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This paper is a discussion on the equivalence
between rain-on-the-roof excitation, diffuse field and
modal energy equipartition hypotheses when using
statistical energy analysis (SEA). A first example of a
simply supported plate is taken to quantify whether
a field is diffuse or the energy is equally distributed
among modes. It is shown that the field can be
diffuse in a certain region of the frequency-damping
domain with a single point force but without energy
equipartition. For a rain-on-the-roof excitation the
energy becomes equally distributed and the diffuse
field is enforced in all regions. A second example of
two plates coupled by a light spring is discussed. It
is shown that in addition to previous conclusions,
the power exchanged between plates agrees with the
statistical prediction of SEA if and only if the field
is diffuse. The special case of energy equipartition
confirms this observation.

1. Introduction

The statistical energy analysis (SEA) is a method
introduced by Lyon [1] in the sixties intended to estimate
the vibroacoustic response of complex structures in
the high frequency range by a statistical approach.
This is the analogous of statistical mechanics for
structural dynamics and as such could be called
statistical vibroacoustics [2,3]. However, the difficulties
encountered when using SEA for engineering purpose
have motivated many studies on the required assumptions
and have scattered the opinions of the scientific
community on their status.
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The main result of SEA is the so-called "coupling power proportionality". It states that the mean
power exchanged between two subsystems is proportional to the difference of modal energies.
The modal energy thus plays the role of vibrational temperature and the "convective coefficient"
is called coupling loss factor. Regarding the foundations, there are several manners to approach
SEA : the modal and the wave approaches. Fahy [4] gives a retrospective for each one. The modal
approach of SEA starts from basic equations of mechanical oscillators excited by random forces
and proves the existence of the coupling loss factors [5-7]; whereas the wave approach is based on
the evaluation of the reflection and transmission coefficients at a junction [8-10](considering plane
waves) and provides effective relationships for the coupling loss factors. Using these concepts, the
question of the equivalence between the hypotheses used in both approaches is raised.

The present work is a discussion on the assumptions of energy equipartition, rain-on-the-roof
and diffuse field. For that purpose, the two approaches are reviewed to highlight the usefulness of
the assumptions in the derivation of the coupling power proportionality equation. The example
of a simply supported plate is taken to evaluate the conditions to fulfill these assumptions; the
second example carried out on a two coupled plates system is set up to compare SEA coupling
power proportionality with the previous conditions.

2. Basics of SEA

The simplest system for which the coupling power proportionality may be stated consists in two
mechanical oscillators submitted to uncorrelated random forces as shown in Figure 1. The state is
described by a unique variable X; for the position of oscillator i. The governing equations are,
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Figure 1. Two oscillators having mass m;, stiffness k; and damping ¢; are coupled by an inertial M, an elastic K and a
gyroscopic G couplings excited by uncorrelated random forces Fj.

m1X1 + MXa+c1 X1+ GXo + k1 X1 + K(X1 — Xo) = Fy,

.. .. . . 2.1
moXo + M X1 +CQX2—GX1—|—I€2X2—|—K(X2—X1)=F2, @1)

where m; are the masses, ¢; the viscous damping coefficients and k; the spring stiffnesses of
oscillators. The oscillators are coupled through three constants M, G and K for respectively
inertial, gyroscopic and elastic couplings. These three kinds of coupling forces ensure that no
dissipation occurs in the coupling. With this respect, the first assumption of statistical energy
analysis is that the coupling is conservative. The external forces F; are assumed to be random. More
exactly, the second assumption of statistical energy analysis is that the forces are uncorrelated white
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noises. In particular the power spectral densities are constant over the whole frequency band and
the cross power density is null. Under these conditions, it is proved by Lyon and Maidanik [5] and
Lyon and Scharton [11] that the expectation of the power flow between oscillators is proportional
to the difference in the expectation of vibrational energies,

< Pia>=pB(<E1>—< Ey>), (2.2)

where the brackets <.> indicate a probability expectation. This is the coupling power
proportionality. The coefficient 3 is,

5 12 (A1925 + A QF + A1 Ag(A1023 + A202)) + (72 + 2ur) (A1023 + A2 02F) + K2(A1 + Ag)
(1= p?)[(023 — 23)2 + (A1 + A2)(A19025 + A2023)] (
2.3)

where Qf = (ki + K)/m;, Ay =c¢i/mg, p= M/ /mima, v=G//mims and k = K/,/mima.

A generalization to an arbitrary number of oscillators is achieved by Newland [12] who
introduced the perturbation technique. Defining a small parameter € for the strength of coupling,
the asymptotic developments of < P2 > and < E; > in powers of € leads to a direct comparison
of < P12 > and < E1 > — < E3 >. The coupling power proportionality as given in equation (2.2)
remains valid up to order two in € for any pair of oscillators with 3 as in equation (2.3) provided
that the coupling is assumed to be weak. This is the third assumption in statistical energy analysis.

15 1

2y N 7 2y

Figure 2. Energy exchanges between two subsystems containing oscillators.

The coupling power proportionality also applies to the exchange between groups of oscillators
(Figure 2). To this purpose, one introduces the notion of subsystem which are groups of oscillators
randomly excited by uncorrelated white noises but with the same level of power spectral density (rain-
on-the-roof excitation).

The usual way to derive the coupling power proportionality in a modal framework is
to consider energy equipartition between modes. Let us consider two subsystems containing
respectively N1 and N» oscillators (henceforth called modes). In each subsystem, the total
vibrational energy < E; > (with ¢ =1, 2) is the sum of individual modal energies. Furthermore,
the power exchanged < Pj2 > is the sum of individual exchanges between any pair of modes
(Figure 2). By applying the coupling power proportionality to any pair of modes and by assuming
the equipartition of modal energy (all modes have the same energy < E; > /N;),

(2.4)

< FE1> < FE9>
<P12>=B( L — 2 ),

Ny No

)
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where factor B is the sum of individual 3 for all pairs of modes. Assuming in addition that the
number of modes is large and the damping is light, the factor B simplifies. For an elastic coupling,
factor B reads )

B K noy ’

2w? M7 Mo

where M; the total mass of subsystem i. The conceptual difference between equations (2.3)
and (2.5) is that the former requires the exact values of all natural frequencies of all modes, an
information computationally costly in general which is not the case for the latter. This justifies the

2.5)

gain in simplicity and consequently in the computation time in using SEA.

In practice, systems are made of structural components which may be beams, plates, shells,
acoustical cavities, etc. And the subsystems are generally chosen as these components. In the
modal approach of statistical energy analysis, the vibrational field of each component is projected
on the modal basis (blocked modes) so that continuous subsystems are reduced to sets of
oscillators. Since the number of modes of continuous structures is infinite, the only further
assumption is that the number of modes is truncated. One introduces a frequency bandwidth
of analysis in which the power spectral density of excitation is flat. The notion of resonant modes
(modes whose natural frequency lies within the frequency band of external excitations) is also
introduced. It is assumed that the only resonant modes contribute to the global response.

The coupling loss factors are generally difficult to obtain by the modal approach of SEA due
to the considerations about distribution of the natural frequencies [13-15]. So, to determine them
in all situations of interest, the wave approach of SEA has been introduced. This second approach
of SEA is based on geometrical acoustics [16] and is quite similar to Sabine’s theory in room
acoustics. The frequency is assumed to be sufficiently high to allow an interpretation in terms of
rays and the energy exchange at an interface is assessed by solving the reflection and transmission
coefficients for plane waves. The coupling loss factors are then determined assuming that the
vibrational fields in all subsystems are diffuse.

In summary, the wave approach of SEA is mainly based on the diffuse field assumption
while the modal approach of SEA is rather based, on rain-on-the-roof excitation and energy
equipartition. These assumptions (Figure 3) lead to the same equation of coupling power
proportionality (equation (2.4)). This wave/modal duality has been underlined by many authors
and has turned out to be a central concept in all subsequent developments in SEA. However,
this duality raises many questions as for instance the equivalence of the three aforementioned
required assumptions and their respective domain of validity.

The aim of this paper is to examine each hypothesis, to discuss them on some simple examples
and evaluate their relevance in regards to the coupling power proportionality.

3. SEA Hypothesis

(a) Diffuse field

As discussed by Langley [17], two approaches are possible when talking about diffuse field, the
wave motion or the resonant modal energy point of view. It leads to different types of definitions.
In wave acoustics, Rossi [18] explains that a diffuse field is characterized by a constant sound
pressure level during steady state and a linear time decrease spatially independent when sources
are switched off. From the geometrical acoustics point of view given by Faller [19], an ideal diffuse
sound field is homogeneous and isotropic or, in other words, it is assumed that independent
sound waves of equal strength arrive at a receptor (the microphone) from all directions. Lyon [20]
proposed a definition of diffuseness from a statistical mechanics point of view where modes are
understood as oscillators. When sets of oscillators are taken three conditions must be satisfied :
(7) modes are equally energetic within the frequency band, (i¢) displacement and momenta of
a mode are statistically independent, (4i7) the displacements of different modes are statistically
independent within the frequency band. Fahy [21] defines diffuse field using the energy density
"the average energy density is the same throughout the volume of the enclosure". This will be our
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Figure 3. Different ways to obtain the coupling power proportionality - a wave-based approach (diffuse field) and a modal-
based approach (energy equipartition or rain-on-the-roof).

definition of diffuse field in the present article, the field is considered diffuse if homogeneous. The
question of the isotropic nature of a field is not broached here.

(b) Energy equipartition

In statistical physics, equipartition of energy arises under quite general conditions but provided
that non linear interactions between particles ensure the mixing of energy. For instance, in the
kinetic theory of gases each particle has a random motion and their energy are shared thanks to
their collisions. Remind that equipartition does not mean that all particles (modes in the present
context) have the same energy at a fixed time but only that their time-averaged energies are
equal [22]. A typical counter-example is precisely the one of linear oscillators since this is a non
ergodic system. Magionesi [23], in his discussion on the validity of the energy equipartition for
general engineering systems first recall the critical aspect related to the applicability formulated
in statistical mechanics. Each system of an ensemble has the same structure and the same
physical properties ; the "hypothesis of a uniform probability of finding representative points
of the ensemble of systems over equal-energy-surface in the phase space is assumed" and the
assumption of weak coupling is considered. He finally summarized the hypothesis where the
energy equipartition principle is supposed to hold: for linear homogenous and weakly coupled
oscillators, energy equipartition may be possible if the same energy quantity is injected via
random forces. Calling < Eff > and < EDB > the average energies of mode i in subsystem A and
mode k in subsystem B; < EA> and < EB > the global energies; N4 and Np the number of
modes, energy equipartition assumption can be written as [24],

<E4>

<EB>
Na :

;<E;§>: N
B

<Ef>= (3.1

(c) rain-on-the-roof excitation

In the modal approach of SEA the external force distribution is assumed to be statistically
independent [1], [12], so that all modes of the structure are excited with the same level. A force
field f(x,t) is called rain-on-the-roof if its autocorrelation function is,

Ryp(x,m) =< flz, ) f(@  t+7)>=6(x — 2")d(7)So, (3.2)
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where S is a constant. Let ¢, the mode shape of mode n, the modal forces Ly, = [ f1pndz has the
cross-correlation

< Lp(t)Lim(t +7)>= J J Yntm < f(x,t)f(2’,t + 7)dxdz’ > = Sod(T)0nm (3.3)

by virtue of orthonormality of modes so that modal forces are uncorrelated and white noises with
same power spectral density Sp. The converse is also true. Fahy [25] pointed out that the special
case of point excitation is not valid for SEA in the sense that it does not lead to the same level
of modal forces. A strict rain-on-the-roof field corresponds to an infinite number of uncorrelated
excitation points. But numerically, such an external force distribution is reduced to a large number
of excitation points placed randomly on the structure. In this paper, a quantification is made to
evaluate a "fair" rain-on-the-roof excitation.

4. Case of a simply supported plate

A typical issue in SEA is to compute the vibrational response of a structure excited by a random
force field. More precisely, one considers a structure excited by either a point force or a set of
random point forces having a power spectral density constant in a frequency band. The main goal
is to compute the expectation of the local energy < e > (z,y,w.) which depends on the receiver
point z,y and the frequency band Aw centred on w¢. The expectation of modal energy < E, >
(we) depends on the mode index n and the centre angular frequency wc. The diffuse nature of
a field can be examined by comparing the energy at different points on the structure while the
principle of energy equipartition is fulfilled if all modal energy are equal.

Let us consider a plate having dimensions Ly x Ly excited by a set of white noise random
transverse point forces. The bending rigidity is noted D = Eh®/12(1 — v?), p the mass density, h
the thickness, m = ph the mass per unit area, E' the Young modulus, v the Poisson ratio. Figure 4
illustrates the test case.

| L,
i‘y | (xi, yt/A

L.

Figure 4. Simply supported plate excited by several random forces having the power spectral density of white noise and
the output is the deflection at a receiver point.

The equation of motion governing the transverse displacement w(z, y, ¢t) of an undamped plate
excited by a force field f(z,y,t) is,

2
DV w(a,y,t) 4+ mT 0D _ oy p), @)
where V4 = az{: + ayf + 28'9— . In the case of N point sources the force distribution reads
N
fla,y,t) = Fi(t)d(z — :)d(y — i), (4.2)
i=1

where F; are random functions whose power spectral density S;(w) is assumed constant within
the frequency band Aw and zero elsewhere. Let H be the frequency response function between w
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at z,y and F; at z;, y;. By a modal decomposition and introducing an ad hoc damping loss factor
7 to account for dissipation, H is given by

¢7L($i7 yiﬁ% (337 Z/)

m(w — w? + jnwnw)’

H(z,y;mi, yisw) = Y

n>0

4.3)

where v, denotes the mode shape of mode n.

(a) Local energy expectation

The complete expression of the plate energy is given by Soedel [26]. However, for the sake of
simplicity one defines the local energy e(z, y,t) as twice the kinetic energy density. Therefore, the
expectation of local energy is

<elz,y,t) >=m <i(z,y,t)° >. (4.4)

The term < 2 > can be viewed as the autocorrelation function of i taken at zero. This is also the
Fourier transform of the power spectral density Sy;,; at zero,

<@,y 6)% >= R (0) = = roo ooy () oo 45)

:% .

But since forces are uncorrelated, the power spectral density of w is related to the power spectral
density of forces by,

N
S (w) =D W H* (w)Si(w), (4.6)
=1

Combining equations (4.4), (4.5) and (4.6) gives,

N
Si 2 772
<e>(x,y,wc):i_212ﬂ_mJ'Aww |H|"dw, 4.7)
where the bounds of the integral have been reduced to Aw since S;(w) is zero outside. The mean <
e > does not depend on time for stationnary forces. One has added w. as variable to highlight the
dependance on centre frequency. The problem comes down to the computation of the frequency

response function H between any two arbitrary points.

(b) Modal energy expectation
The global energy can be calculated by integrating the local energy over the plate surface. It yields,
Ly Ly
<E> (WC) :J' J <e> (,CE,y, wC)dmdy7 (48)
o Jo

The orthogonality of mode shapes reads [gtn(z,y)¢p(z,y)dedy=0dnp where 6np is
Kronecher’s symbol. Combining (4.3), (4.7) and (4.8) the expectation of the global energy reduces
to

<E>(we)=Y_ <En>. (4.9)
n>0

where the modal energy < E,, > is

J W2 Yn (24, y:)>
Aw  m((w —w?)? + (nwnw)?)

e

N
<Ep>(we)=Y_ dw. (4.10)

H
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(c) Diffuse field and energy equipartition criteria

From the distribution of local energy inside a plate, one must estimate whether the field is diffuse
or not. To obtain a single criterion, one introduces the standard deviation divided by the mean
value of the local energy expectation,
= —— 4.11
g4 > > ( )

where the (.) operator is defined by (.) = ﬁ [ () (z,y)dzdy

An analogous approach is adopted with energy equipartition. The criterion is similar to
equation (4.11),

—
<Ep>2—<Enp>
Oe= \/ " U (4.12)
where now (.) = % ny (.)- When o4 or oe approaches zero, the local energy is uniformly
distributed over the plate or the modal energy is uniformly distributed among modes.

5. Numerical results

As first example, let us consider a simply supported rectangular plate having characteristics as
shown in Table 1. The excitations have the same power spectral density constant in a octave
band centred on wc and their positions are randomly chosen with a uniform distribution. There
are 3000 receiver points which are also randomly chosen. Nine octave bands are considered.
For a simply supported rectangular plate, the mode index n is a double subscript (a, )

type symbol  value unit
Dimensions Ly x Ly 144x1.2 m
Density 7800 kg/m>

2.1E11 N/m?
Poisson ratio 0.3 —

p
Young modulus E
v
Thickness h 2 mm
n
fe

Damping coefficient [0.001 —0.9] -
Central octave frequency [16 — 8000] Hz
Frequency step df (Mfmaz)/4 Hz
Mean free path l 1.0282 m

Table 1. General parameters of the studied plate.

and the expressions of the undamped natural frequencies and the mode shapes are [27]
wn =+/D/m ((om/Lx)2 + (ﬂTr/Ly)Q) and ¥ (z,y)=(2/\/Ts Ly )sin(wax/ Ly)sin(By/ Ly). The
computation of the local energy follows from equation (4.7) with S; =1 and H given by equation
(4.3) where v, and wy as above. However, in the sum of equation (4.3) only resonant modes
(modes within the frequency band) have been considered. All non-resonant modes have been
simply neglected. The computation of the modal energy and the equipartition criterion follow
respectively equations (4.10) and (4.12) again limited to resonant modes.

(a) Diffuse field

Recently Le Bot [28] proposed validity diagrams on the frequency-damping space to have an
idea of how well the SEA method could be applied to a system. It leans on some specific
parameters: the number of resonant modes NN in the frequency band; the modal overlap M which
is defined as the product of the modal density and nwc; the attenuation factor per unit length
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m = nwl/cg where ¢y is the group speed of waves and | = wL; Ly /2(Ly + Ly) the mean free path;
the dimensionless wave number « = kl/27 where k = (w?m/ D) 1/4 s the structural wavenumber.
Such a representation is used to observe diffuse field.

Figure 5 shows the evolution of diffuse field criterion for a single point force versus ~ and
1. The dotted line represents the modal overlap M =1, the dashed line the attenuation factor
m =2 and the vertical solid line the number of modes N = 10. The presence of several points
(A,B,C,D,EF and G) is useful for the next paragraphs and sections.

[
&

dominant direct field

Damping loss factory

Figure 5. Diffuse field criterion for a rectangular plate excited by a single point force versus wavenumber - damping ratio
compared to the modal overlap M=1 (dotted line), the attenuation factor m=2 (dashed line) and the number of modes
N=10 (vertical solid line).

The 04=0.7 contour line defines the area of a quasi-diffuse field. It occurs principally at
high frequency and low damping. Above this contour line, increasing the damping, the criterion
quickly increases showing a change in the energy field. The field is no more diffuse but is
dominated by the direct field emanating from the point force. The 0.7 contour line is almost a
straight line above x = 1.84. As one can see, the dashed line representing the attenuation factor
m =2 fits well with that contour line. At low frequency (below x < 1.40 or N < 10) the diffuse
field criterion slightly increases. In these first frequency bands, only few modes are resonant and
the energy field is dominated by a modal behaviour. The dotted line drawn in Figure 5 shows
values for which the modal overlap M =1 occurs. It is often assumed that for energy methods
like SEA, the modal overlap of the structure has to be higher than one. This limit is clearly not
correlated to the diffuse field criterion.

Figure 6 shows the evolution of the diffuse field criterion versus the number of point
excitations with the same power spectral density. Two cases are tested represented by point A
and point B in Figure 5 : In Figure 6a the field is modal with a single excitation (k =1.29, f. =
31.5Hz;n=0.03) (point A in Figure 5). In Figure 6b the field is direct (x = 7.31, fc = 1000H z; ) =
0.1) with a single excitation (point B in Figure 5). In both cases the criterion decreases going
below 0.7 drawn in grey when the number of excitations increases (from 1 to 1000). A large
number of excitations is a favorable condition for diffuse field. The fact that the criterion tends
to non zero limit may be explained by two approximations done in the simulation : first, the
limited number of receiver points (3000) and the fact that the kinetic energy is fixed at zero by
the boundary conditions. By this second approximation, an outskirt area of the plate have a null
energy density. The size of this area depends on wavelength and thus on the frequency band: the
lower the frequency, the larger this area.
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Figure 6. Evolution of the diffuse field criterion versus the number of uncorrelated random excitations. (a) From modal
field to diffuse field (x = 1.29, f. = 31.5Hz; 1 =0.03) ; (b) From dominant direct field to diffuse field (kx = 7.31, f. =
1000Hz; n=0.1).

From Figure 6 it is observed that even if a field is not diffuse for a single excitation (o4 > 0.7)
it becomes diffuse when a higher number of excitations is used. It means that if a field is not
naturally diffuse in a subsystem (modal fields, direct fields) using a rain-on-the-roof excitation
would enforce it to be diffuse. Consequently, the hypothesis of a rain-on-the-roof excitation
implies the state of diffuse field. The reciprocal is not verified since it has been shown that a
field can be naturally diffuse even with a single excitation.

(b) Energy equipartition

Figures 7 and 8 show the repartition of modal energy in two test cases: point C' k =14.63; n =0.1
and point D k= 14.63; n=0.001 from Figure 5. The excitation is either a single (Figure 7) or a
group (Figure 8) of random forces.

The repartition of the modal energy when the plate is excited by a single excitation is
decreasing and can be fitted with a Weibull distribution. The first order of a such function reads

W(z,a,b) :abxbflefamb, (5.1)

where a and b are adjustable parameters. 36% to 38% of the total number of modes in the
frequency band have a low modal energy value. Very few modes have the maximum of the
modal energy (= 0.3%). The equipartition criterion o. for each case are between 1.1 and 1.2.
The frequency range influences the number of modes in the frequency band and the damping
coefficient the value of modal energies but the general distribution of modal energy is identical
for both cases. In the simulation, n = 0.1 (Figure 7a) gives (a = 0.006;b=0.063) and n = 0.001
(Figure 7b) gives (a = 1.201; b =0.049). a and b have such values that the Weibull distribution can
be approximated by,

W(z,a,b) ~ %b. (5.2)
This clearly shows that equipartition is usually not fulfilled for a single excitation. Figure 8
shows the repartition of modal energy when 10 random excitations are used and for two cases of

damping loss factor (point C' - Figure 8a and point D - Figure 8b). These repartition can be fitted
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Figure 7. Repartition of modal energy for a rectangular plate excited by a single point force. (a) point C: (k = 14.63, f. =
4kHz;n=0.1) and (b) point D: (x = 14.63, f =4kHz;n=0.001).
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Figure 8. Repartition of modal energy repartition for a plate excited by 10 point forces. (a) point C: (k = 14.63, f. =
4kHz;n=0.1) and (b) point D: (x = 14.63, f. =4kHz;n = 0.001).

with Gaussian distributions
(z—d) )?

G(z,c,d, f)= ce= 57

(5.3)

where ¢, d and f are adjustable parameters. The case n=0.1 gives (c=69.13;d =4.584F —
5, f =3.071FE — 5) and 1= 0.001 gives (¢ =85.15;d =5.207E — 3; f = 3.025F — 3). The value of
damping coefficient does not affect the repartition shape which is now centred on the mean value.
The rain-on-the-roof excitation is therefore favorable for equipartition.

The results may be interpreted as follows. The general expression of the modal energy is in the
special case of a single excitation,

Soton (i, yi)? J+<x> 2 1 Sotn (s, y:)*
n o) = ————2 707 = . 4
< Epn > (we) o o (R =P () dw S (5.4)
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where the limit of integration of equation (4.10) have been extended to infinity for simplicity.
The modal energy is therefore strongly dependent on the mode by the term ) /wn, which
demonstrates that the energy is not equally distributed. On the contrary, for an infinite number of
excitations and since lim o (1/N Zf\il Un(2,y:)?) = 1/(Ls Ly). The expectation of the modal

energy is,
N

e Sovnlwi,g)® . NSo 1
< B> (we) = ; 2mnwn, - LoLy2mnwn — wn’ (5.5)

The modal energy depends on the frequency. Consequently, a constant damping loss factor and
a rain-on-the-roof excitation leads to a modal energy which is not equally distributed [29]. But
when choosing another damping model, for example the one used by Lyon [1] that is a half-power
bandwidth A = nwy constant then the modal energy becomes

NSy

< En > ((Uc) = m

(.6)

In that case the energy is equally distributed between modes, the equipartition of modal energy
is reached.

Figure 9 represents the repartition of modal energy for both models of damping. The centre
frequency stays at f. =4000Hz and a group of 1000 random excitations is taken. The energy

Mumber of modes

} E (@) / mean(E (@ )

Figure 9. Modal energy repartition for a plate excited by 1000 random point forces. The centre frequency is f. = 4000H z
and the damping models are different : 7 is constant (n = 0.01) - light grey and A = 47 f. is constant (A = 502.65)-
dark grey repartition.

distribution is drawn in light grey when the modal damping ratio is maintained constant with =
0.01 (diffuse field condition). It corresponds to a Gaussian distribution similar to the one in Figure
8. Otherwise, when the half-power bandwidth defined as A =4 f. = 502.65 (in dark grey) is
maintained constant the modal energy distribution is again a Gaussian but much more tighten
showing that the modal energies have closed values. The energy equipartition criterion is in that
case three times lower (g = 0.067 instead of o = 0.211). This clearly shows that equipartition is
reached when the modal forces have same power spectral density (rain-on-the-roof) and when the
half-power bandwidth of modes is the same. The case of coupled subsystem is discussed in [30].
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For each damping models two approximations are done: the truncation on the mode number and
the number of excitation points which is finite.

This simple simulation on a single plate highlights that energy equipartition is a direct
consequence of rain-on-the-roof excitation whereas the diffuse field state can be either reached
by suitable values of damping and frequency or forced by a rain-on-the-roof excitation.

6. Case of two coupled plates

In this section the expectation of local and modal energies in coupled plates are calculated to
quantify the state of diffuse field and energy equipartition but also to evaluate the difference
between SEA prediction and the reference calculation on the ratio of global energies. The case of
two rectangular simply supported plates coupled by a spring is examined (Figure 10). w4 and wp

wg(x,y)

Ll; I
B (x.y5) f
7= Plate B

A 13

F
K walx,y) T

L | |
’ 7/A (x4,¥4) (xi, y7)

Plate A
A 1A

Figure 10. Simply supported plates coupled with stiffness K. Plate A is excited by a sum of random forces having the
power spectral density of white noise.

denote the deflection of plate A and plate B, K the coupling spring stiffness. If plate A is excited
by a sum of stationary stochastic processes f;(z, y, t) which follows equation (4.2), the equations
of motion are similar to equation (4.1) with an additional term for the coupling force,

4 O*wa(,y,t)
Dv lUA($, y7t) + mT = f(xvyat) + K(UIB(.]?B, yBat) - U)A(CEA, yAvt))é(x —TAY — yA)a
6.1)
for plate A and
0w z,y,t
DV (o, 1) +m B ey 0.0,y 0) — e,y )0 — 2, — u),
6.2)

for plate B where = 4,y 4 is the attached point of the spring on plate A and =5, yp on plate B.

Let GA(x, Y; Ti, Yi, w) (resp. GE ) be the frequency response function of the coupled system for
a receiver at x, y on plate A (resp. plate B) and a unit point force at x;, y; on plate A. To determine
G*, one introduces the frequency response functions of uncoupled plates

A A

A I7 Xq ) 3

H (m,y;xivyivw): Z ( 12/}71( y)Qw_: ( . yl) )7 (63)
S0 MW, —w? o nawa pw

where z;,y; may be either the position of an external force (i =1,2..N) or the position of the

coupling spring 2 4,y4 and 74, »** denote respectively the damping coefficient and the mode

shape of isolated plate. The frequency response function for isolated plate B is similar.
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The deflections at any receiver point are given by

G (@, ys i, yi,w) = HA(2, y5 21, yisw) + H (2,500,945 0) KW (24, 433 0) = WA (3, yi50)],
GB(z,y;0p,yp,w) = HE (2, y;25, yp; w) KW (25, yi30) — W5 (2, y5;0)],
(6.4)
where W4 (i, yi;w) = G (x4, ya; 24, yi,w) and W5(z,y;;0) =GP (xp,yp; 2, yi,w). The
displacements W4 and W2 are found by substituting x,y with x4, y4 and B, yB,

1+ KHYwa,yas2a,y450) —KHYwa,ya324,y450) | |[WA

~KH®(zp,yp;7p,yp;w) 1+ KHP(2p,yp;ap,yp;w)| |WP 6.5)

_ HA (x4, 9457, y5;w)
0

Then, the frequency response function G** and G at any receiver point are obtained by applying
(6.4) with W4 and WB just determined by equation (6.5).

(a) Local energy expectations

Using equation (4.7) the local energy density < e > (z, y, wc) for plate A is given by

N
S.
<ea> (@) =3 gim | W16 @y o (6.6)
i=1 w

idem for plate B.

(b) Modal energy expectations

The expectations of the modal energies for the two plates are found using a similar development
that was done for a single plate.

<EA>(wc):J

J <ep > (z,y,we)dzdy (6.7)
palra

idem for plate B. After calculation the global energy of plate A is
<E'>(we)= Y <Ep > (we) (6.8)
n>0
where the modal energy expectation is

N 2
<EX > (we) -3 Si J' W2 W (i, y3) + Ko (4, y) W5 (@4, yisw) = W (i, yi50)]]
Aw

m((@?,, — w22 + (nawanw)?)

dw,
= 2
(6.9)

for plate A and

<BP> (W)=Y Si J I K (25, yB) W (w1, yi5w)) — WB((J?i,yi;w))]Fdw’ (6.10)
Aw

=1 2m m((w2B,n - w2)2 + (anB,nw)Q)

for plate B.

7. Numerical results

The parameters used for the numerical simulation are presented in Table 2. The computation
of the expectations of local and modal energies follow the equations (6.6), (6.9) and (6.10). A
various number of random excitations is applied on plate A (from 1 to 100) with a uniform
distribution. There are 3000 receivers points which are randomly and uniformly placed on both
plates. The coupling spring is attached with plate A at x4 =0.72,y4 = 0.6 and with plate B at
xp =0.38,yp =1.06. The energy equipartition and diffuse field criteria are computed on each
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octave band. Moreover, similarly with the case of a single plate, only resonant modes within the
frequency band are taken in the calculation of H Aand HE.

type symbol value unit
Plate A Ly x Ly 144x12 m?
Plate B LExLE 139x11 m?
Density p 7800 kg/m®
Young modulus E 2.1E11 N/m?
Poisson ratio v 0.3 —
Thickness ha=hp 2 mm
Coupling stiffness K 981 N/m
Mean free path la 1.028 m
Mean free path lp 0.964 m

Table 2. General parameters of the coupled plates

The evolution of the diffuse field and the equipartition criteria for both plates are carried out
at high frequency (fc =2000H z) and high damping (n4 =np =0.1) (point E from Figure 5) in
Figure 11 while the number of random excitation increases. Concerning the diffuse state (Figure

35 T T T T

—&—Plale A
—=— Plate B

Diffuse field criterion
Equipartition criterion

0 20 40 60 80 100
Number of excitations

08r

061

04r

0.2r

(b)

—&—Plate A
—<—Plate B

—

40 60
Number of excitations

80

100

Figure 11. Diffuse field and energy equipartition criteria evolution versus number of excitations for two coupled plates at

point E: (k =10.35, fc =2kHz;na =np =0.1).

11(a)), results for coupled plates are along the lines of what has been said for a single plate. When
plate A is excited by a single point force the diffuse field criterion is high (o4 =~ 2.8) indicating a
strongly non-diffuse state. The energy is transferred to plate B via the stiffness which acts as a
located point force. The diffuse field criterion of plate B has consequently a high value (o4 ~ 2.8)
and the field in plate B is strongly non-diffuse. When the number of excitations increases up to
one hundred the diffuse field criterion of plate A decreases showing that the field becomes diffuse
in plate A. But the diffuse field criterion stays high for plate B since the excitation remains a single
point force. The dispersion bars are computed for a population of 10 simulations. They are large
with few excitations since results are strongly dependent on the excitation and receiver positions.
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For the energy equipartition criterion (Figure 11(b)), results are again in agreement with those
of an isolated plate: A decrease of the criterion for plate A is observed meaning that rain-on-the-
roof excitation is favorable to equipartition. The dispersion bars are high for both plates with few
excitations and quickly decrease. The energy equipartition criterion for plate B stays high (oe ~
1.17) since it is still excited by a single source. The modal energy distribution is never equally
distributed in plate B.

8. Evaluation of the coupling power proportionality

The global energies ratio given by equation (6.8) are now compared to their SEA predictions.

(a) SEA approach

For two coupled subsystems A and B, where A is excited by a force field supplying a mean power
< P4 >, the energy balance of each subsystem jointly with the coupling power proportionality
leads to the standard SEA equation [1],

1 [ <Pa> )\ _
We 0 o

where 114, np are the internal damping of subsystems A and B. The coupling loss factors n4p
and np 4 for two plates coupled by a spring are given by Mace [29]

<EA>
<EB>

NA +NAB —NBA

(8.1)
—1NAB nB +NBA

K? 1
32nw? \/pahaDavppheDp'

where D4, Dp are the bending stiffness of plate A and B and n4, ng = Lz Ly+/m/D/(47) are
the modal densities. The energy ratio predicted by SEA is therefore,

<EB> o
— A< =T s (8.3)
<ES> SEA I+ 354

NBA

WeMANAB = WeNBNBA = 8.2)

(b) Difference between SEA and reference

The error of SEA compared with the governing equations is,

<EP> <EP >
ASEAfreference = 1010g << EA >> - 1010g (<EA>> . (8.4)
SEA reference

where < EP > / < EA > g4 is estimated by equation (8.3) and the reference ratio by equation
(6.8).

Figure 12 illustrates the error Agpa_reference for different conditions of simulations
(repeated 10 times to compute the dispersion as excitations are randomly distributed). The
coupling stiffness varies for each simulation (K=981N/m circle marker or K=9.81N/m cross
marker). The conditions of modal field on plate A corresponds to point F in Figure 5 (fc =
31.5Hz, k =1.29;n4 =np = 0.001) with a single point force. The error is important whatever the
coupling strength is (around 20d B with a coupling of K = 981N /m) with a large dispersion. The
criteria of diffuse field and energy equipartition are 0214=O.75, Jf =0.97, 02=0.88 and ¢2=1.23
showing that these assumptions are not fulfilled. On modal field domain where there is neither
diffuse field nor energy equipartition SEA tends to overestimate the energy transfers.

Direct field conditions are set up with large damping coefficient (n4=np=0.1) a high frequency
(fe =4kHz, k = 14.35) and a single excitation (point C in Figure 5). The error is still high (=~ 11dB)
as well as dispersion. The criteria show that the conditions of equipartition and diffuse field are
not respected (0&4:3.03, Uf =3.56, af:1.20 and créB =2.39) which confirms that SEA cannot be used
in such a case.
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26 | > K=9.81Nm
@ 24
= 22
=
=20
=18
w 16
o1
‘=12
=710
w
ﬁ 8
= 6
p -
5 F c G E
0 E3 X
0 Modal field Direct field Diffuse field Equipartition
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Figure 12. Error between SEA and the reference method for several conditions : Modal field - point F:(x = 1.29;
na=np=0.001) 1 excitation ; Direct field - point C:(x = 14.35; na=np=0.1) 1 excitation ; Diffuse field - point
Gi(k =29.27, f.=16kH z; n4=np=0.0001) 1 excitation ; Energy equipartition - point E:(x = 10.35; n4=np=0.1) 100
excitations

Plate A is in diffuse field condition (09=0.12 and af =0.19) when the damping is low, the
excitation is single and the frequency band is high (point G). In that case the difference between
SEA and reference is near zero which means that a diffuse field state is a sufficient condition for
SEA even if neither the hypothesis of rain-on-the-roof nor energy equipartition are fulfilled.

Finally, being in energy equipartition condition (100 excitations, n4=np=0.1, fc =2kHz, k=
10.35 represented by point E) permits to apply correctly SEA. The energy equipartition criteria
are in that case o =0.25 and o2 =1.30. The measured error range from 1 to 2dB which may be
improved with a lighter coupling stiffness.

9. Conclusion

It has been shown that a rain-on-the-roof excitation usually implies a diffuse field state whatever
the damping and the frequency band. On the contrary, a point force can produce a diffuse field
if the damping is low and the frequency is high. The case of two coupled plates confirms these
observations made for a single plate.

The vibrational energy is equally distributed among modes when a rain-on-the-roof excitation
is applied provided that the half-power bandwidth is maintained constant. But in the mean time
the field becomes diffuse. This observation is valid for all studied frequency/damping cases.
Consequently energy equipartition indirectly implies diffuse field.

The two test cases reveal that the assumption with the larger domain of validity is the diffuse
field assumption (it consists in the domain of validity of the other assumptions plus the case of
a point force under low damping and high frequency). However, one must recall that diffuse
field and equipartition are consequences of the type of excitation and the internal properties of
the structure (either single excitation in the diffuse field domain or rain-on-the-roof excitation).
Assuming diffuse field or energy equipartition allows the use of SEA but is complicated to check
a priori. This is why to be sure that SEA may be applied, it is more convenient to assume rain-on-
the-roof excitation.

Acknowledgment

This work was supported by the Labex CeLyA of Universite de Lyon, operated by the French
National Research Agency (ANR-10-LABX-0060/ ANR-11-IDEX-0007)

0000000 V 908 Y 001d B10-BuiysiandAisioosieoreds: H



References

1. Lyon, R. H., Dejong, R. 1995 Theory and application of Statistical Energy Analysis. Buttersworths-
Heimann, Boston, MA.

2. Le Bot, A., Carcaterra, A., Mazuyer, D. 2010 Statistical vivroacoustics and entropy concept.
Entropy 12,2418-2435.

3. Le Bot, A. 2009 Entropy in statistical energy analysis ]. Acoust. Soc. Am. 125(3),1473-1478.

4. Fahy, F. 1994 Statistical energy analysis: a critical overview. Phil. Trans. R. Soc. Lond. A
346(1681),431-447.

5. Lyon, R.H., Maidanik, G. 1962 Power flow between linearly coupled oscillators J. Acoust. Soc.
Am. 34(5),623-639.

6. Crandall, S.H., Lotz, R. 1971 On the coupling loss factor in statistical energy analysis . Acoust.
Soc. Am. 49(1),352-356.

7. Lyon, R-H., Eichler, E. 1964 Random vibration of connected structures J. Acoust. Soc. Am.
36(7),1344-1354.

8. Langley, R.S., Heron, K.H. 1990 Elastic wave transmission through plate/beam junctions J.
Sound Vibrat. 143(2),241-253.

9. Wohle, W., Beckmann, TH., Schreckenbach, H. 1981 Coupling loss factors for statistical energy
analysis of sound transmission at rectangular structural slab joints, part 1 J. Sound Vibrat.
77(3),323-334.

10. Wohle, W., Beckmann, TH., Schreckenbach, H. 1981 Coupling loss factors for statistical energy
analysis of sound transmission at rectangular structural slab joints, part 2 J. Sound Vibrat.
77(3),335-344.

11. Scharton, T. D., Lyon, R. H. 1968 Power flow and energy sharing in random vibration. J. Acoust.
Soc. Am. 43(6),1332-1343.

12. Newland, D. E. 1966 Power flow between a class of coupled oscillators. J. Acoust. Soc. Am.
43(3),553-559.

13. Maxit, L., Guyader, J-L. 2001 Estimation of SEA coupling loss factors using a dual formulation
and fem modal information, part I: Theory J. Sound Vibrat. 239(5),907-930.

14. Maxit, L., Guyader, J-L. 2001 Estimation of SEA coupling loss factors using a dual formulation
and fem modal information, part II: Numerical applications. J. Sound Vibrat. 239(5),931-948.
15. Totaro, N. 2009 SEA coupling loss factors of complex vibro-acoustic systems. J. Vibrat. Ac.

131(4),410091-410098.

16. Le Bot, A. 2007 Derivation of statistical energy analysis from radiative exchanges J. Sound
Vibrat. 300,763-779.

17. Langley, R. S., Shorter, P. J. 2002 Diffuse wavefields in cylindrical coordinates. J. Acoust. Soc.
Am. 112(4),1465-1470.

18. Rossi, M. 2007 Audio. Presses Polytechniques et Universitaires Romandes, Lausanne.

19. Faller, C. 2010 Signal processing for audio and acoustics. EPFL, Lausanne.

20. Lyon, R. 1974 A new definition of diffusion. . Acoust. Soc. Am. 56(4),1300-1302.

21. Fahy, F. J. 1985 Sound and structural vibration. Academic, London.

22. Weaver, R.L. 2001 Equipartition and mean-square response in large undamped structure J.
Acoust. Soc. Am. 110(2),894-903.

23. Magionesi, F., Carcaterra, A. 2009 Insights into energy equipartition principle in large
undamped structures. |. Sound Vibrat. 322(4),851-869.

24. Lesueur, C. 1988 Rayonnement acoustique des structures. Eyrolles, Paris.

25. Fahy, F. 1970 Energy flow between oscillators: special case of point excitation. J. Sound Vibrat.
11,481-483.

26. Soedel, W. 2004 Vibrations of Shells and Plates. Marcel Dekker, New York.

27. Guyader, J-L. 2002 Vibrations in continuous media. ISTE, Paris.

28. Le Bot, A., Cotoni, V. 2010 Validity diagrams of statistical energy analysis. J. Sound Vibrat.
329(6),221-235.

29. Mace, B., LiJ. 2007 The statistical energy analysis of coupled sets of oscillators. Proc. R. Soc. A.
463,1359-1377.

30. Ungar, E. 1966 Fundamentals of statistical energy analysis of vibrating systems. Technical report,
Massachusetts.

10000000 V 208 4 0014 Buo-BuysiandAieioseforeds



	1 Introduction
	2 Basics of SEA
	3 SEA Hypothesis
	(a) Diffuse field
	(b) Energy equipartition
	(c) rain-on-the-roof excitation

	4 Case of a simply supported plate
	(a) Local energy expectation
	(b) Modal energy expectation
	(c) Diffuse field and energy equipartition criteria

	5 Numerical results
	(a) Diffuse field
	(b) Energy equipartition

	6 Case of two coupled plates
	(a) Local energy expectations
	(b) Modal energy expectations

	7 Numerical results
	8 Evaluation of the coupling power proportionality
	(a) SEA approach
	(b) Difference between SEA and reference

	9 Conclusion
	References

