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CONSERVATIVE AND NON-CONSERVATIVE METHODS BASED

ON HERMITE WEIGHTED ESSENTIALLY-NON-OSCILLATORY

RECONSTRUCTION FOR VLASOV EQUATIONS

CHANG YANG AND FRANCIS FILBET

Abstract. We introduce a WENO reconstruction based on Hermite interpo-
lation both for semi-Lagrangian and finite difference methods. This WENO re-
construction technique allows to control spurious oscillations. We develop third
and fifth order methods and apply them to non-conservative semi-Lagrangian

schemes and conservative finite difference methods. Our numerical results will
be compared to the usual semi-Lagrangian method with cubic spline recon-

struction and the classical fifth order WENO finite difference scheme. These
reconstructions are observed to be less dissipative than the usual weighted
essentially non-oscillatory procedure. We apply these methods to transport
equations in the context of plasma physics and the numerical simulation of
turbulence phenomena.

Keywords. Finite difference method; semi-Lagrangian scheme; Hermite WENO recon-

struction; Vlasov-Poisson model; Guiding-center model; Plasma physics.
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1. Introduction

Turbulent magnetized plasmas are encountered in a wide variety of astrophysical
situations like the solar corona, accretion disks, but also in magnetic fusion devices
such as tokamaks. In practice, the study of such plasmas requires solving the
Maxwell equations coupled to the computation of the plasma response. Different
ways are possible to compute this response: the fluid or the kinetic description. Un-
fortunately the fluid approach seems to be insufficient when one wants to study the
behavior of zonal flow, the interaction between waves and particles or the occurrence
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of turbulence in magnetized plasmas for example. Most of the time these plasmas
are weakly collisional, and then they require a kinetic description represented by
the Vlasov-Maxwell system. The numerical simulation of the full Vlasov equation
involves the discretization of the six-dimensional phase space (x,v) ∈ R3×R3, which
is still a challenging issue. In the context of strongly magnetized plasmas however,
the motion of the particles is particular since it is confined around the magnetic
field lines; the frequency of this cyclotron motion is faster than the frequencies of
interest. Therefore, the physical system can be reduced to four or five dimensions
by averaging over the gyroradius of charged particles (See for a review [1, 14]).

The development of accurate and stable numerical techniques for plasma turbu-
lence (4D drift kinetic, 5D gyrokinetic and 6D kinetic models) is one of our long
term objectives.

Actually there are already a large variety of numerical methods based on di-
rect numerical simulation techniques. The Vlasov equation is discretized in phase
space using either semi-Lagrangian [7, 8, 26, 27], finite element [17], finite difference
[6, 28, 10] or discontinuous Galerkin [4, 18] schemes. Most of these methods are
based on a time splitting discretization which is particularly efficient for classical
systems as Vlasov-Poisson or Vlasov-Maxwell systems. In that case, the characte-
ristic curves corresponding to the split operator are straight lines and are solved
exactly. Therefore, the numerical error is only due to the splitting in time and the
phase space discretization of the distribution function. Furthermore for such time
splitting schemes, the semi-Lagrangian methods on Cartesian grids coupled with
Lagrange, Hermite or cubic spline interpolation techniques are conservative [2, 8].
Hence, these methods are now currently used and have proved their efficiency for
various applications. In this context semi-Lagrangian methods are often observed to
be less dissipative than classical finite volume or finite difference schemes. However,
for more elaborated kinetic equations like the 4D drift kinetic [15] or 5D gyrokinetic
[16] equations, or even the two dimensional guiding center model [27], time split-
ting techniques cannot necessarily be applied. Thus characteristic curves are more
sophisticated and required a specific time discretization. For instance, in [15, 16]
several numerical solvers have been developed using an Eulerian formulation for
gyro-kinetic models. However, spurious oscillations often appear in the non-linear
phase when small structures occur and it is difficult to distinguish physical and
numerical oscillations. Moreover, for these models semi-Lagrangian methods are
no more conservative, hence the long time behavior of the numerical solution may
become unsuitable.

For this purpose, we want to develop a class of numerical methods based on
the Hermite interpolation which is known to be less dissipative than Lagrange
interpolation [8] together with a weighted essentially non-oscillatory (WENO) re-
construction applied to semi-Lagrangian and finite difference methods. Actually,
Hermite interpolation with WENO schemes were already studied in [23] in the con-
text of discontinuous Galerkin methods with slope limiters. A system of equations
for the unknown function and its first derivative is evolved in time and used in
the reconstruction. Moreover, a similar technique, called CIP (Cubic Interpolation
Propagation), has also been proposed for transport equations in plasma physics ap-
plications [22], but the computational cost is strongly increased since the unknown
and all the derivatives are advected in phase space. In [8], a semi-Lagrangian
method with Hermite interpolation has been proposed and shown to be efficient
and less dissipative than Lagrangian interpolation. In this latter case, the first
derivatives are approximated by a fourth order centered finite difference formula.
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Here, we also apply a similar pseudo-Hermite reconstruction [8] and meanwhile
introduce an appropriate WENO reconstruction to control spurious oscillation lead-
ing to nonlinear schemes. We develop third and fifth order methods and apply them
to semi-Lagrangian (non-conservative schemes) and conservative finite difference
methods. Our numerical results will be compared to the usual semi-Lagrangian
method with cubic spline reconstruction [27] and the classical fifth order WENO
finite difference scheme [20].

The paper is organized as follows : we first present the Vlasov equation and
related models which will be investigated numerically. Then in Section 3, the
semi-Lagrangian method is proposed with high order Hermite interpolation with a
WENO reconstruction to control spurious oscillations. In Section 4, conservative
finite difference schemes with Hermite WENO reconstructions are detailed. The
Section 5 the one-dimensional free transport equation with oscillatory initial data
is investigated to compare our schemes with classical ones (semi-Lagrangian with
cubic spline interpolation and conservative finite difference schemes with WENO
reconstruction). Then we perform numerical simulations on the simplified parax-
ial Vlasov-Poisson model and on the guiding center model for highly magnetized
plasma in two dimension.

2. The Vlasov equation and related models

The evolution of the density of particles f(t,x,v) in the phase space (x,v) ∈
Rd ×Rd, d = 1, ..,3, is given by the Vlasov equation,

(1)
∂f

∂t
+ v ⋅ ∇xf + F(t,x,v) ⋅ ∇vf = 0,

where the force field F (t,x,v) is coupled with the distribution function f giving
a nonlinear system. We mention the well known Vlasov-Poisson (VP) and Vlasov-
Maxwell (VM) models describing the evolution of particles under the effects of
self-consistent electro-magnetic fields. We define the charge density ρ(t, x) and
current density J(t,x) by
(2) ρ(t,x) = q∫

Rd
f(t,x,v)dv, J(t,x) = q∫

Rd
v f(t,x,v)dv,

where q is the single charge. The force field is given for the Vlasov-Poisson model
by

(3) F(t,x,v) = q

m
E(t,x), E(t,x) = −∇xφ(t,x), −∆xφ = ρ

ε0
,

where m represents the mass of one particle. For the Vlasov-Maxwell system, we
have

(4) F(t,x,v) = q

m
(E(t,x) + v ∧B(t,x) ),

and E, B are solution of the Maxwell equations

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂E

∂t
− c2curlB = − J

ε0
,

∂B

∂t
+ curlE = 0,

divE = ρ

ε0
, divB = 0,

(5)

with the compatibility condition

(6)
∂ρ

∂t
+ divxJ = 0,
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which is verified by the Vlasov equation solution.
In the sequel we will also consider the so-called guiding center model [3], which

has been derived to describe the evolution of the charge density in a highly mag-
netized plasma in the transverse plane of a tokamak. This model is described as
follows

(7)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂ρ

∂t
+U ⋅ ∇ρ = 0,

−∆φ = ρ,
where the velocity U = (−∂yφ, ∂xφ) is divergence free.

Transport equations (1) or (7) can be recast into an advective form

(8)
∂f

∂t
+ A ⋅ ∇f = 0,

where A ∶ R2d ×R+ → R2d. Hence, classical backward semi-Lagrangian method can
be applied to solve (8). Furthermore, under the assumption ∇ ⋅A = 0, equations
(1) or (7) can also be rewritten in a conservative form

(9)
∂f

∂t
+ div(Af) = 0.

for which a finite difference method can be used.

3. Hermite WENO reconstruction for semi-Lagrangian methods

We introduce a high order Hermite interpolation coupled with a weight essen-
tially non-oscillatory (HWENO) reconstruction for semi-Lagrangian methods. Ac-
tually, the semi-Lagrangian method becomes a classical method for the numerical
solution of the Vlasov equation because of its high accuracy and its small dissipa-
tion [21, 27]. Moreover, it does not constraint any restriction on the time step size.
Indeed, the key issue of the semi-Lagrangian method compared to classical Euler-
ian schemes is that it uses the characteristic curves corresponding to the transport
equation to update the unknown from one time step to the next one. Let us recall
the main feature of the backward semi-Lagrangian method. For a given s ∈ R+, the
differential system

⎧⎪⎪⎪⎨⎪⎪⎪⎩

dX

dt
=A(t,X),

X(s) = x,
is associated to the transport equation (8). We denote its solution by X(t; s,x).
The backward semi-Lagrangian method is decomposed into two steps for computing
the function fn+1 at time tn+1 from the function fn at time tn :

(1) For each mesh point xi of phase space, compute X(tn; tn+1,xi), the value
of the characteristic at time tn who is equal to xi at time tn+1.

(2) As the function f of transport equation verifies

fn+1(xi) = fn(X(tn; tn+1,xi)),
we obtain the value of fn+1(xi) by computing fn(X(tn; tn+1,xi)) by inter-
polation, since X(tn; tn+1,xi) is not usually a mesh point.

In practice, a cubic spline interpolation is often used [5, 13]. It gives very good
results, but it has the drawback of being non local which causes a higher commu-
nication overhead on parallel computers. Moreover spurious oscillations may occur
around discontinuities. On the other hand, the cubic Hermite interpolation is lo-
cal, and has been shown in [8] to be less dissipative than Lagrange interpolation
polynomial. However, it has still spurious oscillations for discontinuous solution.
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Here, we develop a third and fifth order Hermite interpolation coupled with a
weighted essentially non-oscillatory procedure, such that it is accurate for smooth
solutions and it removes spurious oscillations around discontinuities or high fre-
quencies which cannot be solved on a fixed mesh.

3.1. Third order Hermite WENO interpolation. Consider a uniform mesh
(xi)i of the computational domain and assume that the values of the distribution
function (fi)i and its derivative (f ′i)i are known at the grid points. The standard
cubic Hermite polynomial H3(x) on the interval Ii = [xi, xi+1] can be expressed as
follows :

(1)

H3(x) = fi + fi+1 − fi
∆x

(x − xi) + (fi+1 − fi) −∆xf ′i
∆x2

(x − xi)(x − xi+1)
+∆x(f ′i + f ′i+1) − 2(fi+1 − fi)

∆x3
(x − xi)2(x − xi+1),

The polynomial H3(x) verifies :⎧⎪⎪⎨⎪⎪⎩
H3(xi) = fi, H ′3(xi) = f ′i ,
H3(xi+1) = fi+1, H ′3(xi+1) = f ′i+1.

Moreover, we define two quadratic polynomials on Ii by⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
hl(x) = fi + fi+1 − fi

∆x
(x − xi) + (fi+1 − fi) −∆xf ′i

∆x2
(x − xi)(x − xi+1),

hr(x) = fi + fi+1 − fi
∆x

(x − xi) + ∆xf ′i+1 − (fi+1 − fi)
∆x2

(x − xi)(x − xi+1).
The polynomial hl verifies

hl(xi) = fi, hl(xi+1) = fi+1, h′l(xi) = f ′i ,
while hr verifies

hr(xi) = fi, hr(xi+1) = fi+1, h′r(xi+1) = f ′i+1.
The idea of WENO reconstruction is now to apply the cubic polynomial H3

when the function f is smooth, otherwise, we use the less oscillatory second order
polynomial between hl or hr. Thus, let us write H3 as follows

H3(x) = wl(x)pl(x) + wr(x)pr(x),
where wl and wr are WENO weights depending on x. When the function f is
smooth, we expect that

wl(x) ≈ cl(x) = xi+1 − x
∆x

and wr(x) ≈ cr(x) = 1 − cl(x),
so that we recover the cubic Hermite polynomial. Otherwise, we expect that

(2) wl(x) ≈ 1, wr(x) ≈ 0 or wl(x) ≈ 0, wr(x) ≈ 1
according to the region where f is less smooth. To determine these WENO weights,
we follow the strategy given in [20] and first define smoothness indicators by inte-
gration of the first and second derivatives of hl and hr on the interval Ii :⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

βl = ∫ xi+1

xi

∆x(h′l)2 +∆x3(h′′l )2dx = (fi − fi+1)2 + 13

3
((fi+1 − fi) −∆xf ′i)2,

βr = ∫ xi+1

xi

∆x(h′r)2 +∆x3(h′′r )2dx = (fi − fi+1)2 + 13

3
(∆xf ′i+1 − (fi+1 − fi))2.

Then we set wl and wr as

wl(x) = αl(x)
αl(x) + αr(x) and wr(x) = 1 −wl(x),
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where

αl(x) = cl(x)(ε + βl)2 and αr(x) = cr(x)(ε + βr)2 .
where ε = 10−6 to avoid the denominator to be zero.

Observe that when the function f is smooth, the difference between βl and βr

becomes small and the weights wl(x) ≈ cl(x) and wr(x) ≈ cr(x). Otherwise, when
the smoothness indicator βs, s = l, r blows-up, then the parameter αs and the weight
ws goes to zero, which yields (2).

Finally, let us mention that here the value of the first derivative at the grid point
xi is approximated by a fourth-order centered finite difference formula

(3) f ′i = 1

12∆x
(8(fi+1 − fi−1) − (fi+2 − fi−2)).

3.2. Fifth order Hermite WENO interpolation. We can extend previous method
to a fifth order Hermite WENO (HWENO5) interpolation. In the same way, we
first construct a fifth degree polynomial H5(x) on the interval Ii

H5(xj) = fj , j = i − 1, i, i + 1, i + 2, H ′5(xi−1) = f ′i−1,H ′5(xi+2) = f ′i+2
and then three third degree polynomials hl(x), hc(x), hr(x) verifying

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

hl(xj) = fj , j = i − 1, i, i + 1, h′l(xi−1) = f ′i−1,
hc(xj) = fj , j = i − 1, i, i + 1, i + 2,
hr(xj) = fj , j = i, i + 1, i + 2, h′r(xi+2) = f ′i+2,

where the first derivative f ′i is given by a sixth order centered approximation

f ′i = 1

60
((fi+3 − fi−3) − 9(fi+2 − fi−2) + 45(fi+1 − fi−1)).

Then the polynomial H5 can be written as a convex combination

H5(x) = wl(x)hl(x) +wc(x)hc(x) +wr(x)hr(x),
where wl(x), wc(x), wr(x) are WENO weights depending on x. Similarly smooth-
ness indicators are computed by integration of the first, second and third order
derivatives of hl(x), hc(x), hr(x) on the interval Ii :

βj = ∫ xi+1

xi

∆x(h′j)2 +∆x3(h′′j )2 +∆x5(h′′′j )2dx, j = l, c, r.

Finally, the WENO weights are determined according to the smoothness indicators

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wl(x) = αl(x)
αl(x) + αc(x) + αr(x) , αl(x) = cl(x)(ε + βl)2 , cl(x) = (x − xi+2)2

9∆x2
,

wc(x) = αc(x)
αl(x) + αc(x) + αr(x) , αc(x) = cc(x)(ε + βc)2 , cc(x) = 1 − cl(x) − cr(x),

wr(x) = αr(x)
αl(x) + αc(x) + αr(x) , αr(x) = cr(x)(ε + βr)2 , cr(x) = (x − xi−1)2

9∆x2
.

This polynomial reconstruction allows to get fifth order accuracy for smooth
stencil and the various stencils are expected to damp oscillations when filamentation
of the distribution function occurs. Finally, let us observe that this technique can
be easily extended to high space dimension on Cartesian grids.
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4. Hermite WENO reconstruction for conservative finite difference

methods

When the velocity A is not constant (8), the semi-Lagrangian method is not
conservative even when divA = 0, hence mass is no longer conserved and the long
time behavior of the numerical solution can be wrong even for small time steps.
Therefore, high order conservative methods may be more appropriate even if they
are restricted by a CFL condition. An alternative is to use the finite difference
formulation in the conservative form and to use the semi-Lagrangian method for
the flux computation [24, 25].

In this section, we extend Hermite WENO reconstruction for computing numer-
ical flux of finite difference method. Suppose that {fi}1≤i≤N is approximation of

f(xi). We look for the flux {f̂i+1/2}0≤i≤N such that it approximates the derivative
f ′(x) to k-th order accuracy :

f̂i+1/2 − f̂i−1/2
∆x

= f ′(x) +O(∆xk).
Let us define a function g such that

(1) f(x) = 1

∆x
∫ x+∆x/2

x−∆x/2
g(s)ds,

then clearly

f ′(x) = 1

∆x
[g(x +∆x/2) − g(x −∆x/2)] .

Hence we only need

f̂i+1/2 ≈ p(xi +∆x/2).
Let us denote by G one primitive of g

G(x) = ∫ x

−∞
g(s)ds,

then (1) implies

G(xi+1/2) = i∑
j=−∞

∫ xj+1/2

xj−1/2

g(s)ds =∆x
i∑

j=−∞

fj =∶ Gi+1/2.

Thus, given the point values {fi}i, the primitive function G(x) is exactly known at
x = xx+1/2. We thus can approximate G(x) by an interpolation method. Therefore,

(2) g(xi+1/2) = dG

dx
∣
x=xi+1/2

.

Now let us interpolate the primitive function G(x). Here we give the Hermite
WENO scheme and outline the procedure of reconstruction only for the fifth order
accuracy case.

The aim is to construct an approximation of the flux f−
i+1/2 by the Hermite

polynomial of degree five together with a WENO reconstruction from point values{fi} :
(1) We construct the Hermite polynomial H5 such that

H5(xj+1/2) = Gj+1/2, j = −2,−1,0,1, H ′5(xj+1/2) = G′j+1/2, j = −1,0,
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(2) We construct cubic reconstruction polynomials Hl(x), Hc(x), Hr(x) such
that :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Hl(xj+1/2) = Gj+1/2, j = −2,−1,0, H ′l(xi−1/2) = G′i−1/2,
Hc(xj+1/2) = Gj+1/2, j = −2,−1,0,1,
Hr(xj+1/2) = Gj+1/2, j = −1,0,1, H ′r(xi+1/2) = G′i+1/2,

where G′
i+1/2 is the sixth order centered approximation of first derivative.

Let us denote by hl(x), hc(x), hr(x), h5(x) the first derivatives of Hl(x),
Hc(x), Hr(x), H5(x) respectively. By evaluating hl(x), hc(x), hr(x),
h5(x) at x = xi+1/2, we obtain

h5(xi+1/2) = −8fi−1 + 19fi + 19fi+1 + 3H
′
i−1/2 − 6H ′i+1/2

27

and

hl(xi+1/2) = −2 fi−1 + 2fi + G′i−1/2,

hc(xi+1/2) = −fi−1 + 5 fi + 2 fi+1
6

,

hr(xi+1/2) = fi + 5 fi+1 − 2G′
i+1/2

4
.

(3) We evaluate the smoothness indicators βl, βc, βr, which measure the smooth-
ness of hl(x), hc(x), hr(x) on the cell Ii.

βl = ∫ xi+1

xi

∆x(h′l(x))2 +∆x3(h′′l (x))2dx

= 1

16
(835f2

i−1 + 139f2
i + 300(H ′i−1/2)2 − 674fi−1fi − 996fi−1H ′i−1/2 + 396fiH ′i−1/2) ,

βc = ∫ xi+1

xi

∆x(h′c(x))2 +∆x3(h′′c (x))2dx

= 1

12
(13f2

i−1 + 64f2
i + 25f2

i+1 − 52fi−1fi + 26fi−1fi+1 − 76fifi+1) ,
βr = ∫ xi+1

xi

∆x(h′r(x))2 +∆x3(h′′r (x))2dx

= 1

16
(55f2

i + 367f2
i+1 + 156(H ′i+1/2)2 − 266fifi+1 + 156fiH ′i+1/2 − 468fi+1H ′i+1/2) .

(4) We compute the non-linear weights based on the smoothness indicators

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wl = αl

αl + αc + αr

, αl = cl(ε + βl)2 ,
wc = αc

αl + αc + αr

, αc = cc(ε + βc)2 ,
wr = αr

αl + αc + αr

, αr = cr(ε + βr)2 ,



NUMERICAL METHODS BASED ON HWENO RECONSTRUCTION FOR VLASOV EQUATIONS9

where the coefficients cl = 1/9, cc = 4/9, cr = 4/9 are chosen to get fifth
order accuracy for smooth solutions and the parameter ε = 10−6 avoids the
blow-up of αk, k = {l, c, r}.

(5) The flux f−
i+1/2 is then computed as

f−i+1/2 = wl hl(xi+1/2) + wc hc(xi+1/2) + wr hr(xi+1/2).
The reconstruction to f+

i+1/2 is mirror symmetric with respect to xi+1/2 of the above

procedure.

5. Numerical simulation of Vlasov equation and related models

We start with a very basic test on the one dimensional transport equation with
constant velocity to check the order of accuracy and to compare the error amplitude
of the various numerical schemes. Then we perform numerical simulations on the
simplified paraxial Vlasov-Poisson model and on the guiding center model for highly
magnetized plasma in the transverse plane of a tokamak.

In this section we will compare our Hermite WENO reconstruction with the usual
semi-Lagrangian method with cubic spline interpolation without splitting [27], and
with the classical fifth order finite difference technique [20] coupled with a fourth
order Runge-Kutta scheme for the time discretization.

5.1. 1D transport equation. We compare our Hermite WENO reconstruction
with various classical methods for solving the free transport equation

(1)
∂f

∂t
+ ∂f

∂x
= 0, x ∈ [−1,1], t ≥ 0,

with periodic boundary conditions.
Let us first consider a smooth solution, where the initial condition is chosen as

f(0, x) = sin (πx) , x ∈ [−1,1].
We present in Table 1, the numerical error for different methods. On the one hand
for semi-Lagrangian methods, the Hermite WENO interpolation is compared with
the cubic spline interpolation. The semi-Lagrangian method is unconditionally sta-
ble, we thus choose a CFL number larger than one, e.g. CFL = 2.5. We observe that
the cubic spline and Hermite WENO reconstructions have both third order accu-
racy, and the numerical error has almost the same amplitude. The semi-Lagrangian
method with a fifth order Hermite WENO reconstruction has fifth order accuracy,
thus it is much more accurate than the previous third order methods.

On the other hand we focus on the finite difference method and compare the
Hermite WENO reconstruction with the classical fifth order WENO reconstruc-
tion [20]. We observe that these two methods have fifth order accuracy, but the
Hermite WENO interpolation method is much more accurate than the usual WENO
method. Furthermore, for the same order of accuracy the semi-Lagrangian method
is much more precise than the finite difference scheme, which is expected for linear
problems since the error only comes from the polynomial interpolation.

We next consider a step function as follows

(2) f(0, x) = ⎧⎪⎪⎨⎪⎪⎩
1, for − 1 ≤ x ≤ 0,
0, otherwise.

Comparisons of the methods are now summarized in Table 2. We first no-
tice that all the methods can achieve order of accuracy of p

p+1
, where p is degree

of polynomial. On the one hand, it is clear that semi-Lagrangian methods are
more precise than finite difference ones. More precisely for nx ≤ 103, the cubic
spline interpolation is more accurate than Hermite of degree three and five coupled
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nx 200 400 800∥ ⋅ ∥1 r ∥ ⋅ ∥1 r ∥ ⋅ ∥1 r

Semi-Lagrangian cubic spline 1.03e-6 3.00 1.29e-7 3.00 1.61e-8 3.00
Semi-Lagrangian cubic HWENO 1.04e-6 3.03 1.29e-7 3.01 1.62e-8 3.00
Semi-Lagrangian HWENO 5th 9.28e-10 5.51 2.28e-11 5.35 8.63e-13 4.72
Finite difference WENO 5th 1.15e-7 4.99 3.60e-9 5.01 1.16e-10 4.95
Finite difference HWENO 5th 6.06e-8 4.99 1.92e-9 4.98 6.55e-11 4.87

Table 1. 1D transport equation : Error in L1-norm and order of
convergence r for smooth solutions for semi-Lagrangian and finite
difference methods. The final time is Tend = 8.

with the WENO reconstruction. It illustrates perfectly the robustness of the semi-
Lagrangian method with cubic spline interpolation. Nevertheless it also generates
a lot of oscillations (see Table 2 (b)) which produce negative values of the distribu-
tion function. Furthermore the Hermite WENO5 reconstruction is less dissipative
than usual WENO5 and it is more accurate. Both of them control well spurious
oscillations (see Table 2 (b)).

nx 200 400 800∥ ⋅ ∥1 r ∥ ⋅ ∥1 r ∥ ⋅ ∥1 r

Semi-Lagrangian cubic spline 2.47e-2 0.80 1.43e-2 0.79 8.52e-2 0.75
Semi-Lagrangian-HWENO 3rd 3.27e-2 0.78 1.89e-2 0.79 1.09e-2 0.80
Semi-Lagrangian-HWENO 5th 2.94e-2 0.84 1.63e-2 0.85 8.99e-3 0.86
Finite difference-WENO 5th 4.50e-2 0.83 2.53e-2 0.83 1.43e-2 0.82
Finite difference-HWENO 5th 4.07e-2 0.83 2.29e-2 0.83 1.29e-2 0.83

(a) Error between exact solution and approximated solution

nx 200 400 800
Semi-Lagrangian cubic spline 5.75e-1 5.12e-1 5.19e-1
Semi-Lagrangian-HWENO 3rd 5.71e-4 5.18e-4 4.37e-4
Semi-Lagrangian-HWENO 5th 1.09e-3 1.42e-3 1.46e-3
Finite difference-WENO 5th 9.54e-5 8.43e-5 6.58e-5
Finite difference-HWENO 5th 2.30e-3 2.47e-3 1.88e-3

(b) Error of total variation

Table 2. 1D transport equation : Comparison of different meth-
ods for the linear equation (1) with initial data (2). (a) Error
in L1 norm and r is the order of accuracy (b) Error on the total
variation. The final time is Tend = 8.
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We finally consider an oscillatory solution where the initial condition is given
by [20],

(3) f(0, x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
6
[G(x, z − δ) + G(x, z − δ) + 4G(x, z)], for − 0.8 ≤ x ≤ −0.6,

1, for − 0.4 ≤ x ≤ −0.2,
1 − ∣10(x − 0.1)∣, for 0 ≤ x ≤ 0.2,
1
6
[F (x, z − δ) + F (x, z − δ) + 4F (x, z)], for 0.4 ≤ x ≤ 0.6,

0, otherwise.

where G(x, z) = exp(−β(x − z)2), F (x, a) = {max((1 − α2(x − a)2)1/2,0)} with
α = 0.5, z = −0.7, δ = 0.005, α = 10 and β = (log 2)/36δ2.

We have similar observations of both regular solution and discontinuous solution
cases in Figure 1. The usual semi-Lagrangian method with cubic spline interpola-
tion approximates well exponential function, but involves too much oscillation in
step function. The other methods with WENO or HWENO reconstruction avoid
a lot spurious oscillations. Semi-Lagrangian methods is less dissipative than finite
difference method, which can be seen in step function and peak function. Moreover,
the finite difference method with fifth order Hermite WENO reconstruction is less
dissipative than the one with usual fifth order WENO reconstruction.

5.2. Simplified paraxial Vlasov-Poisson model. We apply the numerical meth-
ods presented in previous sections to the following Vlasov-Poisson system satisfied
by f(t, r, v), where r ∈ R, v ∈ R [9, 3]

(4)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂f

∂t
+ v

ε

∂f

∂r
+ (Ef − r

ε
) ∂f

∂v
= 0,

1

r

∂

∂r
(rEf) = ∫

R

f dv.

The electric field can be expressed explicitly as follows

Ef(t, r) = 1

r
∫ r

0
s ρ(t, s)ds,

where ρ(t, r) = ∫R f(t, r, v)dv, hence we will compute Ef by a simple numerical
integration.

The initial condition is chosen as a Gaussian in velocity multiplied by a regular-
ized step function in r:

(5) f0(r, v) = 4√
2πα

χ(r) exp(− v2
2α
),

with χ(r) = 1
2
erf( r+1.2

0.3
) − 1

2
erf( r−1.2

0.3
) and α = 0.2. The Vlasov-Poisson system (4)

conserves mass
d

dt
∫
R2

f(t, r, v)drdv = 0,
and also Lp norm for 1 ≤ p <∞

d

dt
∣∣f(t, r, v)∣∣Lp(R2) = 0.

Therefore, the evolution in time of these quantities will be observed for various
numerical schemes. We will also investigate the time evolution of the kinetic energy
of the Vlasov-Poisson system (4) :

(6) E(t) = ∫
R2

v2

2
f dr dv.
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Figure 1. 1D transport equation : Plot solutions of the linear
equation (1) with initial data (3). nx = 200, CFL= 2.5 for semi-
Lagrangian methods and CFL= 0.85 for finite difference methods.
The final time is Tend = 8.

A reference solution of kinetic energy is computed using a fifth order finite difference
WENO method with very fine mesh (nx = 1025, ∆t = 1/1600).

In the following we take the parameter ε = 0.7 and the computational domain is(r, v) ∈ Ω = [−4,4]2.
Concerning the numerical resolution using semi-Lagrangian methods, we notice

that we deliberately choose not to apply a time splitting in order to use this method
in a general context. The characteristic curves corresponding to the Vlasov equa-
tion (4) cannot be solved explicitly. Then we apply a second order leap-frog scheme
already developed in [27]. Finally, we interpolate the distribution function f(rn, vn)
by a tensor product for cubic spline or by a dimension by dimension Hermite WENO
reconstruction.

In Figure 2 we compare the evolution of invariants (mass, L2 norm, minimum
f the density) and the kinetic energy obtained from semi-Lagrangian and finite
difference methods to the reference solution. We denote the linear phase for time
interval t ≤ 10, and the nonlinear phase for time interval t > 10 where small filaments
are generated.

As we can see from Figure 2, the kinetic energy obtained with the semi-Lagrangian
method with cubic spline and Hermite WENO5 reconstruction is relatively close
to the reference solution in the linear phase, but it diverges from the reference one
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Figure 2. Simplified paraxial Vlasov-Poisson model : Compari-
son between semi-Lagrangian with cubic spline, Hermite WENO
5th and finite difference with Hermite WENO 5th methods for
Beam test.

in the nonlinear phase. Even with a fines mesh, we cannot improve the numerical
results for large time.

Finally, we compare the distribution function f obtained from semi-Lagrangian
with cubic spline and Hermite WENO5 methods and finite difference with Hermite
WENO5 reconstructions with a reference solution computed with a refined mesh
(∆t = 1/1600 and nx = 1025) in Figure 3. At time t = 10, the distribution function f

of semi-Lagrangian methods is very close to the reference solution, where two small
filaments appear (see top of Figure 3). Then during the nonlinear phase, a large
number of filaments are generated due to the non-linearity of the Vlasov-Poisson
system and the distribution functions f obtained with semi-Lagrangian and finite
difference methods start to differ strongly at t ≥ 15, which also correspond to the
divergence of the kinetic energy of Figure 2. At time t ≥ 20, the semi-Lagrangian
methods generates a completely unstable beam who is not consistent with the
results obtained for the reference solution.

These numerical simulations illustrate perfectly that semi-Lagrangian methods
without splitting work well during the linear phase even with very large time step,
but they do not seem very robust during the nonlinear phase when micro-structures
appear (filamentation).
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(a) (b) (c) (d)

Figure 3. Simplified paraxial Vlasov-Poisson model : Distribu-
tion function for Beam test: (a) semi-Lagrangian with cubic spline;
(b) semi-Lagrangian with Hermite WENO5; (c) finite difference
with Hermite WENO5; (d) reference solution at time t = 10, 15
and 20. Mesh size is nx = 513,∆t = 1/800.

5.3. Guiding center model. We finally consider the guiding center model [3],
which has been derived to describe highly magnetized plasma in the transverse
plane

(7)

⎧⎪⎪⎨⎪⎪⎩
∂ρ

∂t
+U ⋅ ∇ρ = 0,

−∆φ = ρ.
where the velocity U = (−∂yφ, ∂xφ). Here we consider the model in a disk domain

D = {(x, y) ∈ R2 ∶√x2 + y2 ≤ R}
and assume that the electric potential is vanishing at the boundary

(8) φ(x, y) = 0, (x, y) ∈ ∂D.

Then if we ignore the effect of boundary conditions, the guiding center model verifies
the following properties :

(1) Positivity of density ρ

0 ≤ ρ(t, x, y).
(2) Mass conservation

d

dt
(∫

D
ρdxdy) = 0.

(3) Lp norm conservation, for 1 ≤ p ≤∞
d

dt
∣∣ρ∣∣Lp(D) = 0.
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(4) Energy conservation

d

dt
(∫

D
∣∇φ∣2dxdy) = 0.

To solve the system (7), we use a scheme based on Cartesian mesh and apply an
Inverse Lax-Wendroff procedure to treat boundary conditions on kinetic equations
[11, 12]. Actually, this system has been already solved in polar coordinates in [19].
But, the change of coordinate usually produce an artificial singularity at the origin,
which needs a particular treatment. At contrast, with the Inverse Lax-Wendroff
technique on Cartesian mesh, we do not have any singularity and it is not related
to the numerical scheme since boundary effects and numerical schemes are treated
independently. Furthermore, it is easy to adapt to other geometries [11, 12].

In this section, we only focus on discretization of boundary condition (8) of
Poisson equation. The one for transport equation is trivial, since a homogeneous
Dirichlet boundary condition will be used.

5.3.1. Discretization of Poisson equation. A classical five points finite difference
approximation is used to discretize the Poisson equation. However, to discretize
the Laplacian operator ∆φ near the physical boundary, we notice that some points
of the usual five points finite difference formula can be located outside of interior
domain. For instance, Figure 4 illustrates the discretization stencil for ∆φ at the
point (xi, yj). The point xg = (xi, yj−1) is located outside of interior domain. Let
us denote the approximation of φ at the point xg by φi,j−1. Thus φi,j−1 should be
extrapolated from the interior domain.

We extrapolate φi,j−1 on the normal direction n

(9) φi,j−1 = w̃pφ(xp) + w̃hφ(xh) + w̃2hφ(x2h),
where xp is the cross point of the normal n and the physical boundary Ωx�

. The
points xh and x2h are equal spacing on the normal n, i.e. h = ∣xp −xh∣ = ∣xh −x2h∣,
with h = min(∆x,∆y), ∆x, ∆y are the space steps in the directions x and y

respectively. Moreover, w̃p, w̃h, w̃2h are the extrapolation weights depending on the
position of xg, xp, xh and x2h. In (9), φ(xp) is given by the boundary condition (8),
whereas φ(xh), φ(x2h) should be determined by interpolation.

For this, we first construct an interpolation stencil E , composed of grid points of
Ω. For instance, in Figure 4, the inward normal n intersects the grid lines y = yj ,
yj+1, yj+2 at points P ∗0 , P

∗
1 , P

∗
2 . Then we choose the three nearest points of the

cross point P ∗l , l = 0,1,2, in each line, i.e. marked by a large circle. From these
nine points, we construct a Lagrange polynomial q2(x) ∈ Q2(R2) and evaluate the
polynomial q2(x) at xh and x2h, i.e.

φ(xh) =
8∑

ℓ=0

wh,ℓφ(xℓ),

φ(x2h) =
8∑

ℓ=0

w2h,ℓφ(xℓ),
with xℓ ∈ E . Hence, we get φi,j−1 which is approximated from the interior domain.

However, in some cases, we can not find a stencil of nine interior points. For
instance, when the interior domain has small acute angle sharp, the normal n can
not have three cross points P ∗l , l = 0,1,2 in interior domain, or we can not have
three nearest points of the cross point P ∗l , l = 0,1,2, in each line. In this case, we
alternatively use a first degree polynomial q1(x) with a four points stencil or even a
zero degree polynomial q0(x) with an one point stencil. We can similarly construct
the four points stencil or the one point stencil as above.
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Figure 4. Spatially two-dimensional Cartesian mesh. ● is interior
point, ◾ is ghost point, ⊡ is the point at the boundary, ◯ is the
point for extrapolation, the dashed line is the boundary.

5.3.2. Numerical simulation of the diocotron instability. We now consider the dio-
cotron instability for an annular electron layer. This plasma instability is created
by two sheets of charge slipping past each other and is the analog of the Kelvin-
Helmholtz instability in fluid mechanics. The initial data is given by

ρ0(x�) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
(1 + ε cos(ℓθ)) exp (−4(r − 6.5)2), if r− ≤√x2 + y2 ≤ r+,
0, otherwise,

where ε is a small parameter, θ = atan2(y, x). In the following tests, we take
ε = 0.001, r− = 5, r+ = 8, ℓ = 7.

We have seen in the previous section that semi-Lagrangian methods may be not
very appropriate. Indeed, the semi-Lagrangian method has some limitations during
the nonlinear phase, when small filaments appear since a small time step must be
used and the method is no more conservative. Therefore, we propose to apply a
mixed method based on the Hermite interpolation with a WENO reconstruction:
we use the semi-Lagrangian method for the linear phase with large time step; then
we apply the conservative finite difference scheme for nonlinear phase with small
time step respecting CFL condition. The criterion to pass from semi-Lagrangian
to finite difference methods is as follows

(10) ∣∫
R2

[ρh(tn) − ρh(tn−1)]dx∣ > h3,

where h is the smallest space step.
A comparison between the semi-Lagrangian with cubic spline method and the

mixed method for the diocotron instability is presented in Figures 5 and 6. For
a fair comparison an adaptive time step is also applied to the semi-Lagrangian
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scheme. We first choose a CFL number λ ≈ 2 during the linear phase, while we take
λ ≈ 0.5 for the nonlinear phase and the number of points in space is nx = ny = 256.

Using the semi-Lagrangian with cubic spline method, the relative error of mass
oscillates a lot during the nonlinear phase, while relative error for the mixed method
is more stable. We observe a very similar phenomenon for energy conservation. Un-
fortunately, relative error of L2 norm for the mixed method is larger than that for
the semi-Lagrangian with cubic spline method, but the price to pay is to gener-
ate a non negligible negative values. Indeed, the WENO reconstruction allow to
control spurious oscillations generate from the discontinuous initial data and small
structures.

Finally, the evolution of the density ρ is presented in Figure 6. At first glance,
we see the density of these two methods are very similar. At time t = 40, small
filaments appear and then seven vortices are formed and move.

Looking more carefully, we observe that the numerical results obtained from the
mixed method is a little bit more dissipative than the ones obtained from the semi-
Lagrangian methods with cubic spline interpolation i.e. small structures of density
are more thin. However, the semi-Lagrangian method is much more oscillatory
than the mixed method, which can be observed from the minimum or maximum of
density.

As a conclusion, although semi-Lagrangian method is less dissipative than the
mixed HWENO method, it involves too much numerical instabilities in nonlinear
phase. Therefore, the mixed method controlling spurious oscillations is more ap-
propriate for long time simulation in plasma physics.

6. Conclusion and perspective

In this paper, we have first developed a Hermite weighted essentially non-oscillatory
reconstruction for semi-Lagrangian method and finite difference method respec-
tively.

We illustrate that such a reconstruction is less dissipative than usual weighted es-
sentially non-oscillatory reconstruction. Then we have compared our approach with
the usual semi-Lagrangian method with cubic spline and finite difference WENO
reconstruction. The semi-Lagrangian method is efficient and accurate for linear
phase even with a large time step, however, it becomes less accurate for nonlinear
phase and may lead to the wrong solution in some cases, for instance, the Beam
test [3].

The finite difference method is stable under the classical CFL condition, but it is
much more stable in nonlinear phase and it conserves mass. We thus apply a mixed
method using the semi-Lagrangian method in linear phase and finite difference
method during the nonlinear phase, called mixed HWENO5 method.

We finally apply the mixed HWENO5 method to the simulation of the diocotron
instability and observe that although the mixed HWENO5 method is a little more
dissipative than the semi-Lagrangian with cubic spline method, but it is much more
stable during the nonlinear phase.

The next step is now to apply our mixed method to more realistic and high
dimensional plasma turbulence simulations, for instance, 4D Drift-Kinetic simula-
tion [15] or 5D Gyrokinetic simulation[14].
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Figure 5. Guiding center model: Comparison between
semi-Lagrangian with cubic spline method and mixed semi-
Lagrangian/finite difference Hermite WENO5 method
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Université de Lyon,

UL1, INSAL, ECL, CNRS

UMR5208, Institut Camille Jordan,

43 boulevard 11 novembre 1918,

F-69622 Villeurbanne cedex, FRANCE

e-mail: filbet@math.univ-lyon1.fr

Chang Yang

Université de Lyon,
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