
HAL Id: hal-00918218
https://hal.science/hal-00918218

Submitted on 13 Dec 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimal Scheduling for Real-Time Jobs in Energy
Harvesting Computing Systems

Maryline Chetto

To cite this version:
Maryline Chetto. Optimal Scheduling for Real-Time Jobs in Energy Harvesting Computing
Systems. IEEE Transactions on Emerging Topics in Computing, 2014, 2 (2), pp.122-133.
�10.1109/TETC.2013.2296537�. �hal-00918218�

https://hal.science/hal-00918218
https://hal.archives-ouvertes.fr


TO APPEAR IN IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 1

Optimal Scheduling for Real-Time Jobs
in Energy Harvesting Computing Systems

Maryline Chetto,

Abstract—In this paper, we study a scheduling problem, in which every job is associated with a release time, deadline, required
computation time and in addition required energy. We focus on an important special case where the jobs execute on a uniprocessor
system that is supplied by a renewable energy source and uses a rechargeable storage unit with limited capacity. Earliest Deadline
First (EDF) is a class one online algorithm in the classical real-time scheduling theory where energy constraints are not considered.
We propose a semi-online EDF-based scheduling algorithm theoretically optimal (i.e. processing and energy costs neglected). This
algorithm relies on the notions of energy demand and slack energy which are different from the well known notions of processor
demand and slack time. We provide an exact feasibility test. There are no restrictions on this new scheduler: each job can be one
instance of a periodic, aperiodic or sporadic task with deadline.

Index Terms—Real-time systems, energy harvesting, uniprocessor, optimal scheduling, earliest deadline first, slack energy.

F

1 INTRODUCTION

ENERGY harvesting is a technology that allows to cap-
ture otherwise unused ambient energy and convert

it into electrical energy which can be used immediately
or later through a storage unit [15], [27]. Ambient energy
also known as environmental energy is obtained from
natural and human-made sources that surround us in
the environment (e.g. kinetic energy produced by move-
ments). This approach extends the life of batteries (or
eliminates them entirely) and decreases maintenance. A
variety of techniques are available for energy harvesting,
including solar, piezoelectricity, thermoelectricity, and
physical motions. Energy harvesting appears to be a
perfect match for wireless devices that otherwise rely on
battery power. Some of the main applications include
self-powered sensors in medical implants for health
monitoring and embedded sensors in structures such
as bridges and buildings for remote monitoring. The
compactness -surface area and weight- that the device
authorizes limits the yield of power that mostly hovers
at milliwatt.
Low power design of electronic systems came in
the focus of interest in the middle nineties. Power
management techniques have been proposed to achieve
energy efficiency of battery-powered devices. DPM (Dy-
namic Power Management) [24] and DVFS (Dynamic
Voltage and Frequency Selection) [33] are the two con-
ventional techniques that aim to reduce the static respec-
tively dynamic energy dissipation. Nonetheless, these
techniques alone do not prevent a battery from being
replaced so that the device continues to operate. Now-

• M. Chetto is with the University of Nantes, IRCCyN Research Institute,
1 Rue de la Noë, F-44321 Nantes FRANCE.
E-mail: maryline.chetto@univ-nantes.fr

days, a growing number of applications involve many
wireless sensors that may be deployed in wide areas
and possibly unattainable places. Such systems should
be designed to function perpetually without any human
intervention because either costly or impractical. As a
consequence, energy harvesting technology has been an
area of rapid development during the last decade [14].
The introduction of energy harvesting capabilities into
embedded systems such as wireless sensor networks
introduces a lot of design questions. Firstly, how to
intelligently use harvesting abilities so as to optimize
its performance and lifetime? In other words, how to
dynamically adapt the processing activity so as to subsist
perpetually on a given energy source? Secondly, how to
dimension the energy storage unit (e.g. battery or capac-
itor) and the harvester (e.g. solar panel) to guarantee an
acceptable performance under all environmental condi-
tions? Researchers also strive to design efficient power
management techniques which additionally adapt to
real-time requirements that characterize a lot of energy
harvesting computing systems [28].

1.1 This research

In this paper, we focus on a system that consists of three
components: a processing element with unique voltage
and frequency, an energy harvester and a rechargeable
energy storage unit.

We address the scheduling issue for uniprocessor
platforms. We consider that the system allows for pre-
emptions to process jobs with real-time constraints. Jobs
must be executed in a timely manner and any dead-
line failure has to be anticipated in order to avoid an
intolerable damage. Our processing model exhibits two
major assumptions. Firstly, as in the most popular model
of real-time computing, every job is characterized by a



TO APPEAR IN IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 2

release time, an execution requirement and a deadline.
With such characterization, the job requires an amount
of processor time equal to its execution requirement
between its release time and its deadline. In our study,
each job is characterized in addition by an energy re-
quirement which is the amount of energy needed for
its execution. We assume that the energy requirement
of a job does not necessarily have to be proportional to
its execution time. Secondly, as commonly assumed in
the real-time energy harvesting literature [21], [25], the
instantaneous consumption power of any job is no less
than the incoming power from the harvesting unit i.e.
the jobs are discharging.
Guaranteeing that all deadlines are met is one of the
most important issues in Real-Time Energy Harvesting
(RTEH) systems. We have to adopt a scheduling strategy
that can always guarantee a predictable response time
for every job even in the face of energy limitations. An-
other key consideration that affects power management
and scheduling in RTEH systems is that instead of
minimizing the energy consumption and maximizing the
lifetime achieved as in classical battery operated devices,
the system operates in an “energy neutral mode” by
consuming only as much energy as harvested [16]. So
the resulting problem we have to deal with is: How can
we schedule the jobs so as to guarantee their timing
constraints perpetually by suitably exploiting both the
processor and the available ambient energy?

1.2 Prior research

Most prior research on scheduling of hard deadline
jobs on a single processor computing system assumes
that jobs have no energy requirements (see [5], [] for
surveys). Dertouzos [11] shows that the Earliest Deadline
First Algorithm (EDF) is optimal. EDF schedules at each
instant of time t, that job ready for execution whose
deadline is closest to t. But the problem with EDF is
that it does not consider future jobs arrivals and their
energy requirements. Energy shortage (i.e. the situation
where the energy is not sufficient to execute jobs timely)
should imperatively be anticipated to avoid deadline
misses. In [7], we prove that EDF is no longer optimal
for RTEH systems. Jobs are processed as soon as possible
thus consuming the available energy greedily. We usualy
say that EDF is work-conserving for released jobs. In
other words, the scheduler never idles the processor
while there is a job awaiting execution. Although non-
competitive, EDF turns out to remain the best non-idling
scheduler for uniprocessor RTEH platforms [7].
In an energy constrained system, it is sometimes nec-
essary not to dispatch a ready job if it will prevent
future jobs to meet their deadlines because of energy
shortage. In [8], we show that no online scheduler can
be optimal. With possible lookahead, we say that an
online algorithm is lookahead-ld if ld is the length of
time segment that the scheduler can foresee at any time
[10]. Such a scheduler is also described as semi-online.

We prove that optimality can be obtained only by semi-
online schedulers with lookahead-D where D is the
longest relative deadline of jobs in the application [8]. In
other terms, an optimal scheduling algorithm that takes
decisions at run time requires clairvoyance for at least D
time units from any instant.

1.3 Contributions
The aim of this work is to provide an analysis in
the context of dynamic-priority, preemptive, uniproces-
sor scheduling with energy harvesting considerations.
Specifically, this paper integrates a general model for
RTEH systems and extends some notions as processor
demand, processor load and slack time to the energy
domain with the notions of energy demand, energy load
and slack energy. We report our findings concerning the
study of the two following issues:

1) Runtime scheduling: Given a RTEH system that is
known to be feasible, determine an online (or semi-
online) scheduling algorithm that schedules the
system to meet all deadlines.

2) Feasibility test: Given the specifications of a RTEH
system, determine whether there exists a schedule
that meets all deadlines. Performing a feasibility
test provides a yes or no answer depending on
whether the job set is feasible or not.

1.4 Outline
The remainder of the paper is organized as follows. The
energy harvesting system model and assumptions are
presented in Section 2. We give background materials
in Section 3. New concepts and a new energy-aware
scheduling algorithm, namely ED-H, are presented in
Section 4. We prove the optimality of ED-H in Section
5 and we establish an exact feasibility test in Section 6.
Section 7 focusses on practical considerations. Related
works are described in Section 8. Section 9 summarizes
this paper and provides directions for future works.

2 MODEL AND TERMINOLOGY

2.1 System Model
Hereafter, we describe the RTEH model that consists of a
computing element, a set of jobs, an energy storage unit,
an energy harvesting unit and an energy source (see Fig.
1).

2.1.1 Job model
We consider a set of real-time jobs that are executed on
a single processing unit that supports only one oper-
ating frequency. Its energy consumption is only due to
dynamic switching energy. Consequently, it consumes
negligible energy in the idle state when it does not
execute jobs. Jobs are processed exclusively with energy
generated by the energy source. The set of jobs is de-
noted by τ = {τi, i = 1, . . . , n}. All jobs can be preempted



TO APPEAR IN IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 3

and later resumed at any time with no time or energy
loss associated with such preemption. Furthermore, jobs
are independent of each other. A four-tuple (ri, Ci, Ei, di)
is associated with a job τi. In this characterization,
job τi arrives at time ri called release time, requires
a worst case execution time of Ci time units and has
a worst case energy consumption of Ei energy units.
We assume that Ei is not necessarily proportional to
Ci [13]. Executing any job of τ consumes at most eMax

units of energy during one unit time-slot and the actual
energy consumption in the slot is not known beforehand.
A deadline occurs at di units by which τi must have
completed its execution. Let dMax = max0≤i≤n di be the
latest absolute deadline and D = max0≤i≤n (di − ri) be
the greatest relative deadline. The energy consumed by
jobs on the time interval [t1, t2) is denoted by Ec(t1, t2).
The energy consumed in any unit time-slot is no less
than the energy produced in the same unit time-slot.
We say that the jobs are “discharging” [3]. Consequently,
the residual capacity of the energy storage unit is never
increasing every time a job executes.

2.1.2 Energy production model
The energy produced by the source is not considered
as controllable. It is characterized by an instantaneous
charging rate Pp(t) that incorporates all losses. The
energy produced by such a power source in the time
interval [t1, t2) is given as Ep(t1, t2) =

∫ t2
t1
Pp(t)dt. We

assume that the energy production times can overlap
with the consumption times. While the source power is
not necessarily a constant value, we assume that we can
predict it accurately for near future with negligible time
and energy cost.

2.1.3 Energy storage model
Our system uses an ideal energy storage unit (super-
capacitor or battery) with a nominal capacity C. C is
expressed in units of energy. The capacity may be less
than the energy consumption of some jobs. Let us define
E(t) as the residual capacity at time t i.e. the energy level
in the storage unit at t. Energy is wasted if the storage is
fully charged at time t and we continue to charge it. For
simplicity, E(t) ≈ C stands for C ≤ E(t) < C + eMax.
In contrast, the energy storage is considered as fully
discharged at time t if 0 ≤ E(t) < eMax denoted by
E(t) ≈ 0. The storage unit is fully charged initially (i.e.
E(0) = C). The stored energy may be used at any time
later and does not leak any energy over time.

2.2 Types of starvation
According to the RTEH model, a job τi can miss its
deadline if one of the two following situations occurs:

• time starvation: when the job reaches its deadline at
time t, its execution is incomplete because the time
required to process it before deadline is not suffi-
cient. There is available energy in the storage unit
when the deadline violation occurs (i.e. E(t) > 0).

Fig. 1. A Real-Time Energy Harvesting System

• energy starvation: when the job reaches its deadline
at time t, its execution is incomplete because the
energy required to process it before deadline is
not available. The energy in the storage unit is
exhausted when the deadline violation occurs (i.e.
E(t) ≈ 0).

2.3 Terminology

We now give definitions we will be needing throughout
the remainder of this paper.

Definition 1: A schedule Γ for τ is said to be valid if
the deadlines of all jobs of τ are met in Γ, starting with
a storage fully charged, with the energy generated by a
given energy source.

Definition 2: A system is feasible if there exists at least
one valid schedule for τ with the given energy source
and energy storage unit. Otherwise, it is infeasible.

In infeasible RTEH systems, the limiting factors are
either, both time and energy, only time or only energy.
We focus here on feasible systems only.

As in the classical scheduling theory, we say that a
scheduling algorithm is :

• optimal if it finds a valid schedule whenever one
exists.

• online if it makes its decisions at run-time.
• semi-online if it is online with necessary lookahead

on a certain time interval.
• lookahead-ld if it is semi-online with lookahead on ld

time units.
• idling if it is allowed to keep the processor idle even

when there are pending jobs. Otherwise, it is non-
idling or work-conserving.

• clairvoyant if it has knowledge of the future.

We introduce a novel terminology which is peculiar to
energy constrained computing systems.

Definition 3: A schedule Γ for τ is said to be time-valid
if the deadlines of all jobs in τ are met in Γ, considering
that ∀i ∈ {1, . . . , n} , Ei = 0.

Definition 4: A job set τ is said to be time-feasible if
there exists a time-valid schedule for τ .



TO APPEAR IN IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 4

Definition 5: A schedule Γ for τ is said to be energy-
valid if the deadlines of all jobs in τ are met in Γ,
considering that ∀i ∈ {1, . . . , n} , Ci = 0.

Definition 6: A job set τ is said to be energy-feasible if
there exists an energy-valid schedule for τ .

Definition 7: A scheduling algorithm A is said to be
energy-clairvoyant if it needs knowledge of the future
energy production to take its runtime decisions.

3 BACKGROUND MATERIALS

3.1 EDF scheduling
EDF is probably the most famous dynamic priority
scheduler [11], [17]. As a consequence of its optimality
for preemptive uniprocessor scheduling of independent
jobs, the run-time scheduling problem is perfectly solved
if we assume there exists no additional constraints on
the jobs. EDF is the scheduler of choice since any
feasible set of jobs is guaranteed to have a valid EDF
schedule.

In the most common way of EDF implementation,
jobs are executed as soon as possible. In that version
of EDF, the processor is never let inactive if at least one
job is awaiting for execution. Such implementation has
been called Earliest Deadline as Soon as possible (EDS)
[6]. EDS is clearly an on-line scheduler since it solely
needs timing parameters of the jobs which are currently
ready for execution to take its dispatching decisions. By
opposition, the jobs can be scheduled as late as possible
according to the so-called Earliest Deadline as Late as
possible (EDL) approach. Determination of the start time
of the next job to execute requires knowledge of jobs
that are currently ready and jobs that will arrive in the
future as well. Such a version of EDF turns out to be
semi-online since the EDL schedule build at any current
time tc needs information about jobs released between
time tc and time tc +D where D stands for the greatest
relative deadline of the application. This makes of EDL
an online lookahead-D scheduler [9]. Although the usual
scheduling scheme is EDS, EDL is very often considered
for processor idle time analysis.

3.2 Classical concepts
In this subsection, we recall definitions for real-time
scheduling concepts.

3.2.1 Static analysis
Definition 8: The processor demand of a job set τ on

the time interval [t1, t2) is

h(t1, t2) =
∑

t1≤rk,dk≤t2

Ck (1)

Definition 9: The static slack time of a job set τ on the
time interval [t1, t2) is

SSTτ (t1, t2) = t2 − t1 − h(t1, t2) (2)

SSTτ (t1, t2) gives the longest time that could be made
available within [t1, t2) after executing jobs of τ with
release time at or after t1 and deadline at or before t2.

Definition 10: The static slack time of a job set τ , SSTτ ,
is

SSTτ = min
0≤t1<t2≤dMax

SSTτ (t1, t2) (3)

Namely, the processor demand on [t1, t2) gives the
amount of execution time requested by all jobs with
release time at or after t1 and deadline before or at t2.
When the set of jobs utilizes the processor with a ratio
less than 100%, there is unused processor time, hence
the notion of slack time. The schedulability analysis
for EDF needs to calculate the processor demand for
every time interval starting with a release time and
finishing with a deadline in order to check if there is
an overflow in the interval. This amounts to computing
the so-called static slack time SSTτ (t1, t2) with (3). In
systems where jobs may arrive at unpredictable times,
we have to perform the test (often called admission
test) online so as to decide whether the new occurring
job is authorized to enter into the system [5].

The processor load (as defined in the classical
scheduling theory with no energy consideration) shows
the maximum fraction of processor time requested in a
given time interval.

Definition 11: The static processor load of a job set τ
on the time interval [t1, t2) is

USPτ (t1, t2) =
h(t1, t2)

t2 − t1
(4)

USPτ (t1, t2) gives the ratio of the total execution
time to the length t2 − t1, considering all jobs which are
released at or after t1 with deadline at or before t2.

Definition 12: The static processor load of a job set τ
is

USPτ = sup
0≤t1<t2≤dMax

USPτ (t1, t2) (5)

Consequently, if the static processor load of τ is greater
than 1, there should not exist a feasible scheduling
algorithm for τ . And we generally say that the system
is overloaded [4]. More precisely, we will say that the
system is in processor-overload.

3.2.2 Dynamic analysis
Let tc be the current time in the schedule produced for
the job set τ by a certain scheduling algorithm.

Definition 13: The slack time of a job τi at current time
tc is

STτi(tc) = di − tc − h(tc, di)−ATi (6)

where ATi is the total remaining execution time of
uncompleted jobs currently ready at tc with deadline at
or before di.



TO APPEAR IN IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 5

STτi(tc) gives the available processor time after exe-
cuting uncompleted jobs with deadlines at or before di.

Definition 14: The slack time of a job set τ at current
time tc is

STτ (tc) = min
di>tc

STτi(tc) (7)

We show in [6] that the slack time as computed with
(7) represents the maximum continuous processor time
that could be available from time tc while still guaran-
teeing the deadlines of all the jobs. And it is obtained
from the EDL schedule produced at current time tc.

4 THE ED-H SCHEDULING ALGORITHM

4.1 Overview of the scheduling scheme
The intuition behind the scheduling algorithm we pro-
pose for the RTEH model is to run jobs according to the
earliest deadline first rule. However, before authorizing a
job to execute, the residual energy capacity of the storage
unit must be sufficient to supply the awaiting highest
priority job for at least the next unit time-slot. Further-
more, the energy consumption in that time-slot must
guarantee the energy-feasibility of all future occurring
jobs. This can be verified by considering their timing
and energy requirements as well as the replenishment
rate of the storage unit. If one of these conditions is not
fulfilled, the processor has to idle so that the storage unit
recharges sufficiently. Roughly speaking, this extension
of EDF prevents energy starvation. Following the idea
described above, we present a modified EDF that is
dedicated to energy harvesting constrained jobs, called
ED-H scheduling algorithm.

4.2 Concepts for the RTEH model
4.2.1 Static analysis
To formally present ED-H, we need to introduce novel
concepts particularly helpful when analyzing the fea-
sibility of a job set with both energy and deadline
constraints: the energy demand, the slack energy and
the energy load.
Let rk, dk and Ek be release time, deadline and worst
case energy consumption of job τk respectively.

Definition 15: The energy demand of a job set τ on the
time interval [t1, t2) is

g(t1, t2) =
∑

t1≤rk,dk≤t2

Ek (8)

Let Ep(t1, t2) be the amount of energy that will be
produced by the source between t1 and t2.

Definition 16: The static slack energy of a job set τ on
the time interval [t1, t2) is

SSEτ (t1, t2) = C + Ep(t1, t2)− g(t1, t2) (9)

SSEτ (t1, t2) gives the largest energy that could be
made available within [t1, t2) after executing jobs of τ
with release time at or after t1 and deadline at or before

t2.

Definition 17: The static slack energy of a job set τ is

SSEτ = min
0≤t1<t2≤dMax

SSEτ (t1, t2) (10)

Intuitively, the static slack time of τ represents
the length of the interval starting at any instant
during which the processor could be idle continuously
while still satisfying all the timing constraints of τ . It
represents also the maximum processing surplus that
could be accepted by τ at any instant. The static slack
energy of τ represents the additional energy that could
be consumed from any instant while still satisfying all
the energy and timing constraints of τ . We now extend
the concept of processor load to the energy domain.

Definition 18: The static energy load of a job set τ on
the time interval [t1, t2) is

USEτ (t1, t2) =
g(t1, t2)

C + Ep(t1, t2)
(11)

Definition 19: The static energy load of a job set τ is

USEτ = sup
0≤t1<t2≤dMax

USEτ (t1, t2) (12)

If the static energy load of τ is greater than 1, there
should not exist a feasible scheduling algorithm for τ
because of inevitable energy shortage in some time in-
terval. We will say that the system is in energy-overload.

4.2.2 Dynamic analysis
Hereafter, for short, the slack time (respectively the
slack energy) will actually refer to the dynamic slack
time (respectively the dynamic slack energy) as regards
current time tc in the schedule produced for τ by a
certain scheduling algorithm.

Definition 20: The slack energy of a job τi at current
time tc is

SEτi(tc) = E(tc) + Ep(tc, di)− g(tc, di) (13)

Clearly, SEτi(tc) represents the maximum energy that
could be consumed within [tc, di) while guaranteeing
enough energy for jobs released at or after tc and
deadline at or before di. In other words, if there exists
some job τi such that SEτi(tc) = 0, executing any job
with deadline after di between tc and di will provoque
energy starvation for τi.

Conventional EDF is greedy since it executes jobs
as soon as possible and spends the stored energy
disregarding needs of future jobs. So, a scheduler that
withdraws energy from the storage unit should not
cause future energy starvation. If we assume jobs to
be scheduled according to the earliest deadline rule,
energy starvation on a job say τi can only be caused
by a job, say τj which executes before the release of τi



TO APPEAR IN IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 6

such that dj > di. Let us note that energy starvation
of τi caused by τj with dj ≤ di could not be avoided.
Intuitively, clairvoyance on jobs arrivals and energy
production will help EDF to anticipate possible energy
starvation and deadline violation. The main principle
of ED-H is to authorize job executions as long as no
future starvation could occur. This leads us to define
the so-called preemption slack energy for current time tc
as the maximum energy that could be consumed by
the currently active job while still guaranteeing energy
feasibility for jobs that may preempt it.

Definition 21: Let d be the deadline of the active job at
current time tc. The preemption slack energy of a job set
τ at tc is

PSEτ (tc) = min
tc<ri<di<d

SEτi(tc) (14)

4.3 Description of the ED-H scheduler

In what follows, we consider a given set of jobs that is
known to be feasible for the RTEH model. Let Lr(tc) be
the list of uncompleted jobs ready for execution at tc. The
ED-H scheduling algorithm obeys the following rules:

• Rule 1: The EDF priority order is used to select the
future running job in Lr(tc).

• Rule 2: The processor is imperatively idle in
[tc, tc + 1) if Lr(tc) = ∅.

• Rule 3: The processor is imperatively idle in
[tc, tc + 1) if Lr(tc) 6= ∅ and one of the following
conditions is satisfied:

1) E(tc) ≈ 0.
2) PSEτ (tc) ≈ 0

• Rule 4: The processor is imperatively busy in
[tc, tc + 1) if Lr(tc) 6= ∅ and one of the following
conditions is satisfied:

1) E(tc) ≈ C.
2) STτ (tc) = 0

• Rule 5: The processor can equally be idle or busy in
[tc, tc + 1) if Lr(tc) 6= ∅, 0 < E(tc) < C, STτ (tc) > 0
and PSEτ (tc) > 0.

Rules 3.1 and 3.2 say that the processor cannot be
active if either the energy storage unit is deplenished
or executing any job would prevent at least one future
job from beeing executed timely because of energy
starvation i.e. the system has no preemption slack
energy at tc. Rules 4.1 and 4.2 say that the processor
cannot be inactive if either the energy storage unit is
fully replenished or making the processor idle would
prevent at least one job from beeing executed timely
because of time starvation i.e. the system has no
slack time at tc. When the storage unit is neither full
nor empty and the system has both slack time and
preemption slack energy, rule 5 says that the scheduler
may decide on the processor state.
We notice that we never dispatch jobs when there is

no energy. We start charging the storage unit when,
either it is empty or there is not enough energy to
guarantee the feasible execution of all future occurring
jobs. The charging process is flexible since it authorizes
to charge the storage unit during any time period
provided there is slack time and the storage unit
has not replenished. We only waste recharging power
when there are no ready jobs and the storage unit is full.

The above description of ED-H forgets the case where
the energy storage unit is fully replenished at tc (i.e.
C ≤ E(tc) < C + eMax) and the system has no pre-
emption slack energy (i.e. 0 ≤ PSEτ (tc) < eMax). In
order not to waste energy by idling the processor, we
may advance the jobs and execute the highest priority
job in [tc, tc + 1). Thus, at most eMax energy units are
consumed after which the processor stays idle so that the
storage unit be fully replenished again. Consequently,
the ED-H scheduler continuously switches from the idle
state to the active state so that the effective average
consumption energy be equal to the production energy
with accuracy within eMax. This results in wasted energy
less than eMax units until the completion of the job
having a zero slack energy. In contrast to the assumption
that is claimed in [25], the instantaneous consumption
power of a running job cannot be adjusted to fit the
incoming environmental power.

We may derive various implementations from the
above ED-H scheme. It depends on the application of
rule 5. Jobs can be processed ASAP, ALAP or mixture
of ASAP and ALAP strategies. The rule for deciding
when to start and stop recharging with inserted idle time
periods determines the resulting ED-H variant. The only
condition is to prevent from negative slack time, negative
slack energy and energy wasting at every time instant.

Example 1: Let us consider two jobs τ1 and τ2 with
release times r1 = 0, r2 = 1, execution times C1 = 1,
C2 = 3, energy consumptions E1 = 2, E2 = 8, absolute
deadlines d1 = 8, d2 = 6. The energy storage unit has
a capacity C = 6 and we assume that E(0) = 4. The
energy production power is constant with Pp = 1. The
maximum instantaneous consumption power is known
by eMax = 3.
First, by applying equation (13) we compute
SEτ2(0) = E(0) + Ep(0, d2) − g(0, d2) = 4 + 6 − 8 = 2
as τ2 is the only job with release time after time 0
and deadline before d1. Clearly, SEτ2(0) represents the
maximum energy that can be consumed by jobs from
time 0 until the start time of τ2 without injuring the
energy feasibility of τ2. Equation (14) enables us to
obtain PSEτ (0) = 2 i.e. PSEτ (0) ≈ 0 since eMax = 3.
From rule 3.2, the processor idles imperatively. Let us
choose to let the processor idle as long as possible. We
compute the slack times of τ1 and τ2 by formula (6).
STτ1(0) = d1 − h(0, d1) − AT1 = 8 − (1 + 3) − 0 = 4 and
STτ2(0) = d2 − h(0, d2) − AT2 = 6 − 3 − 0 = 3. Hence,
formula (7) gives STτ (0) = 3. Let us compute the time
instant, say tf when the storage will be fully replenished.



TO APPEAR IN IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 7

tf satisfies the following equation: E(0) + Ep(0, tf ) = C
which leads to tf = 2. The processor is let idle until
time 2 where E(2) = 6. The processor starts execute
the highest priority job τ2. We may decide to execute
it as soon as possible until completion. τ2 completes
at time 5 where E(5) = 1. As E(5) ≈ 0, the processor
imperatively idles. We may decide to recharge until
there is no more slack time, say at time instant d1 − C1

i.e. 7 where E(7) = 3. τ1 completes at deadline where
E(8) = 1 (see Fig. 2). Notice that EDF would execute τ1
first and lead to energy starvation for τ2 at time 2.

τ1

τ2

E(t)
6

4

2

0 1 2 3 4 5 6 7 8 t

0 1 2 3 4 5 6 7 8 t

0 1 2 3 4 5 6 7 8 t

Fig. 2. ED-H scheduling

5 PROPERTIES OF ED-H SCHEDULING

5.1 Optimality analysis

We state the optimality of ED-H by proving that if
ED-H cannot schedule a given job set τ , then no other
scheduling algorithm is able to schedule it. We assume
that the deadline at d1 of job τ1 is missed and d1 is the
first deadline of τ that is missed in the ED-H schedule.
This violation is due to one of the two following
reasons: either job τ1 lacks time (Lemma 1) or job τ1
lacks energy (Lemma 2) to complete its execution before
or at deadline d1. The time starvation case is when
deadline d1 is missed with the storage not exhausted
at d1. The energy starvation case is when the storage is
exhausted at d1 and τ1 is not completed.

Lemma 1: If d1 is missed in the ED-H schedule because
of time starvation, there exists a time instant t such that
h(t, d1) > d1− t and no schedule exists where d1 and all
earlier deadlines are met.
Proof: Recall that we have to consider the time starvation
case where d1 is missed with E(d1) > 0. Let t0 be the
latest time before d1 where the processor is idle. Conse-
quently, the processor is continuously busy between t0
and d1. We have to examine the two following cases.
Case 1: There is no ready job at time t0.
Consequently, t0 coincides with the arrival of a job, say
τ2 with release time r2 = t0 that verifies r2 ≤ r1.

Case 1a: d2 ≤ d1. τ2 is entirely processed before d2
because d1 is the first deadline to be violated and jobs

are scheduled according to the earliest deadline rule in
ED-H. We may have the following two cases.

Case 1a1: According to rule 4.2, the processor is
busy at time r2 because there is no slack time at r2 i.e.
STτ (r2) = 0. Thus, the slack time at r2 of τ1 is no less
than 0. Consequently, the processor demand on the time
interval [r2, d1), given by h(r2, d1) =

∑
r2≤rk,dk≤d1 Ck is

no less than d1 − r2. This contradicts that d1 is violated.
And no other scheduling algorithm can produce a valid
schedule on [r2, d1).

Case 1a2: According to rule 5, the processor is
busy at time r2 because 0 < E(r2) < C, STτ (r2) > 0
and PSEτ (r2) > 0. Consequently, STτ1(r2) > 0 i.e.
h(r2, d1) =

∑
r2≤rk,dk≤d1 Ck is no more than d1−r2. This

contradicts that d1 is violated.
Case 1b: d2 > d1. No job released before r1 with

deadline greater than d1 including job τ2 is executed
within [r1, d1) because jobs are scheduled according to
the earliest deadline rule. Consequently, the maximum
computation time required by jobs in [r1, d1) is equal to
the processor demand h(r1, d1) =

∑
r1≤rk,dk≤d1 Ck. Since

d1 is violated, necessarily h(r1, d1) > d1−r1 because jobs
are ordered by the earliest deadline rule. And no other
scheduling algorithm can produce a valid schedule.

Case 2: There is at least one ready job at time t0.
The processor stops to be idle at time t0 if

Case 2a: The energy storage is fully replenished i.e.
E(t0) = C from rule 4.1.

Case 2b: The slack time of τ becomes zero i.e.
STτ (t0) = 0 from rule 4.2.

Case 2c: We may stop the processor at t0 by rule 5
if 0 < E(t0) < C, STτ (t0) > 0 and PSEτ (t0) > 0.
Whatever the stop condition, STτ (t0) ≥ 0. Since
STτ1(t0) ≥ STτ (t0), d1 − t0 ≥ h(t0, d1). h(t0, d1)
represents the total amount of computation time
required by jobs with deadline at or before d1 which
are ready at time t0 and released within [t0, d1). Since
jobs are scheduled according to the earliest deadline
first rule in ED-H, and there is no idle time in [t0, d1),
d1 − t0 > h(t0, d1) contradicts that d1 is missed. Let us
note that the special case where the storage is fully
replenished and there is no slack energy is treated as
rule 4.1. �

Lemma 1 states that there exists some interval [t, d1)
where the processor demand h(t, d1) is higher than the
maximum available processor time equal to d1 − t that
could be available in that interval.

Lemma 2: If d1 is missed in the ED-H schedule because
of energy starvation there exists a time instant t such that
g(t, d1) > C + Ep(t, d1) and no schedule exists where d1
and all earlier deadlines are met.
Proof: Recall that we have to consider the energy star-
vation case where d1 is missed with E(d1) = 0. Let t0
be the latest time before d1 where a job with deadline
after d1 releases, no other job is ready just before t0 and
the energy storage unit is fully charged i.e. E(t0) = C.



TO APPEAR IN IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 8

The initialization time can be such time. The processor
is idle within [t0 − 1, t0) since no jobs are ready. As no
energy is wasted except when there are no ready jobs,
the processor is busy at least from time t0 to t0 + 1. We
consider two cases:
Case 1: No job with deadline after d1 executes within [t0, d1).
Consequently, all the jobs that execute within [t0, d1)
have release time at or after t0 and deadline at or before
d1. The amount of energy required by these jobs is
g(t0, d1). As τ is feasible, g(t0, d1) is no more than the
maximum storable energy plus all the incoming energy
i.e. C + Ep(t0, d1). As E(t0) = C, we conclude that all
jobs ready within [t0, d1) can be executed with no energy
starvation which contradicts the deadline violation at d1
with E(d1) = 0.
Case 2: At least one job with deadline after d1 executes within
[t0, d1).
Let t2 be the latest time where a job, say τ2, with deadline
after d1 is executed. As d1 is lower than d2 and jobs are
executed according to the earliest deadline rule in ED-
H, we have r2 < r1. At time t2, one of the following
situations occurs.

Case 2a: The processor is busy all the times in [t2, d1).
τ2 is preempted by a higher priority job, say τ3, with
d3 ≤ d1. From rule 4.2, PSEτ (r3) > 0 which implies that
SEτ1(r3) > 0 and in consequence g(r3, d1) < E(r3) +
Ep(r3, d1). All jobs that are executed within [r3, d1) have
release time at or after r3 and deadline at or before d1.
Consequently, the amount of energy they require is at
most g(r3, d1). That contradicts deadline violation and
E(d1) = 0.

Case 2b: The processor is idle in [t3 − 1, t3) with
t3 > t2 and busy all the times in [t3, d1).
The processor stops idle at time t3 imperatively by rule
4.1 if E(t3) = C. By hypothesis, there is no job waiting
with deadline at or before d1 at t3 because t0 is the
latest one. Furthermore, no job with deadline after d1
is executed after t2 and consequently after t3. In order
not to waste energy, all the energy which arrives from
the source is used to advance jobs with deadline after
d1. The processor continuously commutes from active
state to inactive state. The storage is maintained at
maximum level until τ1 releases. Consequently, we have
E(r1) = C. As τ is feasible, g(r1, d1) ≤ C + Ep(r1, d1).
Thus, E(r1) + Ep(r1, d1) ≥ g(r1, d1). That contradicts
deadline violation and E(d1) = 0. �

Lemma 2 states that there exists some interval [t, d1)
where the energy demand g(t, d1) is higher than the
maximum energy equal to C + Ep(t, d1) that could be
available in [t, d1). We may draw Theorem 1, a major
result for uniprocessor scheduling with real time and
energy harvesting constraints.

Theorem 1: The ED-H scheduling algorithm is optimal
for the RTEH model.
Proof: According to Lemma 1, if ED-H cannot schedule
a given set of jobs τ because of time starvation, then

no other scheduling algorithm is able to schedule it.
According to Lemma 2, if ED-H cannot schedule a
given set of jobs τ because of energy starvation, then
no other scheduling algorithm is able to schedule it. As
a conclusion, if ED-H cannot schedule a given set of
jobs τ for time or/and energy starvation, then no other
scheduling algorithm is able to schedule it because
time starvation and energy starvation are the only two
reasons for deadline violations. And we conclude that
ED-H is optimal. �

Optimality signifies that ED-H can produce a valid
schedule as long as there is no time interval with a length
lower than the processor demand and no time interval
where the energy demand is greater than the available
energy. In other words, any job set which is neither
processor-overloaded nor energy-overloaded should be
feasible i.e. schedulable by ED-H.

5.2 Clairvoyance analysis

Now, let us show that ED-H is semi-online, more
exactly online with lookahead-D. In other words, taking
a decision at current time tc requires knowledge of
the energy incoming and jobs’arrivals on the next D
unit time-slots at the most. Recall that from our prior
results [8], we know that no online scheduling algorithm
can be optimal if the lookahead parameter is less than D.

Lemma 3: Computation of the slack time at runtime
can be achieved by an online lookahead-D algorithm.
Proof: From formulae given in [9], STτ (tc) can be
calculated from timing parameters of jobs with release
time lower than the deadline of the uncompleted
highest priority job ready at tc. An upper bound on the
relative deadline of this job is D. �

Lemma 4: Computation of the slack energy at runtime
can be achieved by an online lookahead-D algorithm.
Proof: The slack energy of a job τi given by (9) represents
the maximum available energy in [tc, di) after execution
of higher priority jobs i.e. jobs with release time after
tc and deadline at or before di. Consequently, the
slack energy of τi is the largest energy that could be
consumed in [tc, di) by lower priority jobs i.e. jobs with
a deadline greater than di. Let d be the deadline of the
highest priority job ready at time tc. Clearly, d− tc < D.
In order to calculate the amount of energy that could
be consumed by this job from time tc (i.e. the slack
energy of the system at tc), we only compute the slack
energy of the jobs that may preempt it i.e. the ones with
release time after tc and deadline less than d. And all
these jobs have a relative deadline at most equal to D. �

Theorem 2: The ED-H scheduling algorithm is online
lookahead-D.
Proof: We prove that every runtime dispatching decision
requires clairvoyance for the next D unit time-slots at



TO APPEAR IN IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 9

most. According to ED-H, clairvoyance is required at
time tc for computing STτ (tc) or PSEτ (tc) only. From
Lemma 3 and Lemma 4, ED-H is clearly an online
lookahead-D scheduler. �

One challenge is to make possible an accurate assess-
ment of the ambient energy at any current time for at
least the next D unit time-slots. In some applications, the
energy source may be modeled and the actual energy can
be calculated off-line. In some other applications, we can
determine online a lower bound on the energy produced
on sliding windows. These approximations come from
appropriate measurements and prediction methods [22].

6 FEASIBILITY TEST
This section is concerned with the algorithm which,
given a job set τ is capable of answering the question:
Is τ feasible? Notice that τ is feasible if and only if there
exists at least one schedule for which all the deadlines
can be met, given the capacity C of the energy storage,
and the source power Pp(t), for 0 ≤ t ≤ dMax.

As we proved that ED-H is optimal, we have to obtain
conditions upon the RTEH system under which the ED-
H scheduling algorithm guarantees to meet all deadlines
for this set of jobs. We will show that the schedulability
test for ED-H reduces to test time-feasibility and energy-
feasibility separately.

6.1 Time-feasibility
We first consider the time constraint case. In this case
all jobs have processing requirements only, i.e. for
every job τi ∈ τ , Ei = 0. We recall a basic result in the
classical scheduling theory which relates the processor
demand in each time interval with the length of this
interval. Lemma 5 below specifies a neccesary and
sufficient time-feasibility condition which comes down
to a necessary feasibility condition in the RTEH model.

Lemma 5: τ is time-feasible if and only if

SSTτ ≥ 0 (15)

Proof: “If”: Directly follows from Lemma 1.
“Only If”: See [31] �

Let us note that it suffices to compute the static
slack time for all intervals starting at a release time
and finishing at a deadline. Thus, the complexity
of the time-feasibility test is O(n2) since n2 time
intervals must be tested. While Lemma 5 is based on
the slack time approach, the following time-feasibility
test provides the same condition with the load approach:

Lemma 6: τ is time-feasible if and only if

USPτ ≤ 1 (16)

Informally, inequality (15) or (16) can be though of as a
requirement that the system not be processor-overloaded
in any time interval.

6.2 Energy-feasibility

Now, we consider the energy constraint case where
jobs have energy requirements only, i.e. for every job
τi ∈ τ , Ci = 0. In other words, each job executes
instantaneously.

Lemma 7: τ is energy-feasible if and only if

SSEτ ≥ 0 (17)

Proof: “If”: Directly follows from Lemma 2.
“Only If”: Since τ is energy-feasible, let us consider
an energy-valid schedule produced within [0, dMax).
The amount of energy demanded in each interval
of time [t1, t2), g(t1, t2), is necessarily less than or
equal to the actual energy available in [t1, t2) given
by E(t1) + Ep(t1, t2). An upper bound on E(t1) is
the maximum storable energy at time t1, that is
C. Consequently, g(t1, t2) is lower than or equal to
C + Ep(t1, t2). This leads to ∀ [t1, t2) ⊂ [0, dMax),
g(t1, t2) ≤ C + Ep(t1, t2) i.e. SSEτ (t1, t2) ≥ 0. Thus,
SSEτ ≥ 0. �

The energy-feasibility test can be expressed with the
energy load based formulation:

Lemma 8: τ is energy-feasible if and only if

UEτ ≤ 1 (18)

Proof: As proof of Lemma 8 since SSEτ (t1, t2) ≥ 0
amounts to UEτ (t1, t2) ≤ 1. �

We assume that the prediction of the ambient energy
on every time interval provides a fixed number of values.
Thus, the complexity of the energy-feasibility test is
O(n2) since n2 intervals must be tested.

6.3 ED-H schedulability test

Hereafter, we present a test for the purpose of validating
that a given job set can indeed meet its deadlines, be
given the capacity of the energy storage unit and
the incoming power function. We give a necessary
and sufficient condition for ED-H schedulability and
feasibility by virtue of optimality.

Theorem 3: τ is feasible if and only if

SSTτ ≥ 0 and SSEτ ≥ 0 (19)

Proof: “Only if”: Suppose that τ is feasible. Thus, τ is
time-feasible and energy feasible. From constraint (15)
in Lemma 5 and constraint (17) in Lemma 7, it is the
case that constraint (19) is satisfied.
“If”: We suppose that constraint (19) is satisfied and τ is
not schedulable by ED-H. Let us show a contradiction.
First, we assume that τ is not schedulable by ED-H
because of time starvation. Lemma 1 states that there
exists a time interval [t0, d1) such that h(t0, d1) > d1 − t0



TO APPEAR IN IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 10

i.e. d1− t0−h(t0, d1) < 0. Thus, SSTτ < 0 and condition
(19) in Theorem 3 is violated. Second, we assume
that τ is not schedulable by ED-H because of energy
starvation. Lemma 2 states that there exists a time
interval [t0, d1) such that g(t0, d1) > C + Ep(t0, d1) i.e.
C + Ep(t0, d1) − g(t0, d1) < 0. Thus, SSEτ < 0 and
condition 19 in Theorem 3 is violated. �

In other terms, Theorem 3 states that τ is feasible if
and only if τ is time-feasible and energy-feasible.

A criterion that can be used to measure the per-
formance of scheduling algorithms is the schedulable
utilization. Similarly to [18], we define the schedulable
processor utilization (respectively energy utilization) of a
scheduling algorithm as follows: A scheduling algorithm
can produce a valid schedule of any job set if the total
processor load (respectively energy load) is equal to or
less than the schedulable processor utilization (respec-
tively energy utilization) of the algorithm. Consequently,
the higher the schedulable processor utilization and the
higher the schedulable energy utilization, the better the
scheduling scheme.

The following theorem gives the feasibility test with
the load based formulation.

Theorem 4: τ is feasible if and only if

UPτ ≤ 1 and UEτ ≤ 1 (20)

Theorem 4 clearly shows that ED-H provides the
highest possible schedulable processor utilization and
energy utilization. In other words, the processor can be
continuously busy in certain time interval(s), consuming
both the entire capacity of the storage unit and all the
energy drawn from the environment while meeting
all the deadlines. This explains why no scheduling
algorithm can be better than ED-H.

Remark: In [25], Moser et al present an optimal solu-
tion (called LSA) to the same scheduling problem as we
do here. Nevertheless, their processing model assumes
that the energy consumption and the execution time of
every job behave proportional. Let constant Pmax such
that Ci = Ei

Pmax
. Consequently, g(t1, t2) = Pmax×h(t1, t2).

It can easily be verified that the above feasibility test
given by equations (19) comes down for this special case
to the LSA schedulability test reported in [25].

7 PRACTICAL CONSIDERATIONS

In this section, we consider the implications of the ED-
H scheduling algorithm for practical harvesting system
design. Most of prediction methods track past harvested
energy and use them to predict future energy availability
[15]. Various prediction models have been investigated
in [21]. For example, the moving average technique pre-
dicts future values based on the averages of the past
observations, giving equal weight to all past data. The

exponential smoothing technique uses different weight
factors for past values that depend on the distance from
the current time. The experiment reported by Liu et al.
highlight the important impact of the energy prediction
technique on the resulting performance measured in
terms of deadline miss rate. It is obvious that higher the
accuracy of the prediction mechanism, higher the time
and memory overhead incurred by its implementation.
Nonetheless, more limited its negative impact on the
performance of the actual ED-H scheduler compared
with theoretical optimal ED-H.
RTEH systems encompass various application areas.
Their common characteristics are the periodic activities
that mostly involve sampling a sensor, processing the
sensed value, transmitting data, sending data to an
actuator, etc. It follows that the parameters of jobs are
well known before the system becomes operational since
they are the instances of a fixed set of periodic taks.

Feasibility checking aims to predict whether time and
energy will be enough to meet the timing requirements.
Generally, the basic steps in the design of real-time
systems are to perform an off-line check and to schedule
and dispatch the jobs at runtime. For RTEH systems,
the checking can be done off-line when all the jobs
are instances of periodic tasks and the energy profile
is precisely characterized for all the application lifetime
such as constant over time. Otherwise, the checking
should be realized at runtime in dependance with the
horizon of the prediction technique.

Under the planning-based approach, time is divided
in windows. The schedulability checking is performed at
runtime for each window. It detects future deadline miss
and anticipates by deciding how to manage the transient
shortage of energy or processor overload that will occur
in the next window. For example, we may trade off
quality for timeliness by executing back-up jobs with
shorter execution times and lower energy requirements
[6]. A best-effort technique with no online check would
lead to deadline failures with both time and energy
wasting.

8 RELATED WORK

The technical challenges to achieve energy autonomy
and to make energy harvesting systems work effectively
are described in [15], [16]. Works of Kansal et al. focus
on solar energy harvesting sensor nodes. A framework
is presented for dynamically adapting the duty cycle of
the node, using measurement of the deviations in energy
values from an estimated model of the energy source.
The method was evaluated in 2005 on the Heliomote
platform. However, the above works do not target at
real-time applications where jobs execute with deadline
constraints.
The problem of scheduling RTEH systems has gained
little attention. In 2001, Allavena et al. [3] propose an
optimal claivoyant scheduler restricted to a set of inde-
pendent periodic tasks in a frame (all the tasks have



TO APPEAR IN IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 11

the same deadline and repetition period). The power
scavenged by the energy source is constant and all jobs
consume energy at a constant rate. This work has been
extended to processors provided with DVFS technology
and tasks with multiple versions [30].
In 2006, Moser et al. give a variant of EDF, called
Lazy Scheduling Algorithm (LSA) [25]. LSA provides
an optimal online solution with time lookahead-D on
the energy incoming. Theory and simulations show that
LSA outperforms EDF up to 45% in terms of achievable
capacity savings [26]. More recent research works can
be found in [19], [20], [21], [23] where extensions of
LSA with DVFS permit to improve the deadline miss
rate and energy saving. The so-called HA-DVFS algo-
rithm exploits the slack time of the jobs to slow down
their execution whenever possible or speeds up their
execution in order to use overflowing harvested energy.
The proposed EDF based power management techniques
use various slack management algorithms that permit
to consume the slack time by inserting idle periods and
thus refilling the energy storage. The above studies use a
similar model of the power source as we do but consider
that the total energy consumption of every job is propor-
tional to its execution time (cf remark in Section 6.3). In
real facts, instantaneous power consumed by jobs varies
along time depending on circuitry and devices required
by their execution (e.g. the power consumption when
transmitting data differs from when receiving data) [13],
[28]. This observation has motivated the study reported
here which applies to a general model.
The issue of dynamic priority scheduling of periodic task
sets was also investigated in [12]. The EDeg heuristic that
uses slack time and slack energy concepts is presented
with no schedulability test and no formal performance
assessment for it. EDeg makes a significant performance
enhancement in comparison to EDF in the light of simu-
lation results even if the harvested energy is needlessly
wasted in some specific situations.
Research on fixed priority scheduling for RTEH systems
is recent [1], [2]. An optimal scheduler, namely PFPasap,
is proposed. However, only periodic tasks as well as a
constant source power are considered.

9 CONCLUSION AND FUTURE WORKS

There are growing needs for energy harvesting capa-
bilities in a variety of applications such as military,
health and environmental (battlefield surveillance, tele-
monitoring of human physiological data, forest fire de-
tection, etc.) due to the limitation of traditional battery
power. Achieving perpetual and self-sustaining opera-
tion of an embedded device is becoming an important
topic of research. The main issue is to perform, in one
hand effective utilization of processor time and, in the
other hand effective utilization of available and future
energy resource with avoiding energy depletion.
This paper has considered an online scheduling problem
arising from any kind of real-time energy harvesting

system which must schedule jobs under deadline con-
straints. Most prior theoretical research concerning this
problem imposed that either the jobs are instances of
periodic tasks or there is a linear relationship between
execution time and energy consumption. In this work,
we have removed these assumptions.
We have presented a novel energy-aware scheduling
algorithm, namely ED-H, proved to be optimal and ap-
propriate for the scheduling of real time jobs in general.
ED-H is idling and takes decisions that result from slack
time and slack energy online computations. This makes
ED-H very flexible in the determination of busy v.s
inactive periods. We have formulated a schedulability
test for ED-H which decouples the time and energy
constraints. This test says us that ED-H is able to feasibly
schedule any job set as long as both the processor load
and the energy load are no more than one. We outline
that ED-H could be applied to a set of jobs composed
from the instances of periodic or/and sporadic tasks.
Moreover, our approach to job scheduling does not
require a model of energy replenishment and applies to
any energy source provided the prediction be possible
at runtime.
Our algorithm is also applicable to a wide range of
practical problems which are not necessarily in the field
of computer science. For example, it could be employed
for dynamic power management on large machines such
as electric vehicles where the harvested energy must be
provided for motors notably.
For future work, we will explore:

• adaptation of the proposed scheduling scheme to
fixed priority environments. This would suppose to
modify computation formulae for the slack time and
the slack energy accordingly.

• extension of ED-H to support DVFS technology.
• dimensionning i.e. calculation of the smallest capac-

ity for the energy storage unit, the smallest har-
vester, etc. This kind of analysis refers to sensitivity
analysis. Determining the so-called critical scaling
factor [32] is obviously of economic interest in the
design of any energy harvesting embedded device.

REFERENCES
[1] Y. Abdeddaim, D. Masson. Real-Time Scheduling of Energy

Harvesting Embedded Systems with Timed Automata, Proc. of 18th
IEEE Int. Conference on Embedded and Real-Time Computing
Systems and Applications, 2012.

[2] Y. Abdeddaim, Y. Chandarli, D.Masson. The Optimality of PFPasap
Algorithm for Fixed-Priority Energy-Harvesting Real-Time Systems,
Proc. of 25th Euromicro Conference on Real-Time Systems, 2013.

[3] A. Allavena, D. Mosse. Scheduling of Frame-based Embedded Systems
with Rechargeable Batteries, Workshop on Power Management for
Real-Time and Embedded Systems, 2001.

[4] S. Baruah, G. Koren, D. Mao, B. Mishra, A. Raghunathan, L. Rosier,
D. Shasha, and F. Wang. On the competitiveness of on-line real-time
task scheduling, Proc. of the Real-Time Systems Symposium, pp 106-
115, 1991.

[5] G. Buttazzo. Hard Real-Time Computing Systems: Predictable
Scheduling Algorithms and Applications., Springer, Berlin, 2005.

[6] H. Chetto, M. Chetto. Some Results of the Earliest Deadline Scheduling
Algorithm, IEEE Transactions on Software Engineering, Volume 15,
Issue 10, pp. 1261-1270, 1989.



TO APPEAR IN IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 12

[7] M. Chetto, A. Queudet. A Note on EDF Scheduling for Real-
Time Energy Harvesting Systems, IEEE Transactions on Computers,
DOI.ieeecomputersociety.org/10.1109/TC.2013.21, january 2013.

[8] M. Chetto, A. Queudet. Clairvoyance and Online Scheduling in
Real-Time Energy Harvesting Systems, Real-Time Systems, DOI:
10.1007/s11241-013-9193-1, 2013.

[9] M.Chetto-Silly. The EDL Server for Scheduling Periodic and Soft
Aperiodic Tasks with Resource Constraints, Real-Time Systems 17(1),
pp 87-111, 1999.

[10] B. Coleman, W. Mao. Lookahead scheduling in a real-time context,
Proc. of the 6th Int. Conference on Computer Science and Infor-
matics, pp. 205-209, 2002.

[11] M.-L. Dertouzos. Control Robotics: The Procedural Control of Phys-
ical Processes, Proc. of Int. Federation for Information Processing
Congress, 1974.

[12] H. El Ghor, M. Chetto, R. Hage Chehade. A real-time scheduling
framework for embedded systems with environmental energy harvesting,
Journal of Computers and Electrical Engineering, Volume 37 Issue
4, pp. 498-510, 2011.

[13] R. Jayaseelan, T. Mitra, X. Li. Estimating the Worst-Case Energy
Consumption of Embedded Software, Proc. of 12th IEEE Real-Time
and Embedded Technology and Applications Symposium, pp. 81-
90, 2006.

[14] X. Jiang, J. Polastre, D.-E. Culler. Perpetuel Environmentally Powered
Sensor Networks, Proc. of the 4th int. symposium on Information
processing in sensor networks, pp. 463-468, 2005.

[15] A. Kansal, J. Hsu, S. Zahedi, M.B. Srivastava. Power Management
in Energy Harvesting Sensor Networks, ACM Transactions on Em-
bedded Computing Systems, Vol. 6, No. 4, 2007.

[16] A. Kansal, J. Hsu. Harvesting aware Power Management for Sensor
Networks, Proc. of ACM/IEEE Design Automation Conference, pp.
651-656, 2006.

[17] C.-L. Liu, J.-W. Layland. Scheduling algorithms for multiprogram-
ming in a hard real-time environment. Journal of the Association for
Computing Machinery, Volume 20, Issue 1, pp. 46-61, 1973.

[18] J. W. S. Liu. Real-Time Systems, Prentice Hall, 592 pages, 2000.
[19] S. Liu, Q. Qiu, Q. Wu. Energy Aware Dynamic Voltage and Frequency

Selection for Real-Time Systems with Energy Harvesting, Proc. of
Design, Automation and Test in Europe, pp. 236-241, 2008.

[20] S. Liu, Q. Wu, Q. Qiu. An adaptive scheduling and voltage/frequency
selection algorithm for real-time energy harvesting systems, Proc. of
ACM/IEEE Design Automation Conference, pp. 782-787, 2009.

[21] S. Liu, J. Lu, Q. Wu, Q. Qiu. Harvesting-Aware Power Management
for Real-Time Systems with Renewable Energy, IEEE Transactions on
Very Large Scale Integration Systems, pp. 1-14, 2011.

[22] J. Lu, S. Liu, Q. Wu, Q. Qiu. Accurate modeling and prediction of
energy availability in energy harvesting real-time embedded systems,
Proc. of Int. Conference on Green Computing, pp. 469-476, 2010.

[23] J. Lu, Q.Qiu. Scheduling and mapping of periodic tasks on multi-core
embedded systems with energy harvesting, Proc. of Int. Conference on
Green Computing, pp. 1-6, 2011.

[24] Y.-H. Lu, L. Benini, G. De Micheli. Low-power job Scheduling for
Multiple Device, Proc. of Int. Workshop HW/SW Co-design, pp.
39-43, 2000.

[25] C. Moser, D. Brunelli, L. Thiele, L. Benini. Real-time scheduling for
energy harvesting sensor nodes, Real-Time Systems, Volume 37, Issue
3, pp. 233-260, 2007.

[26] C. Moser. Power Management in Energy Harvesting Embedded
Systems, PhD Thesis, ETH Zurich, 2009.

[27] S. Priya, D.-J. Inman. Energy Harvesting Technologies, Springer-
Verlag, New York (USA), 2009.

[28] V. Raghunathan, S. Ganeriwal, M. Srivastava. Emerging Techniques
for Long Lived Wireless Sensor Networks, IEEE Communications
Magazine, pp. 108-114, 2006.

[29] C. Renner, V. Turau. CapLibrate: Self-Calibration of an Energy
Harvesting Power Supply with Supercapacitors, Proc. of 23rd Int.
Conference on Architecture of Computing Systems, pp. 1-10, 2010.

[30] C. Rusu, R. Melhem, D. Mosse. Multiversion scheduling in recharge-
able energy-aware real-time systems, Proc. of 15th Euromicro Confer-
ence on Real-Time Systems, pp. 95-104, 2003.

[31] M. Spuri. Analysis of Deadline Scheduled Real-Time Systems, Techni-
cal Report RR-2772, INRIA, Le Chesnay France, 1996.

[32] S. Vestal. Fixed-priority sensitivity analysis for linear compute models,
IEEE Transactions on Software Engineering, Vol 20, no. 4, pp. 308-
317, 1994.

[33] F. Yao, A. Demers, et al. A Scheduling Model for Reduced CPU
Energy, Proc. of 36th IEEE Symposium on Foundations of Com-
puter Science, pp. 374-382, 1995.

Maryline Chetto received the degree of Docteur
de 3ième cycle in control engineering and the
degree of Habilitée à Diriger des Recherches
in Computer Science from the University of
Nantes, France, in 1984 and 1993, respectively.
From 1984 to 1985, she held the position of
Assistant professor of Computer Science at the
University of Rennes 1, while her research was
with the Institut de Recherche en Informatique
et Systèmes Aléatoires, Rennes. In 1986, she
returned to Nantes and is currently a professor

with the Institute of Technology of the University of Nantes. She is
conducting her research at IRCCyN institute. She has published more
than 100 journal articles and conference papers in the area of real-time
operating systems. Her current research interests include scheduling
and power management for real-time energy harvesting applications.


