. In this context the objective func-
tion is L(X) = ‖X − Y ‖∗ + λ‖Λ(X)‖∗ and we
deserve the lifting Diag(vec(X)) for robust PCA.

In each case we compared our algorithms to element-
wise thresholding of the observation and to the singu-
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Figure 2. Up: illustration of the [SL +L] experimental
setup. Bottom: comparison of the performance of vari-
ous algorithms on decomposing a signal onto sparse-low
rank and other component.

lar value thresholding of the matrix sometimes called
shrinkage. Since minimizing an objective containing
‖Φ(X)‖∗ as regularizer requires singular value decom-
positions of matrices of size nm× (n2 +m2 +mn) at
each iteration, the O(n6) cost of each iteration pushed
us to compare the algorithms on relatively small data
sets in our numerical experiments. For simulations we
took n = m = 10 and the ground truth X⋆ was a ma-
trix of rank two having 9 nonzero elements. In the first
case the noise is generated as i.i.d. gaussian entries at
sparse (15%) positions with various variances given by
the noise level, and in the second case [SL + L] the
noise is a rank 2 dense matrix generated proportional
to the noise level times the highest singular value of
X⋆. We selected the tuning parameters using cross-
validation and emphasize that 0 and 1 where included
in the potential values for β but were not the favorite
values following the cross-validation step. The results
over 10 runs of the experiment can be found in Figure
2. The two algorithms penalizing the trace + 1 and
the block norm are superior to the competitors.

Denoising Multitask

σ
2 Trace + 1 Block Trace + 1 Block

.01 0.57 ± 0.01 0.48 ± 0.01 0.89 ± 0.00 0.87 ± 0.00

.02 0.48 ± 0.01 0.47 ± 0.01 0.93 ± 0.01 0.86 ± 0.01

.05 0.55 ± 0.01 0.45 ± 0.01 0.92 ± 0.01 0.89 ± 0.03

.10 0.57 ± 0.01 0.46 ± 0.01 0.92 ± 0.00 0.88 ± 0.00

.15 0.52 ± 0.01 0.50 ± 0.01 0.87 ± 0.01 0.87 ± 0.01

.25 0.56 ± 0.01 0.54 ± 0.01 0.98 ± 0.04 0.94 ± 0.03

.50 0.75 ± 0.02 0.72 ± 0.02 0.90 ± 0.02 0.86 ± 0.01

1.0 1.00 ± 0.02 1.00 ± 0.02 0.93 ± 0.00 0.93 ± 0.01

Table 1. Relative estimation ℓ2 errors for multitask learn-
ing and denoising. The columns correspond to the regu-
larizers and the type of problem, each row is a noise level
denoted by σ2.

5.2. Smooth ℓ: dense denoising and multitask
learning

We performed numerical tests using the Franck-Wolfe
algorithms on two different problems. In these exper-
iments n = 15,m = 10. The matrix X⋆ is generated
using sparse factors having r = 3 columns.

1. Denoising. In this case the observation
Y = X⋆+M where M is a matrix having i.i.d. en-
tries drawn from N (0, σ2). The values of σ2 are
the noise level and we ran experiments for various
values (see Table 1). The loss we used is simply
ℓ(X) = 1

2‖X − Y ‖2F .

2. Multitask learning. The observation
Y = ΩX⋆ + ǫ is obtained using the design ma-
trix Ω ∈ R

q×n where q = 8, the noise ǫ has
i.i.d. N (0, σ2) entries and ℓ(X) = 1

2‖ΩX − Y ‖2F .

In all the simulation the parameters β and λ are chosen
using a cross-validation step and again we noticed the
algorithms choose values of β 6= 0, 1 that correspond
to basic regularizers. So without explicitely testing
them, superiority to the Lasso and trace norm penal-
ized regression is empirically observed. See Table 1 for
relative estimation errors ‖X⋆− X̂‖F /‖X⋆‖F in these
experiments over 100 runs.

6. Discussion and perspectives

We built a regularizer that has singularities exactly at
the desired points by combining the two priors in a
more appropriate way than just adding the penalties.

Generalization. Our main methodological point
can be applied to a complexity index that can
be written as the dimension of a linear subspace,
as it is the case of the ℓ0 and the rank (recall
rank(n + m − rank) = dim(span) is an increas-
ing function of the rank). Other penalties have
the same flavor. By letting ‖X‖2,1 =

∑n
i=1 ‖Xi,.‖2

we can concatenate a matrix corresponding to the
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linear space spanned by the columns, or namely
the range of (c1, · · · , cm) 7→ ∑m

i=1 X.,ic
⊤

i which is(
Im ⊗X.,1 · · · Im ⊗X.,m

)
to other blocks. For in-

stance, our rational on the block norm would suggest,
instead of using ‖X‖2,1 + θ‖X‖∗ (Golbabaee & Van-
dergheynst, 2012) to use the lifted trace norm defined
through the lifting

[(1− β)X⊤ ⊗ In , (1− β)Im ⊗X ,

βIm ⊗X.,1, · · · , βIm ⊗X.,m] ,

and a similar lifting can be written for estimat-
ing sparse and row-sparse matrices, instead of using
(1− β)‖X‖2,1 + β‖X‖1.
It is important to point out the applicability limits of
our theoretical results as well. For instance in the case
of the trace-Lasso penalty w 7→ ‖P Diag(w)‖∗ (Grave
et al., 2011) that can be seen as a lifted trace norm, the
orthogonality assumption on Λ is not verified, making
none of the theoretical results applicable. In our pre-
liminary work we tried lifted max norms which have a
nice motivation: they relax the rank of the lifted object
on the ℓ∞ ball rather than on the operator norm, which
is meaningful when dealing with adjacency matrices.
Somehow the empirical results did not change drasti-
cally and the max norm makes the analysis harder.
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Appendix

Proof of Proposition 1. Pick X ∈ S, in the convex
cone of admissible solutions. Let PΛ(X) denote the
projector onto span(Λ(X)). We start by setting some
technical lemmas.

Lemma 1 For all M ∈ R
n×n, we have

〈M, X̂ −X〉 ≤
‖PΛ(X)(Λ(M))‖∗‖PΛ(X)(Λ(X̂ −X))‖op/‖Λ‖2

+ ‖P⊥
Λ(X)(Λ(M))‖op‖P⊥

Λ(X)(Λ(X̂ −X))‖∗/‖Λ‖2

and

〈M, X̂ −X〉 ≤ (6)
√
2 rank(Λ(M))‖PΛ(X)(Λ(M))‖op (7)

‖PΛ(X)(Λ(X̂ −X))‖F /‖Λ‖2 (8)

+ ‖P⊥
Λ(X)(Λ(M))‖op (9)

‖P⊥
Λ(X)(Λ(X̂ −X))‖∗/‖Λ‖2 (10)

Lemma 2 There exists Z ∈ ∂‖Λ(X)‖∗ such that

−〈Z, X̂ −X〉 ≤
√
rank(Λ(X))‖X̂ −X‖F ‖Λ‖ − ‖P⊥

Λ(X)(Λ(X̂))‖∗
and

−〈Z, X̂−X〉 ≤ ‖PΛ(X)(Λ(X̂−X))‖∗−‖P⊥
Λ(X)(Λ(X̂))‖∗ .

(11)

Lemma 3 Let M =
∑d

i=1 ǫiΩi, we have

∇‖ω(X̂)−y‖22 = 2〈ω(X̂−X⋆), ω(X̂−X)〉−2〈M, X̂−X〉 .
(12)

By optimality, an element of the subgradient of L at
X̂ belongs to the normal cone of S at X̂. We have
〈∂L(X̂), X̂ − X〉 ≤ 0. On the other hand, by the
monotonicity of the subgradient of the convex function
‖Λ(·)‖∗ we have 〈X̂−X, Ẑ−Z〉 ≥ 0. Therefore we can

deduce by using Lemma 3, that for M =
∑d

i=1 ǫiΩi,

〈∂L(X̂), X̂ −X〉 − λ〈Ẑ − Z, X̂ −X〉 ≤ 0 (13)

⇔ 〈1
d
∇‖ω(X̂)− y‖22 + λZ, X̂ −X〉 ≤ 0 (14)

⇔ 2

d
〈ω(X̂ −X⋆), ω(X̂ −X)〉 ≤ (15)

2

d
〈M, X̂ −X〉 − λ〈Z, X̂ −X〉 . (16)

We recall the identity

2〈ω(X̂ −X⋆), ω(X̂ −X)〉 =
‖ω(X̂ −X⋆)‖22 + ‖ω(X̂ −X)‖22 − ‖ω(X −X⋆)‖22 .

It shows that if 〈ω(X̂ − X⋆), ω(X̂ − X)〉 ≤ 0,
then the bound trivially holds. So lets assume
〈ω(X̂ −X⋆), ω(X̂ −X)〉 > 0.

In this case the bound (11) in Lemma 2 and equation
(16) imply

λ‖P⊥
Λ(X)(Λ(X̂))‖∗ ≤

2

d
〈M, X̂−X〉+λ‖PΛ(X)(Λ(X̂−X))‖∗ .

(17)

By using Lemma 1 , first inequality (6), we have

(λ− 2

d

‖Λ(M)‖op
‖Λ‖2 )‖P⊥

Λ(X)(Λ(X̂ −X))‖∗

≤ (λ+
2

d

‖Λ(M)‖op
‖Λ‖2 )‖PΛ(X)(Λ(X̂ −X))‖∗ .

This shows that for λ ≥ 3
d
‖Λ(M)‖op/‖Λ‖2, by using

the fact that for x ≥ 3, x−2
x+2 ≥ 1

5 , the following holds
true

‖P⊥
Λ(X)(Λ(X̂ −X))‖∗ ≤ 5‖PΛ(X)(Λ(X̂ −X))‖∗ .

As a consequence, X̂ −X ∈ C(X, 5,Λ). On the other
hand, by using Lemma 1, second inequality (10) and
(16) we have

1

d

(
‖ω(X̂−X⋆)‖22+‖ω(X̂−X)‖22−‖ω(X−X⋆)‖22

)

≤ 2

d

(√
2 rank(Λ(X))

‖Λ(M)‖op
‖Λ‖2 ‖PΛ(X)(Λ(X̂−X))‖F

+
‖Λ(M)‖op
‖Λ‖2 ‖P⊥

Λ(X)(Λ(X̂))‖∗
)

+λ
√
rank(Λ(X))‖PΛ(X)(Λ(X̂−X))‖F−λ‖P⊥

Λ(X)(Λ(X̂))‖∗ .

(18)

By using the definition of the restricted eigenvalue
µ(X) = µ5,Λ(X), given that X̂ −X ∈ C(X, 5,Λ),

‖PΛ(X)(Λ(X̂ −X))‖F ≤
µ(X)√

d
‖ω(X̂ −X)‖2
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so we can write, again thanks to
λ ≥ 3

d
‖Λ(M)‖op/‖Λ‖2,

1

d

(
‖ω(X̂−X⋆)‖22+‖ω(X̂−X)‖22−‖ω(X−X⋆)‖22

)

≤ µ(X)√
d

λ
√
rank(Λ(X))

(
1+

2
√
2

3

)
‖ω(X̂−X)‖F .

So by bx− x2 ≤
(
b
2

)2
we finally get

1

d
‖ω(X̂ −X⋆)‖22 ≤

1

d
‖ω(X −X⋆)‖22 + λ2µ(X)2

4d
(1 +

2
√
2

3
)2 rank(Λ(X)) . �

Proof of Lemma 1 Let us decompose Λ(M) onto
the direct sum formed by the span of Λ(X) and the
orthogonal space:

Λ(M) = PΛ(X)(M) + P⊥
Λ(X)(M) .

By using assumption 1 and Holder’s inequality twice

〈M, X̂ −X〉 = 〈Λ(M),Λ(X̂ −X)〉/‖Λ‖2 ≤
‖PΛ(X)(Λ(M))‖∗‖PΛ(X)(Λ(X̂ −X))‖op/‖Λ‖2

+ ‖P⊥
Λ(X)(Λ(M))‖op‖P⊥

Λ(X)(Λ(X̂))‖∗/‖Λ‖2

The other bound is obtained in a similar fashion by us-
ing Cauchy-Schwarz on the first term and also the fact
that ‖PΛ(X)(M)‖F ≤

√
2 rank(Λ(X))‖M‖F since we

can write PΛ(X)(M) = (I−UU⊤)MV V ⊤+UU⊤M for
U and V singular vectors of Λ(X).
Proof of Lemma 2.Let

Z = Λ∗
(
UΛ(X)V

⊤

Λ(X) + P⊥
Λ(X)(W )

)

denote an element of the subgradient of ‖Λ(·)‖∗,
where ‖W‖op ≤ 1 . Take W = −UV ⊤ where

UΣV ⊤ = P⊥
Λ(X)(Λ(X̂)) is a singular value decompo-

sition, then ‖W‖op = 1 and

〈Λ∗(P⊥
Λ(X)(W )), X̂ −X〉 =

〈P⊥
Λ(X)(W ),Λ(X̂ −X)〉 =
− ‖P⊥

Λ(X)(Λ(X̂))‖∗

so we can write

− 〈Z, X̂ −X〉 =

− 〈Λ∗
(
UΛ(X)V

⊤

Λ(X)

)
, X̂ −X〉

+ 〈Λ∗(P⊥
Λ(X)(W )), X̂ −X〉 =

− 〈UΛ(X)V
⊤

Λ(X),Λ(X̂ −X)〉
+ 〈P⊥

Λ(X)(W ),Λ(X̂ −X)〉 =
− 〈UΛ(X)V

⊤

Λ(X),Λ(X̂ −X)〉
− ‖P⊥

Λ(X)(Λ(X̂))‖∗ .

We know that ‖UΛ(X)V
⊤

Λ(X)‖2F ≤ rank(Λ(X)). By
Cauchy-Schwarz

−〈Z, X̂−X〉 ≤
√
rank(Λ(X))‖X̂−X‖F ‖Λ‖−‖P⊥

Λ(X)(Λ(X̂))‖∗ .

Similarly if we use Holder’s instead of Cauchy-
Schwarz, and thanks to ‖UΛ(X)V

⊤

Λ(X)‖op = 1 ,

−〈Z, X̂ −X〉 ≤
‖PΛ(X)(Λ(X̂ −X))‖∗ − ‖P⊥

Λ(X)(Λ(X̂))‖∗ . �

Proof of Lemma 3.

Given that ∇‖ω(X̂)− y‖22 = 2
∑d

i=1 Ωi〈Ωi, X̂〉 − yiΩi,
we obtain

〈∇‖ω(X̂)− y‖22, X̂ −X〉

= 2

d∑

i=1

〈(〈Ωi, X̂〉 − yi)Ωi, X̂ −X〉

= 2

d∑

i=1

(〈Ωi, X̂〉 − yi)〈Ωi, X̂ −X〉

= 2〈ω(X̂)− y, ω(X̂ −X)〉
= 2〈ω(X̂ −X⋆) + ω(X⋆)− y, ω(X̂ −X)〉
= 2〈ω(X̂ −X⋆), ω(X̂ −X)〉 − 2〈ǫ, ω(X̂ −X)〉
= 2〈ω(X̂ −X⋆), ω(X̂ −X)〉 − 2〈M, X̂ −X〉 . �

Proof of Proposition 2. By orthogonality of Λ we
have

‖Λ‖2G = Λ∗Λ(G) = Λ∗
(
PΛ(X⋆)(Λ(G)) + P⊥

Λ(X⋆)(Λ(G))
)
.

Lets build an appropriate element of the normal cone
of the Λ-trace at X⋆



Intersecting singularities for multi-structured estimation

Z(G) =
1

‖Λ‖2Λ
∗(P⊥

Λ(X⋆)(Λ(G)))+

‖P⊥
Λ(X⋆)(Λ(G))‖op
‖Λ‖2 Λ∗

(
UΛ(X⋆)V

⊥
Λ(X⋆)

)
,

and get by Cauchy-Schwarz inequality

‖Z(G)−G‖2F =
‖P⊥

Λ(X⋆)(Λ(G))‖2op
‖Λ‖2 ‖Λ∗UΛ(X⋆)V

⊥
Λ(X⋆)‖2F

≤ ‖P⊥
Λ(X⋆)(Λ(G))‖2op rank(Λ(X⋆)) .

By Lemma 2.7 in (Chandrasekaran et al., 2012) this
bounds the squared gaussian width of the tangent
cone to ‖Λ(·)‖∗ at X⋆ intersected with the unit
sphere. We conclude by using Corollary 3.3 from the
same paper. �

Proof of Corollary 4

Let s = ‖X⋆‖0 and r = rank(X⋆). First lets show that
for any G ∈ R

n×m

‖P⊥
Π(X⋆)(Π(G))‖op =

∥∥∥∥
(
(1− β)P⊥

X⋆(G) 0
0 β Diag(vec(Q⊥

X⋆(G)))

)∥∥∥∥
op

.

In fact as the singular value decomposition of Π(X⋆)
can be written (up to permutations of rows and
columns) using the matrices

UΠ(X⋆) =

(
UX⋆ 0
0 Diag(vec(sgn(X⋆)))

)

and

VΠ(X⋆) =

(
VX⋆ 0
0 Diag(vec(| sgn(X⋆)|))

)

the formula P⊥(Z) = (I − UU⊤)Z(I − V V ⊤) implies
the result. Since the gaussian distribution is isotropic
we know that ‖P⊥

Π(X⋆)(G)‖op is distributed as the op-

erator norm of a (n−r)× (m−r) gaussian matrix and
that ‖Q⊥

Π(X⋆)(G)‖∞ is distributed as the ℓ∞ norm of
a vector of length nm− s having iid standard normal
entries.

Let J = Q⊥
X⋆(G) and H = P⊥

X⋆(G) and

z = max
{
(1− β)2‖H‖2op , β2‖J‖2∞

}
,

and notice that by Jensen inequality, for all t > 0

exp (t E[z]) ≤ E exp(tz)

≤ E exp(t(1− β)2‖H‖2op) +
nm−s∑

i=1

E exp(tβ2Ji)

= E exp(t(1− β)2‖H‖2op) +
nm− s√
1− 2tβ2

,

where Jis are iid χ2 variables and the last relation be-
ing the moment generating function of χ2. For bound-
ing the term E exp(t(1− β)2‖H‖2op), let us recall

P[‖H‖op >
√
n− r +

√
m− r + s] ≤ exp(−s2/2)

and introduce f(x) = exp(t(1 − β)2x2). We have

f−1(z) = 1
1−β

√
log(z)

t
strictly increasing [1;∞) → R.

Denoting R =
√
n− r+

√
m− r we have the sequence

of inequalities

E exp(t(1− β)2‖H‖2op) (19)

= Ef(‖H‖op) (20)

=

∫ ∞

1

P[f(‖H‖op) > h] dh (21)

≤
∫ 1+f(R)

1

1 dh (22)

+

∫ ∞

1+f(R)

P[f(‖H‖op) > h]dh (23)

= f(R) (24)

+

∫ ∞

0

P[‖H‖op > f−1(f(R) + 1 + ζ)]dζ (25)

≤ f(R) (26)

+

∫ ∞

0

P[‖H‖op > R+ f−1(1 + ζ)]dζ (27)

≤ f(R) (28)

+

∫ ∞

0

2ts(1− β)2 exp
(
−s2/2 + ts2(1− β)2

)
ds

(29)

≤ f(R) + 1 (30)

where (27) is due to the sublinearity of

f−1(z) = 1
(1−β)

√
log(z)

t
:

f−1(z + z′) ≤ f−1(z) + f−1(z′)

and (30) is true for any t < 1
2(1−β)2 . We have for

t < 1
2 min

(
1

(1−β)2 ,
1
β2

)
,
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E[z] ≤
1

t
log

{
1 + exp[2t(1− β)2(n+m− 2r)] +

nm− s√
1− 2tβ2

}

By taking t = 3
8β2 and (1 − β)2 = 1

n+m−2r the latter
expression gives

E[z] ≤
8β2

3
log

{
1 + e

3

4β2 +
nm− s

2

}
.

The bound in Proposition 5 (skippin 1+)becomes

(r + s)
8β2

3
log

{
1 + e

3

4β2 +
nm− s

2

}

≤ c1(r + s) log

{
c2 +

nm− s

2

}

where c1 = 8
3 and c2 = 1 + e

3

4β2 ≤ 2.3.

Lemma 4 The variance (see (Tropp, 2010)) of the set
of Φ(Ei,j)s where 1 ≤ i ≤ n, 1 ≤ j ≤ m is bounded by

σ2 =

‖
n∑

i=1

m∑

j=1

Φ(Ei,j)Φ(Ei,j)
⊤‖op

∨ ‖
n∑

i=1

m∑

j=1

Φ(Ei,j)
⊤Φ(Ei,j)‖op

≤ (1 + (n ∨m))(1− β)2 + β2

Proof of Lemma 4. Lets recall for En1,m1

i1,j1
and

En2,m2

i2,j2
denoting canonical elements of size n1 × m1

and n2 ×m2, the Kronecker product expression:

En1,m1

i1,j1
⊗ En2,m2

i2,j2
= En1n2,m1m2

(i1−1)n2+i2,(j1−1)m2+j2
.

Using this and by expressing In =
∑n

i=1 E
n,n
i,i , after

some algebra we get

Φ(Ei,j)Φ(Ei,j)
⊤ =

(
(1− β)2Em,m

j,j ⊗ In

+ (1− β)2Im ⊗ En,n
i,i + β2Enm,nm

i+n(j−1),i+n(j−1)

)
.

Adding up the terms results in a very simple object:

n∑

i=1

m∑

j=1

Φ(Ei,j)Φ(Ei,j)
⊤

= (1− β)2Im ⊗ In + (1− β)2Im ⊗ In + β2Inm

=
(
2(1− β)2 + β2

)
Inm .

The second term is also quite friendly, in fact
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Φ(Ei,j)
⊤Φ(Ei,j) =



(1− β)2En,n
i,i ⊗ In (1− β)2En2,m2

in,jm β(1− β)En2,nm

ni,n(j−1)+i

(1− β)2Em2,n2

jm,in (1− β)2Im ⊗ Em,m
j,j β(1− β)Em2,nm

mj,n(j−1)+i

β(1− β)Enm,n2

i+n(j−1),ni β(1− β)Enm,m2

i+n(j−1),mj
β2Enm,nm

i+n(j−1),i+n(j−1)




=




(1− β)2
∑n

k=1 E
n2,n2

n(i−1)+k,n(i−1)+k
(1− β)2En2,m2

in,jm β(1− β)En2,nm

ni,n(j−1)+i

(1− β)2Em2,n2

jm,in (1− β)2
∑m

k=1 E
m2,m2

j+(k−1)m,j+(k−1)m β(1− β)Em2,nm

mj,n(j−1)+i

β(1− β)Enm,n2

i+n(j−1),ni β(1− β)Enm,m2

i+n(j−1),mj
β2Enm,nm

i+n(j−1),i+n(j−1)




=




(1− β)2En2,n2

ni,ni (1− β)2En2,m2

in,jm β(1− β)En2,nm

ni,n(j−1)+i

(1− β)2Em2,n2

jm,in (1− β)2Em2,m2

mj,mj β(1− β)Em2,nm

mj,n(j−1)+i

β(1− β)Enm,n2

i+n(j−1),ni β(1− β)Enm,m2

i+n(j−1),mj
β2Enm,nm

i+n(j−1),i+n(j−1)




+



(1− β)2

∑n
k 6=i E

n2,n2

n(i−1)+k,n(i−1)+k
0n2,m2 0n2,nm

0m2,n2 (1− β)2
∑m

k 6=j E
m2,m2

j+(k−1)m,j+(k−1)m 0m2,nm

0nm,n2 0nm,m2 0nm,nm




Adding up the terms we get on the one hand matrices
having only diagonal terms (from the second term of
the last equality) and on the other hand (first term)
pairwise orthogonal matrices which are also orthogonal
to the diagonal terms. The second bunch of matrices
that can be written, up to row and column permuta-
tions, as the following matrix



(1− β)2m (1− β)2 β(1− β)
(1− β)2 (1− β)2n β(1− β)
β(1− β) β(1− β) β2


 =



1− β 0 0
0 1− β 0
0 0 β






m 1 1
1 n 1
1 1 1






1− β 0 0
0 1− β 0
0 0 β


 .

Using triangle inequality

∥∥∥∥∥∥



(1− β)2m (1− β)2 β(1− β)
(1− β)2 (1− β)2n β(1− β)
β(1− β) β(1− β) β2



∥∥∥∥∥∥
op

=

∥∥∥∥∥∥



1− β 0 0
0 1− β 0
0 0 β










m− 1 0 0

0 n− 1 0
0 0 0


+



1 1 1
1 1 1
1 1 1









1− β 0 0
0 1− β 0
0 0 β



∥∥∥∥∥∥
op

≤ (1− β)2(1 + (n ∨m)) + β2 ,

so

n∑

i=1

m∑

j=1

Φ(Ei,j)
⊤Φ(Ei,j) ≤ (1−β)2(1+(n∨m))+β2 .�


