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Abstract: In this paper, a mixture model under multiplicative censoring
is considered. We investigate the estimation of a component of the mix-
ture (a density) from the observations. A new adaptive estimator based
on wavelets and a hard thresholding rule is constructed for this problem.
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by determining an upper bound of the mean integrated squared error over
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sharp.
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1. Introduction

First of all, let us present the standard density estimation problem under mul-
tiplicative censoring as described in Vardi (1989). We observe n independent
random variables Y1, . . . , Yn where

Yi = UiXi, i ∈ {1, . . . , n}, (1.1)

U1, . . . , Un are n unobserved i.i.d. random variables having the uniform distri-
bution on [0, 1] and X1, . . . , Xn are n unobserved i.i.d. random variables. We
suppose that X1, . . . , Xn and U1, . . . , Un are independent. We aim to estimate
f, the unknown density of X1, from Y1, . . . , Yn.

It is shown in Vardi (1989) [see also Vardi and Zhang (1992)] how this model
unifies several well-studied statistical problems, including non-para-

∗Supported in part by a Discovery Grant from NSERC of Canada.
†Supported in part by ANR grant NatImages, ANR-08-EMER-009.

1

imsart-generic ver. 2009/12/15 file: bj4_yogen_rev.tex date: December 12, 2013

http://arxiv.org/abs/math.PR/0000000
mailto:chaubey@alcor.concordia.ca
mailto:chesneau@math.unicaen.fr
mailto:h.doosti@tmu.ac.ir - hassan.doosti@unimelb.edu.au


Chaubey et al./Wavelet estimation of a density from mixtures 2

metric inference for renewal processes, certain non-parametric deconvolution
problems and estimation of decreasing densities. Among the methods used to
solve this problem, there is the method of singular value decomposition (or or-
thonormal series based expansion) developed in Andersen and Hansen (2001),
the method using the wavelet technique used in Abbaszadeh et al. (2012) and
the kernel method developed in Asgharian et al. (2012).

In this paper, we consider a more general model incorporating mixtures. Here,
we observe n independent random variables Y1, . . . , Yn according to (1.1) where
U1, . . . , Un are unobserved i.i.d. random variables having the uniform distribu-
tion on [0, 1] and X1, . . . , Xn are unobserved independent random variables but
not (necessarily) identically distributed: for any i ∈ {1, . . . , n}, Xi depends on
an unobserved random indicator Ii taking its values in {1, . . . ,m}. Applying the
Bayes theorem, the density of Xi is the following finite mixture:

hi(x) =

m∑
d=1

wd(i)fd(x), (1.2)

where wd(i) = P(Ii = d) and fd is the conditional density of Xi given {Ii = d}.
We suppose that all these densities are unknown, the weight wd(i) is known,
and X1, . . . , Xn and U1, . . . , Un are independent. For a fixed ν ∈ {1, . . . ,m}, we
aim to estimate fν i.e. the ν-th component of the mixture, from Y1, . . . , Yn.

Note that, when m = 1, w1(1) = . . . = w1(n) = 1 and fν = f1, we ar-
rive at the density estimation problem under multiplicative censoring described
in the first paragraph. The problem of estimating fν from X1, . . . , Xn (not
Y1, . . . , Yn) has been considered in several papers [see e.g. Maiboroda (1996),
Hall and Zhou (2003), Pokhyl’ko (2005) and Prakasa Rao (2010)]. However,
to the best of our knowledge, the estimation of fν from Y1, . . . , Yn is a new
statistical problem that has potential applications in signal processing, biology,
industry and telecommunications. For instance, consider the example of a sensor
network (i.e. a collection of spatially distributed autonomous sensors intended
to measure physical phenomena at diverse locations). Suppose that it contains
m nodes, each sensor records only one physical value of the phenomena and only
one sensor information is collected at a time. Now, given n multiplicative noisy
versions Y1, . . . , Yn of the physical phenomena from non-necessarily identified
sensors (i.e. unobserved I1, . . . , In), the goal is to estimate the density function
of the physical phenomena at any sensor ν ∈ {1, . . . ,m}. An overview of sensor
networks can be found in Akyildiz et al. (2002). The reader may be referred to
Chabert et al. (2004) and references therein for applications in multiplicative
noise set-up in signal processing.

Among the numerous existing methods (such as Kernel, Spline, Wavelets and
others) [see e.g. Prakasa Rao (1983, 1999) and Tsybakov (2004)], we investigate
the estimation of fν via wavelet methods. They are attractive for nonparametric
function estimation because of their spatial adaptivity, computational efficiency
and asymptotic optimality properties. They can achieve near optimal conver-
gence rates over a wide range of function classes (such as Besov balls) and enjoy
excellent mean integrated squared error (MISE) properties when used to esti-

imsart-generic ver. 2009/12/15 file: bj4_yogen_rev.tex date: December 12, 2013



Chaubey et al./Wavelet estimation of a density from mixtures 3

mate spatially inhomogeneous function [see Antoniadis (1997) and Härdle et al.
(1998)].

In this paper, we develop an adaptive wavelet estimator for fν based on
the hard thresholding rule [introduced in Donoho and Johnstone (1994, 1995)].
In its construction, we use the new methodology developed in Abbaszadeh et
al. (2012) for the density estimation under bias and multiplicative censoring,
the “observations thresholding technique” introduced by Delyon and Juditsky
(1996), and some tools on mixtures described in Maiboroda (1996). We evaluate
the performance of the proposed density estimator by considering the MISE and
assuming that fν belongs to a Besov ball. Under mild assumptions on the weights
of the mixtures, we prove that our estimator attains a sharp rate of convergence:
it is the one attained by the “best” non-adaptive linear wavelet estimator up to
a logarithmic term, where “best” is used in the sense of minimum MISE.

The outline of the paper is as follows. We provide detailed assumptions on
the mixture model considered here in Section 2. Section 3 describes the wavelet
basis on [0, 1] and the Besov balls. The estimators are presented in Section 4 and
the main results are provided in Section 5. The proofs are gathered in Section
6.

2. Assumptions

Additional assumptions on our model are presented below.

• Without loss of generality, we assume that the support of fd is [0, 1] and
fd ∈ L2([0, 1]) for any d ∈ {1, . . . ,m}, where, for any p ≥ 1,

Lp([0, 1]) =

{
u : [0, 1]→ R; ‖u‖p =

(∫ 1

0

|u(x)|pdx
)1/p

<∞

}
.

Note that, for any i ∈ {1, . . . , n}, the density of Yi is

gi(x) =

∫ 1

x

hi(y)

y
dy, x ∈ [0, 1],

where hi is as given in (1.2).
We suppose that there exists a known constant C∗ > 0 such that

max
i∈{1,...,n}

sup
x∈[0,1]

gi(x) ≤ C∗. (2.1)

Such a boundedness assumption is standard in the density estimation
problems from mixtures [see e.g. Maiboroda (1996), Pokhyl’ko (2005) and
Prakasa Rao (2010)].

• We now formulate some assumptions on the weights of the mixture. Con-
sider the matrix

Γn =

(
1

n

n∑
i=1

wk(i)w`(i)

)
(k,`)∈{1,...,m}2

. (2.2)
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We assume that det(Γn) > 0.
Then the solution of the following quadratic objective with linear con-
straints,

min
b∈Rn

1

n

n∑
i=1

b2i such that
1

n

n∑
i=1

biwd(i) = δν,d, for d ∈ {1, · · · ,m}, (2.3)

where δν,d denotes the Kronecker delta, is unique and is denoted by
(aν(1), . . . , aν(n)). Specifically, we have

aν(i) =
1

det(Γn)

m∑
k=1

(−1)k+νζnν,kwk(i), (2.4)

where ζnν,k denotes the determinant of the minor (ν, k) of the matrix Γn.
Details concerning the above results can be found in Maiboroda (1996)
and Pokhyl’ko (2005).

Remark 2.1. The definition of (aν(1), . . . , aν(n)) (2.3) allows us to

– construct unbiased wavelet coefficients estimators well adapted to the
structure of our mixture model (see Proposition 4.1),

– obtain sharp rate of convergence (the quantity (1/n)
∑n
i=1 a

2
ν(i) will

play a central role); see Theorems 5.1 and 5.2.

We set

ρn =
1

n

n∑
i=1

a2ν(i) (2.5)

and, for technical reasons, we suppose that limn→∞ n/ρn =∞.

3. Wavelets and Besov balls

3.1. Wavelets

For the purposes of this paper, we use the compactly supported wavelet basis
on [0, 1] briefly described below.

Let N ≥ 10 and φ and ψ be the initial wavelet functions of the Daubechies
wavelets db2N . In particular, these functions are compactly supported with
supp(φ) ⊆ [1−N,N ] and supp(ψ) ⊆ [1−N,N ] (for the sake of simplicity), and
belong to C1.

We define the functions φj,k and ψj,k by dilation and translation of φ and ψ
respectively, and normalization:

φj,k(x) = 2j/2φ(2jx− k), ψj,k(x) = 2j/2ψ(2jx− k).

Then, with an appropriate treatment at the boundaries, there exists an integer
τ such that, for any integer ` ≥ τ ,

B = {φ`,k, k ∈ {0, . . . , 2`−1}; ψj,k; j ∈ N−{0, . . . , `−1}, k ∈ {0, . . . , 2j −1}}
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is an orthonormal basis of L2([0, 1]).
For any integer ` ≥ τ , a function u ∈ L2([0, 1]) can be expanded on B as

u(x) =

2`−1∑
k=0

α`,kφ`,k(x) +

∞∑
j=`

2j−1∑
k=0

βj,kψj,k(x), x ∈ [0, 1],

where αj,k and βj,k are the wavelet coefficients of u defined by

αj,k =

∫ 1

0

u(x)φj,k(x)dx, βj,k =

∫ 1

0

u(x)ψj,k(x)dx. (3.1)

We refer to Cohen et al. (1993) and Mallat (2009) for more details.

3.2. Besov balls

As is traditional in the wavelet estimation literature, we will investigate the per-
formances of our estimators by assuming that the unknown function fν belongs
to a Besov ball defined below.

Let M > 0, s > 0, p ≥ 1 and r ≥ 1. Set, for every measurable function u on
[0, 1] and ε ≥ 0,

∆ε(u)(x) = u(x+ ε)− u(x),

∆2
ε(u)(x) = ∆ε(∆ε(u))(x) and identically, ∆N

ε (u)(x) = ∆N−1
ε (∆ε(u))(x) for any

positive integer N . Let

ρN (t, u, p) = sup
ε∈[−t,t]

||∆N
ε (u)||p.

Then, for s ∈ [0, N), we define the Besov ball Bsp,r(M) of radius M > 0 by

Bsp,r(M) =

{
u ∈ Lp([0, 1]);

(∫ 1

0

(
ρN (t, u, p)

ts

)r
dt

t

)1/r

≤M

}
,

with the usual modifications if p =∞ or r =∞.
The parameter s is related to the smoothness of the function u, whereas p

and r are norm parameters.
We have the following equivalence (see Härdle et al. (1998), Corollary 9.1):

u ∈ Bsp,r(M) with s ∈ (0, N) if and only if there exists a constant M∗ > 0
(depending on M) such that the associated wavelet coefficients given by (3.1)
satisfy

2τ(1/2−1/p)

(
2τ−1∑
k=0

|ατ,k|p
)1/p

+

 ∞∑
j=τ

2j(s+1/2−1/p)

2j−1∑
k=0

|βj,k|p
1/p


r

1/r

≤ M∗,

with the usual modifications if p =∞ or r =∞. For a particular choice of s, p
and r, Bsp,r(M) contains the Hölder and Sobolev balls [see Meyer (1990)].
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4. Estimators

4.1. Wavelet coefficients estimators

The first step in estimating fν consists of expanding fν on B and estimating its
unknown wavelet coefficients. Here we adapt the methodology of Abbaszadeh
et al. (2012). We consider the operator T : C1([0, 1])→ C0([0, 1]) defined by

T (u)(x) = (xu(x))′ = u(x) + xu′(x), u ∈ C1([0, 1]), x ∈ [0, 1]. (4.1)

For any integer j ≥ τ and any k ∈ {0, . . . , 2j − 1}, we estimate the wavelet

coefficients of fν , i.e. αj,k =
∫ 1

0
fν(x)φj,k(x)dx and βj,k =

∫ 1

0
fν(x)ψj,k(x)dx, by

respectively

α̂j,k =
1

n

n∑
i=1

aν(i)T (φj,k)(Yi) (4.2)

and

β̂j,k =
1

n

n∑
i=1

aν(i)T (ψj,k)(Yi)1{|aν(i)T (ψj,k)(Yi)|≤ηj}, (4.3)

where Yi is defined by (1.1), aν(i) by (2.4), T by (4.1), 1A is the indicator
function on A for any random event A,

ηj = θ2j
√

nρn
ln(n/ρn)

,

θ =

√√√√2C∗

(
1 +

∫ N

1−N
(ψ′(y))2dy

)
, (4.4)

C∗ is the constant in (2.1) and ρn is defined by (2.5).

The wavelet coefficient estimators α̂j,k and β̂j,k are motivated by the prop-
erties of the constants aν(i) defined in (2.3) and (2.4). We can write

fν(x) =
1

n

n∑
i=1

aν(i)hi(x)

and use the fact that (see the details in the proof of Proposition 4.1)∫ 1

0

hi(x)φj,k(x)dx = E(T (φj,k)(Yi)).

Thus α̂j,k provides an unbiased estimator of αj,k where as β̂j,k is based on
the “observations thresholding technique” that had been firstly introduced in
Delyon and Juditsky (1996) to estimate the regression function in a regression
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model with general errors. In our study, the role of its selection is to provide a
good estimator of βj,k under mild assumptions on the distributions of I1, . . . , In.
To be more specific, we have no boundedness assumptions on the eigenvalues
of the matrix Γn (as in Autin and Pouet (2011)) and, more generally, on aν(i).
This point is developed in Remarks 5.3 and 5.4. Our statistical approach has
been used for other mixture models in Chesneau (2011a,b) and Chesneau and
Fadili (2012).

Proposition 4.1. For any integer j ≥ τ and any k ∈ {0, . . . , 2j − 1}, let αj,k
and βj,k be the wavelet coefficients of fν as given in (3.1). Then

• α̂j,k defined by (4.2) is an unbiased estimator of αj,k,
• we have

E

(
1

n

n∑
i=1

aν(i)T (ψj,k)(Yi)

)
= βj,k.

Remark 4.1. In addition to the unbiased properties described in Proposition
4.1, α̂j,k and β̂j,k satisfy powerful moments and concentration inequalities, i.e.,

Moments inequality: there exists a constant C > 0 such that

E
(

(α̂j,k − αj,k)
2
)
≤ C22j

ρn
n

and

E
((

β̂j,k − βj,k
)4)

≤ C24j
(ρn ln(n/ρn))2

n2
.

Concentration inequality: for a large enough κ, we have

P

(
|β̂j,k − βj,k| ≥ (κ/2)θ2j

√
ρn ln(n/ρn)

n

)
≤ 2

(ρn
n

)2
,

where θ is defined by (4.4).

The technical details can be found in the proof of Proposition 6.2.

The next subsections are devoted to the description of our main estimators
for fν .

4.2. Wavelet linear estimator

We define the linear estimator f̂ lν by

f̂ lν(x) =

2j0−1∑
k=0

α̂j0,kφj0,k(x), x ∈ [0, 1], (4.5)

where α̂j,k is defined by (4.2) and j0 is an integer which will be chosen later (see
Theorem 5.1).
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In the case m = 1, w1(1) = . . . = w1(n) = 1 and fν = f1, f̂ lν becomes the
linear wavelet estimator developed in Abbaszadeh et al. (2012).

For a survey on linear wavelet estimators for various density models (including
the density model under multiplicative censoring), we refer to Chaubey et al.
(2011).

4.3. Wavelet hard thresholding estimator

We define the hard thresholding estimator f̂hν by

f̂hν (x) =

2τ−1∑
k=0

α̂τ,kφτ,k(x) +

j1∑
j=τ

2j−1∑
k=0

β̂j,k1{|β̂j,k|≥κλj}ψj,k(x), x ∈ [0, 1],

(4.6)

where α̂j,k is defined by (4.2), β̂j,k by (4.3), τ is the primary resolution level of
the wavelet basis B, j1 is the integer satisfying

1

2

(
n

ρn

)1/3

< 2j1 ≤
(
n

ρn

)1/3

,

κ ≥ 2 + 8/3 + 2
√

4 + 16/9,

λj = θ2j
√
ρn ln(n/ρn)

n
.

and θ is defined by (4.4).
The definitions of the thresholds ηj and λj are based on theoretical consid-

erations; they are chosen in such a way that the MISE of f̂hν is as small as
possible, while being independent of fν (and its degree of smoothness). This

independence makes f̂hν adaptive. Technical details can be found in the proof of
Theorem 6.1.

The idea of the considered thresholding is to set to zero all wavelet coeffi-
cients that are less than a particular threshold and to estimate the others. The
resulting estimators often possess optimal (or near-optimal) rates of convergence
in the minimax sense. Moreover, they are typically implemented via fast algo-
rithms which makes them appealing in practice. For the constructions of hard
thresholding wavelet estimators in the standard density model, see e.g. Donoho
et al. (1996), Delyon and Juditsky (1996) and Härdle et al. (1998), and for the
standard density mixture model, see Pokhyl’ko (2005). For the multiplicative
censoring density model from biased data, see Abbaszadeh et al. (2012). To the

best of our knowledge, f̂hν is the first adaptive wavelet estimator proposed for
the density estimation from mixtures under multiplicative censoring.
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5. Results

Theorem 5.1 below explores the asymptotic performance of f̂ lν under the MISE
over Besov balls Bsp,r(M). We distinguish the “homogeneous zone” correspond-
ing to p ≥ 2 and the “inhomogeneous zone” corresponding to p ∈ [1, 2), following
the classification of Härdle et al. (1998).

Theorem 5.1. Consider (1.1) under the assumptions of Section 2.

(i) Suppose that fν ∈ Bsp,r(M) with s ∈ (0, N), p ≥ 2 and r ≥ 1. Let f̂ lν be
given by (4.5) with j0 satisfying

1

2

(
n

ρn

)1/(2s+3)

< 2j0 ≤
(
n

ρn

)1/(2s+3)

. (5.1)

Then there exists a constant C > 0 such that

E
(
‖f̂ lν − fν‖22

)
≤ C

(ρn
n

)2s/(2s+3)

.

(ii) Suppose that fν ∈ Bsp,r(M) with s ∈ (1/p,N), p ∈ [1, 2) and r ≥ 1. Let f̂ lν
be given by (4.5) with j0 satisfying

1

2

(
n

ρn

)1/(2s∗+3)

< 2j0 ≤
(
n

ρn

)1/(2s∗+3)

, (5.2)

where s∗ = s+ 1/2− 1/p.
Then there exists a constant C > 0 such that

E
(
‖f̂ lν − fν‖22

)
≤ C

(ρn
n

)2s∗/(2s∗+3)

.

The proof of Theorem 5.1 (see §6) uses moment inequalities on (4.2) and
(4.3), and a suitable decomposition of the MISE.

Let us mention that, in each zone of the Besov balls, the integer j0 is chosen
to minimize the MISE of f̂ lν in a nonadaptive way.

Remark 5.1. The variability of the performance of linear estimators according
to the homogeneous nature of the zones of the Besov balls is a well known phe-
nomenon. In particular, in the context of the standard nonparametric smoothing
(such as for density and regression), the rates are often non-optimal (in the min-
imax sense) over the inhomogeneous zone. We refer to Härdle et al. (1998),
p.148.

Theorem 5.2 given next investigates the asymptotic performance of f̂hν under
the MISE over Besov balls (the homogeneous and inhomogeneous zones are
considered simultaneously).
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Theorem 5.2. Consider (1.1) under the assumptions of Section 2. Let f̂hν be
given by (4.6). Suppose that fν ∈ Bsp,r(M) with r ≥ 1, {p ≥ 2 and s ∈ (0, N)}
or {p ∈ [1, 2) and s ∈ (3/p,N)}. Then there exists a constant C > 0 such that

E
(
‖f̂hν − fν‖22

)
≤ C

(
ρn ln(n/ρn)

n

)2s/(2s+3)

.

The proof of Theorem 5.2 uses a general result derived to Chesneau (2011b)
(see the proof of his Theorem 2).

Theorem 5.2 shows that, in addition to being adaptive, f̂hν attains a sharp
rate of convergence. More specifically, adapting the terminology of Härdle et al.
(1998),

• for the homogeneous zone (p ≥ 2): f̂hν attains the same rate of con-

vergence to f̂ lν , i.e. vn = (ρn/n)2s/(2s+3), up to the logarithmic term
(ln(n/ρn))2s/(2s+3).

• for the inhomogeneous zone (p ∈ [1, 2)): f̂hν attains a better rate of con-

vergence to f̂ lν .

Remark 5.2. Let us mention that, for the standard nonparametric models,
other types of adaptive procedures are able to remove the extra logarithmic term
in the rate of convergence, for example,

• the Lepski procedure [see e.g. Lepski (1990, 1991, 1992) and Lepski and
Spokoiny (1995)], and

• the BlockJS procedure [see e.g. Cai (1999, 2002)].

Although the adaptation of these procedures to our statistical problem is possi-
ble, their asymptotic properties are not established; new important theoretical
difficulties appear and it is not immediately clear how to solve them.

Remark 5.3. Suppose that the smallest eigenvalue of the matrix Γn (given in
(2.2)) is larger than or equal to K with K ∈ (0, 1). Then Lemma 6.1 of Autin
and Pouet (2011) gives

1

n

m∑
d=1

n∑
i=1

a2d(i) ≤
m

K
.

Hence ρn ≤ m/K and the rate of convergence in Theorem 5.2 becomes (lnn/n)2s/(2s+3).
It corresponds to the optimal one (up to a logarithmic term) for the standard
multiplicative density model [see Andersen and Hansen(2001)].

Remark 5.4. Suppose that there exists a constant C > 0 satisfying

max
d∈{1,...,m}

max
i∈{1,...,n}

|ad(i)| ≤ C.

Then, with j1 such that

c∗
2

( n

lnn

)1/3
≤ 2j1 ≤ c∗

( n

lnn

)1/3
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for a suitable constant c∗, the indicator function in (4.3) is equal to one and
Theorem 5.2 can be proved with the rate of convergence (lnn/n)2s/(2s+3).

Conclusion and perspectives. We construct a new adaptive wavelet estima-
tor to estimate the function fν from (1.2). Under mild assumptions, we prove
that it attains a sharp rate of convergence for a wide class of functions. Possible
perspectives are to

• determine the optimal lower bound of MISE for (1.1), perhaps using the
Fano Lemma presented in Tsybakov (2004). However, it is not immediately
clear how to extend this to the mixture models.

• improve the estimation of fν by removing the extra logarithmic term (see
Remark 5.2),

• investigate the case where the distributions of I1, . . . , In are unknown,
• consider other estimation problems as the adaptive estimation of the q-th

derivatives of fν (as in Prakasa Rao (1996) for the standard density model
and in Prakasa Rao (2010) for the standard mixture model).

All these aspects need further investigations that we leave for a future work.

6. Proofs

In this section, we consider (1.1) under the assumptions of Section 2. Moreover,
C denotes any constant that does not depend on j, k and n. Its value may
change from one term to another and may depend on φ or ψ.

6.1. Proof of Proposition 4.1

Proof of Proposition 4.1. Recall that the density of Yi can be expressed in
terms of hi in the following manner:

gi(x) =

∫ 1

x

hi(y)

y
dy, x ∈ [0, 1].

So hi(x) = −xg′i(x), x ∈ [0, 1] a.s.. It follows from integration by parts, gi(1) = 0,
and φj,k(0) and φj,k(1) exist, that∫ 1

0

hi(x)φj,k(x)dx = −
∫ 1

0

xg′i(x)φj,k(x)dx

= − [xgi(x)φj,k(x)]
1
0 +

∫ 1

0

gi(x) (φj,k(x) + x(φj,k)′(x)) dx

=

∫ 1

0

gi(x)T (φj,k)(x)dx = E(T (φj,k)(Yi)), (6.1)

where T denotes the operator in (4.1).
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Using (6.1), (1.2) and (2.3), we obtain

E(α̂j,k) =
1

n

n∑
i=1

aν(i)E(T (φj,k)(Yi))

=
1

n

n∑
i=1

aν(i)

∫ 1

0

hi(x)φj,k(x)dx

=

m∑
d=1

∫ 1

0

fd(x)φj,k(x)dx

(
1

n

n∑
i=1

aν(i)wd(i)

)

=

∫ 1

0

fν(x)φj,k(x)dx = αj,k.

Similarly, taking ψ instead of φ, we prove the second point that completes the
proof of Proposition 4.1.

6.2. Proofs of Theorems 5.1 and 5.2

Proof of Theorem 5.1.

(i) We expand the function fν on B at the level j0 given in (5.1) :

fν(x) =

2j0−1∑
k=0

αj0,kφj0,k(x) +

∞∑
j=j0

2j−1∑
k=0

βj,kψj,k(x),

where αj0,k =
∫ 1

0
fν(x)φj0,k(x)dx and βj,k =

∫ 1

0
fν(x)ψj,k(x)dx.

We can write

E
(
‖f̂ lν − fν‖22

)
=

2j0−1∑
k=0

E
(

(α̂j0,k − αj0,k)
2
)

+

∞∑
j=j0

2j−1∑
k=0

β2
j,k. (6.2)

Let us now bound the first term. Since, by Proposition 4.1, α̂j,k is an
unbiased estimator of αj,k, we have

E
(

(α̂j0,k − αj0,k)
2
)

=
1

n2

n∑
i=1

a2ν(i)V(T (φj0,k)(Yi))

≤ 1

n2

n∑
i=1

a2ν(i)E
(
(T (φj0,k)(Yi))

2
)
.

By the definition of T in (4.1), for any i ∈ {1, . . . , n}, we have

E
(
(T (φj0,k)(Yi))

2
)
≤ 2(A+B),

where
A = E

(
φ2j0,k(Yi)

)
, B = E

(
Y 2
i ((φj0,k)′(Yi))

2
)
.
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Since, by (2.1), maxi∈{1,...,n} supx∈[0,1] gi(x) ≤ C∗, we have

A =

∫ 1

0

φ2j0,k(x)gi(x)dx ≤ C∗
∫ 1

0

φ2j0,k(x)dx = C∗.

On the other hand, using again (2.1), (φj0,k)′(x) = 23j0/2φ′(2j0x − k),
making the change of variables y = 2j0x − k and owing to supp(φ) ⊆
[1−N,N ], we obtain

B =

∫ 1

0

x2((φj0,k)′(x))2gi(x)dx ≤ C∗
∫ 1

0

x2((φj0,k)′(x))2dx

≤ C∗

∫ 1

0

((φj0,k)′(x))2dx = C∗2
3j

∫ 1

0

(φ′(2j0x− k))2dx

≤ C∗2
2j0

∫ N

1−N
(φ′(y))2dy.

Hence

E
(
(T (φj0,k)(Yi))

2
)
≤ Co22j0 , (6.3)

where Co = 2C∗

(
1 +

∫ N
1−N (φ′(y))2dy

)
.

Therefore

E
(

(α̂j0,k − αj0,k)
2
)
≤ C22j0

1

n

(
1

n

n∑
i=1

a2ν(i)

)
= C22j0

ρn
n
.

For j0 satisfying (5.1) it holds

2j0−1∑
k=0

E
(

(α̂j0,k − αj0,k)
2
)
≤ C2j022j0

ρn
n
≤ C

(ρn
n

)2s/(2s+3)

. (6.4)

On the other hand, for p ≥ 2, we have fν ∈ Bsp,r(M) ⊆ Bs2,∞(M) [see
Härdle et al. (1998), Corollary 9.2], which implies

∞∑
j=j0

2j−1∑
k=0

β2
j,k ≤ C2−2j0s ≤ C

(ρn
n

)2s/(2s+3)

. (6.5)

It follows from (6.2), (6.4) and (6.5) that

E
(
‖f̂ lν − fν‖22

)
≤ C

(ρn
n

)2s/(2s+3)

.

The part (i) of Theorem 5.1 is proved.
(ii) Let p ∈ [1, 2). The proof is similar to (i) with s∗ instead of s: we use the

expansion (6.2) at the level j0 given in (5.2), and the inclusion Bsp,r(M) ⊆
Bs∗2,∞(M) (thanks to p ∈ [1, 2) and the definition of s∗, i.e. s∗ = s+ 1/2−
1/p, [see Härdle et al. (1998), Corollary 9.2]), we obtain the desired result.
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This completes the proof of Theorem 5.1.

Proof of Theorem 5.2. First of all, we present a general result (see Theorem
6.1) derived from Theorem 2 of Chesneau (2011b). Its proof is given in §6.2.
In this theorem, we consider a more general form of the hard thresholding es-
timator f̂hν denoted by f̂H for estimating an unknown function f ∈ L2([0, 1])
from n independent random variables W1, . . . ,Wn defined on a probability space
(Ω,A,P) (We use the notations of Section 3):

f̂H(x) =

2τ−1∑
k=0

α̂τ,kφτ,k(x) +

j1∑
j=τ

2j−1∑
k=0

β̂j,k1{|β̂j,k|≥κϑj}ψj,k(x), (6.6)

where

α̂j,k =
1

υn

n∑
i=1

qi(φj,k,Wi), (6.7)

β̂j,k =
1

υn

n∑
i=1

qi(ψj,k,Wi)1{|qi(ψj,k,Wi)|≤ςj}, (6.8)

ςj = θψ2ωj
υn√

µn lnµn
(6.9)

ϑj = θψ2ωj

√
lnµn
µn

, (6.10)

κ ≥ 2 + 8/3 + 2
√

4 + 16/9 and j1 is the integer satisfying

1

2
µ1/(2ω+1)
n < 2j1 ≤ µ1/(2ω+1)

n . (6.11)

Here, we suppose that there exist

• n functions q1, . . . , qn with qi : L2([0, 1])× R→ R for any i ∈ {1, . . . , n},
• two sequences of real numbers (υn)n∈N and (µn)n∈N satisfying limn→∞ υn =
∞ and limn→∞ µn =∞

such that, for γ ∈ {φ, ψ},

(A1). any integer j ≥ τ and any k ∈ {0, . . . , 2j − 1},

E

(
1

υn

n∑
i=1

qi(γj,k,Wi)

)
=

∫ 1

0

f(x)γj,k(x)dx.

(A2). there exist two constants, θγ > 0 and ω ≥ 0, such that, for any integer
j ≥ τ and any k ∈ {0, . . . , 2j − 1},

n∑
i=1

E
(

(qi(γj,k,Wi))
2
)
≤ θ2γ22ωj

υ2n
µn
.
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Remark 6.1. The estimators α̂j,k and β̂j,k defined in the above theorem coin-
cide with those in (4.2) and (4.3), respectively by choosing vn = n. The partic-
ular form of the estimator chosen will be clear from the context.

Now we are ready to state the theorem required for proving Theorem 5.2.

Theorem 6.1. Let f̂H be (6.6) under (A1) and (A2). Suppose that f ∈ Bsp,r(M)
with r ≥ 1, {p ≥ 2 and s ∈ (0, N)} or {p ∈ [1, 2) and s ∈ ((2ω + 1)/p,N)}.
Then there exists a constant C > 0 such that

E
(
‖f̂H − f‖22

)
≤ C

(
lnµn
µn

)2s/(2s+2ω+1)

.

Remark 6.2. Theorem 6.1 is still valid

• with j1 such that

c∗
2

(
µn

lnµn

)1/(2ω+1)

< 2j1 ≤ c∗
(

µn
lnµn

)1/(2ω+1)

,

c∗ > 0, instead of (6.11).
• without θψ in the definitions of (6.9) and (6.10), but with κ ≥ 2θ2ψ+8/3+

2
√

4θ2ψ + 16/9.

Let us now investigate the assumptions (A1) and (A2) of Theorem 6.1 for
the model (1.1). Set, for any γ ∈ {φ, ψ},

qi(γj,k, y) = aν(i)T (γj,k)(y).

By Proposition 4.1, for any γ ∈ {φ, ψ}, we have

E

(
1

n

n∑
i=1

qi(γj,k, Yi)

)
=

∫ 1

0

fν(x)γj,k(x)dx.

Proceeding as in (6.3), we obtain

1

n2

n∑
i=1

E
(

(qi(γj,k, Yi))
2
)
≤ θ2γ22j

1

n2

n∑
i=1

a2ν(i) = θ2γ22j
ρn
n
,

with

θγ =

√√√√2C∗

(
1 +

∫ N

1−N
(γ′(y))2dy

)
. (6.12)

Thus the assumptions (A1) and (A2) in Theorem 6.1 are satisfied with, for any
i ∈ {1, . . . , n},

Wi = Yi = UiXi, qi(γj,k, y) = aν(i)T (γj,k)(y),
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υn = n, ω = 1, µn = n/ρn and θγ is (6.12).
This implies the following result:
Let fν ∈ Bsp,r(M) with r ≥ 1, {p ≥ 2 and s ∈ (0, N)} or {p ∈ [1, 2) and

s ∈ (3/p,N)}, then the hard thresholding estimator f̂hν (4.6) satisfies

E
(
‖f̂hν − fν‖22

)
≤ C

(
ρn ln(n/ρn)

n

)2s/(2s+3)

.

This completes the proof of Theorem 5.2.

6.3. Proof of Theorem 6.1

The proof of the theorem is broken into two major parts. In the first part,
we present two auxiliary results on the statistical properties of (6.7) and (6.8).
Then, following the idea of Härdle et al. (1998), Proof of Proposition 10.3, these
results are used in the second part on a suitable decomposition of the MISE of
f̂H .

Part I: Auxiliary results

Proposition 6.1. Consider β̂j,k as defined in (6.8). We have

|β̂j,k − βj,k| ≤
1

υn

∣∣∣∣∣
n∑
i=1

Ui

∣∣∣∣∣+ ϑj ,

where

Ui = qi(ψj,k,Wi)1{|qi(ψj,k,Wi)|≤ςj} − E(qi(ψj,k,Wi)1{|qi(ψj,k,Wi)|≤ςj}). (6.13)

Proof of Proposition 6.1. By (A1), we have

βj,k = E

(
1

υn

n∑
i=1

qi(ψj,k,Wi)

)

=
1

υn

n∑
i=1

E(qi(ψj,k,Wi)1{|qi(ψj,k,Wi)|≤ςj})

+
1

υn

n∑
i=1

E(qi(ψj,k,Wi)1{|qi(ψj,k,Wi)|>ςj}).

Hence

|β̂j,k − βj,k|

≤ 1

υn

∣∣∣∣∣
n∑
i=1

Ui

∣∣∣∣∣+
1

υn

n∑
i=1

E
(
|qi(ψj,k,Wi)|1{|qi(ψj,k,Wi)|>ςj}

)
,
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where U1, . . . , Un are given by (6.13).
The Markov inequality and (A2) imply that

1

υn

n∑
i=1

E
(
|qi(ψj,k,Wi)|1{|qi(ψj,k,Wi)|>ςj}

)
≤ 1

ςjυn

n∑
i=1

E
(
(qi(ψj,k,Wi))

2
)
≤ 1

ςj
θ2ψ22ωj

υn
µn

Using the definitions of ςj and ϑj from (6.9) and (6.10) respectively, the right
hand side of the above inequality becomes

1

θψ2ωj υn√
µn lnµn

θ2ψ22ωj
υn
µn

= θψ2ωj

√
lnµn
µn

= ϑj

that completes the proof of Proposition 6.1.

Proposition 6.2. Consider α̂j,k and β̂j,k as defined in (6.7) and (6.8), respec-
tively.

(i) There exists a constant C > 0 such that

E
(

(α̂j,k − αj,k)
2
)
≤ C22ωj

1

µn
.

(ii) There exists a constant C > 0 such that

E
((

β̂j,k − βj,k
)4)

≤ C24ωj
(

lnµn
µn

)2

.

(iii) For any κ ≥ 2 + 8/3 + 2
√

4 + 16/9, we have

P
(
|β̂j,k − βj,k| ≥ κϑj/2

)
≤ 2

1

µ2
n

. (6.14)

Proof of Proposition 6.2.

(i) Noting that α̂j,k is an unbiased estimator of αj,k, by (A1), the indepen-
dence of W1, . . . ,Wn and (A2) yield

E
(
(α̂j,k − αj,k)2

)
= V (α̂j,k) =

1

υ2n

n∑
i=1

V(qi(φj,k,Wi))

≤ 1

υ2n

n∑
i=1

E
(

(qi(φj,k,Wi))
2
)

≤ θ2φ22ωj
1

µn
.
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(ii) Using Proposition 6.1 we have

E
((

β̂j,k − βj,k
)4)

≤ C

 1

υ4n
E

( n∑
i=1

Ui

)4
+ ϑ4j

 . (6.15)

where U1, . . . , Un are given by (6.13).
Note that E(Ui) = 0 and

E
(
(Ui)

4
)
≤ 16ς2jE

(
(qi(ψj,k,Wi))

2
)
.

Hence using the Rosenthal inequality (see the Appendix), (A2) and the
definition of ςj from (6.9), we have

E

( n∑
i=1

Ui

)4
 ≤ C

 n∑
i=1

E
(
U4
i

)
+

(
n∑
i=1

E
(
U2
i

))2


≤ C

ς2j n∑
i=1

E
(
(qi(ψj,k,Wi))

2
)

+

(
n∑
i=1

E
(
(qi(ψj,k,Wi))

2
))2


≤ C

(
ς2j θ

2
ψ22ωj

υ2n
µn

+ θ4ψ24ωj
υ4n
µ2
n

)
≤ C

(
24ωj

υ4n
µ2
n lnµn

+ 24ωj
υ4n
µ2
n

)
≤ C24ωj

υ4n
µ2
n

. (6.16)

It follows from (6.15), (6.16) and the definition of ϑj from (6.10) that

E
((

β̂j,k − βj,k
)4)

≤ C24ωj
(

lnµn
µn

)2

.

(iii) Proposition 6.1 yields

P
(
|β̂j,k − βj,k| ≥ κϑj/2

)
≤ P

(∣∣∣∣∣
n∑
i=1

Ui

∣∣∣∣∣ ≥ κ∗υnϑj
)
, (6.17)

where U1, . . . , Un are given by (6.13) and κ∗ = κ/2− 1.
Observe that E(U1) = 0, |U1| ≤ 2ςj and, by (A2),

n∑
i=1

E
(
U2
i

)
≤

n∑
i=1

E
(
(qi(ψj,k,Wi))

2
)
≤ θ2ψ22ωj

υ2n
µn
.

Hence, using the Bernstein inequality (see the Appendix) and the defini-
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tions of ϑj and ςj from (6.9) (6.10), respectively, we have

P

(∣∣∣∣∣
n∑
i=1

Ui

∣∣∣∣∣ ≥ κ∗υnϑj
)

≤ 2 exp

(
−

κ2∗υ
2
nϑ

2
j

2
(∑n

i=1 E (U2
i ) + 2

3κ∗υnϑjςj
))

≤ 2 exp

− κ2∗υ
2
nθ

2
ψ22ωj lnµnµn

2
(
θ2ψ22ωj

υ2
n

µn
+ 2

3κ∗θ
2
ψ22ωj

υ2
n

µn

)


= 2µ
− κ2∗

2(1+ 2
3
κ∗)

n .

Taking κ such that κ2∗/ (2 (1 + (2/3)κ∗)) ≥ 2, i.e. κ ≥ 2+8/3+2
√

4 + 16/9,
we obtain

P
(
|β̂j,k − βj,k| ≥ κϑj/2

)
≤ 2

1

µ2
n

.

This completes the proof of Proposition 6.2.

Part II: Proof of the theorem

We decompose f on the wavelet basis B as

f(x) =

2τ−1∑
k=0

ατ,kφτ,k(x) +

∞∑
j=τ

2j−1∑
k=0

βj,kψj,k(x),

where ατ,k =
∫ 1

0
f(x)φτ,k(x)dx and βj,k =

∫ 1

0
f(x)ψj,k(x)dx. Using the or-

thonormality of the wavelet basis B, we can decompose the MISE of f̂H in
three terms as:

E
(
‖f̂H − f‖22

)
= E + F +G, (6.18)

where

E =

2τ−1∑
k=0

E
(

(α̂τ,k − ατ,k)
2
)
, F =

j1∑
j=τ

2j−1∑
k=0

E
((

β̂j,k1{|β̂j,k|≥κϑj} − βj,k
)2)

and

G =

∞∑
j=j1+1

2j−1∑
k=0

β2
j,k.

We now exhibit the bounds of each of these terms.
Bound for E :
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Proposition 6.2 gives

E ≤ C 1

µn
≤ C

(
lnµn
µn

)2s/(2s+2ω+1)

. (6.19)

Bound for F :
For the sake of simplicity, set B̂j,k = β̂j,k − βj,k. The term F can be decom-

posed as

F = F1 + F2 + F3 + F4, (6.20)

where

F1 =

j1∑
j=τ

2j−1∑
k=0

E
(
B̂2
j,k1{|β̂j,k|≥κϑj , |βj,k|<κϑj/2}

)
,

F2 =

j1∑
j=τ

2j−1∑
k=0

E
(
B̂2
j,k1{|β̂j,k|≥κϑj , |βj,k|≥κϑj/2}

)
,

F3 =

j1∑
j=τ

2j−1∑
k=0

E
(
β2
j,k1{|β̂j,k|<κϑj , |βj,k|≥2κϑj}

)
and

F4 =

j1∑
j=τ

2j−1∑
k=0

E
(
β2
j,k1{|β̂j,k|<κϑj , |βj,k|<2κϑj}

)
.

Bound for F1 + F3 :
Observe that

1{|β̂j,k|<κϑj , |βj,k|≥2κϑj} ≤ 1{|B̂j,k|>κϑj/2},

1{|β̂j,k|≥κϑj , |βj,k|<κϑj/2} ≤ 1{|B̂j,k|>κϑj/2}

and

1{|β̂j,k|<κϑj , |βj,k|≥2κϑj} ≤ 1{|βj,k|≤2|B̂j,k|}.

Owing to the previous inequalities, the Cauchy-Schwarz inequality and Propo-
sition 6.2, we obtain

F1 + F3 ≤ C
j1∑
j=τ

2j−1∑
k=0

E
(
B̂2
j,k1{|B̂j,k|>κϑj/2}

)

≤ C

j1∑
j=τ

2j−1∑
k=0

(
E
(
B̂4
j,k

))1/2 (
P
(
|B̂j,k| > κϑj/2

))1/2
≤ C

lnµn
µ2
n

j1∑
j=τ

2j(1+2ω) ≤ C lnµn
µn

≤ C
(

lnµn
µn

)2s/(2s+2ω+1)

. (6.21)

imsart-generic ver. 2009/12/15 file: bj4_yogen_rev.tex date: December 12, 2013



Chaubey et al./Wavelet estimation of a density from mixtures 21

Bound for F2 :
Using the Cauchy-Schwarz inequality and Proposition 6.2, we obtain

F2 ≤
j1∑
j=τ

2j−1∑
k=0

(
E
(
B̂4
j,k

))1/2
1{|βj,k|≥κϑj/2}

≤ C
lnµn
µn

j1∑
j=τ

22ωj
2j−1∑
k=0

1{|βj,k|>κϑj/2}.

Let j∗ be the integer defined by

1

2

(
µn

lnµn

)1/(2s+2ω+1)

< 2j∗ ≤
(

µn
lnµn

)1/(2s+2ω+1)

. (6.22)

Then F2 can be bounded as

F2 ≤ F2,1 + F2,2,

where

F2,1 = C
lnµn
µn

j∗∑
j=τ

22ωj
2j−1∑
k=0

1{|βj,k|>κϑj/2}

and

F2,2 = C
lnµn
µn

j1∑
j=j∗+1

22ωj
2j−1∑
k=0

1{|βj,k|>κϑj/2}.

We have

F2,1 ≤ C
lnµn
µn

j∗∑
j=τ

2j(1+2ω) ≤ C
(

lnµn
µn

)2s/(2s+2ω+1)

.

For r ≥ 1 and p ≥ 2, the Markov inequality, definition of ϑj (from (6.10)) and
f ∈ Bsp,r(M) ⊆ Bs2,∞(M) (see Härdle et al. (1998), Corollary 9.2) yield

F2,2 ≤ C
lnµn
µn

j1∑
j=j∗+1

22ωj
1

ϑ2j

2j−1∑
k=0

β2
j,k ≤ C

∞∑
j=j∗+1

2j−1∑
k=0

β2
j,k

≤ C

∞∑
j=j∗+1

2−2js ≤ C
(

lnµn
µn

)2s/(2s+2ω+1)

.

For r ≥ 1, p ∈ [1, 2) and s > (2ω+ 1)/p, the Markov inequality, the definition of
ϑj , f ∈ Bsp,r(M) and (2s+ 2ω+ 1)(2− p)/2 + (s+ 1/2− 1/p+ω− 2ω/p)p = 2s
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imply that

F2,2 ≤ C
lnµn
µn

j1∑
j=j∗+1

22ωj
1

ϑpj

2j−1∑
k=0

|βj,k|p

≤ C

(
lnµn
µn

)(2−p)/2 ∞∑
j=j∗+1

2jω(2−p)2−j(s+1/2−1/p)p

≤ C

(
lnµn
µn

)(2−p)/2

2−j∗(s+1/2−1/p+ω−2ω/p)p ≤ C
(

lnµn
µn

)2s/(2s+2ω+1)

.

So, for r ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and s > (2ω + 1)/p}, we have

F2 ≤ C
(

lnµn
µn

)2s/(2s+2ω+1)

. (6.23)

Bound for F4 :
We have

F4 ≤
j1∑
j=τ

2j−1∑
k=0

β2
j,k1{|βj,k|<2κϑj}.

Let j∗ be the integer (6.22). Then F4 can be bound as

F4 ≤ F4,1 + F4,2,

where

F4,1 =

j∗∑
j=τ

2j−1∑
k=0

β2
j,k1{|βj,k|<2κϑj}, F4,2 =

j1∑
j=j∗+1

2j−1∑
k=0

β2
j,k1{|βj,k|<2κϑj}.

Observe that, using the definition of ϑj , we have

F4,1 ≤ C
j∗∑
j=τ

2jϑ2j = C
lnµn
µn

j∗∑
j=τ

2j(1+2ω) ≤ C
(

lnµn
µn

)2s/(2s+2ω+1)

.

Further, for r ≥ 1 and p ≥ 2, since f ∈ Bsp,r(M) ⊆ Bs2,∞(M) (see Härdle et al.
(1998), Corollary 9.2), we have

F4,2 ≤
∞∑

j=j∗+1

2j−1∑
k=0

β2
j,k ≤ C

∞∑
j=j∗+1

2−2js ≤ C
(

lnµn
µn

)2s/(2s+2ω+1)

.

For r ≥ 1, p ∈ [1, 2) and s > (2ω + 1)/p, owing to the Markov inequality, the
definition of ϑj (from (6.10)), f ∈ Bsp,r(M) and (2s + 2ω + 1)(2 − p)/2 + (s +
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1/2− 1/p+ ω − 2ω/p)p = 2s, we obtain

F4,2 ≤ C

j1∑
j=j∗+1

ϑ2−pj

2j−1∑
k=0

|βj,k|p

= C

(
lnµn
µn

)(2−p)/2 j1∑
j=j∗+1

2jω(2−p)
2j−1∑
k=0

|βj,k|p

≤ C

(
lnµn
µn

)(2−p)/2 ∞∑
j=j∗+1

2jω(2−p)2−j(s+1/2−1/p)p

≤ C

(
lnµn
µn

)(2−p)/2

2−j∗(s+1/2−1/p+ω−2ω/p)p ≤ C
(

lnµn
µn

)2s/(2s+2ω+1)

.

Thus, for r ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and s > (2ω + 1)/p}, we have

F4 ≤ C
(

lnµn
µn

)2s/(2s+2ω+1)

. (6.24)

Therefore it follows from (6.20), (6.21), (6.23) and (6.24) that

F ≤ C
(

lnµn
µn

)2s/(2s+2ω+1)

. (6.25)

Bound for G:
For r ≥ 1 and p ≥ 2, we have f ∈ Bsp,r(M) ⊆ Bs2,∞(M). Since 2s/(2s+ 2ω+

1) < 2s/(2ω + 1), we have

G ≤ C
∞∑

j=j1+1

2−2js ≤ C
(

lnµn
µn

)2s/(2ω+1)

≤ C
(

lnµn
µn

)2s/(2s+2ω+1)

.

For r ≥ 1 and p ∈ [1, 2), we have f ∈ Bsp,r(M) ⊆ Bs+1/2−1/p
2,∞ (M) (see Härdle et

al. (1998), Corollary 9.2). Since s > (2ω+1)/p, we have (s+1/2−1/p)/(2ω+1) >
s/(2s+ 2ω + 1). Hence

G ≤ C
∞∑

j=j1+1

2−2j(s+1/2−1/p) ≤ C
(

lnµn
µn

)2(s+1/2−1/p)/(2ω+1)

≤ C
(

lnµn
µn

)2s/(2s+2ω+1)

.

Hence, for r ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and s > (2ω+ 1)/p}, we have

G ≤ C
(

lnµn
µn

)2s/(2s+2ω+1)

. (6.26)

Combining (6.18), (6.19), (6.25) and (6.26), we have, for any r ≥ 1, {p ≥ 2
and s ∈ (0, N)} or {p ∈ [1, 2) and s ∈ ((2ω + 1)/p,N)},

E
(
‖f̂H − f‖22

)
≤ C

(
lnµn
µn

)2s/(2s+2ω+1)

.

This completes the proof of Theorem 6.1.
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Appendix

Lemma 6.1 (Rosenthal’s inequality). Let p ≥ 2, n ∈ N∗ and (Ai)i∈{1,...,n} be
n zero mean independent random variables such that, for any i ∈ {1, . . . , n},
E(|Ai|p) <∞. Then there exists a constant C > 0 such that

E

(∣∣∣∣∣
n∑
i=1

Ai

∣∣∣∣∣
p)
≤ C

 n∑
v=1

E (|Ai|p) +

(
n∑
i=1

E
(
A2
i

))p/2 .

See Rosenthal (1970) for details.

Lemma 6.2 (Bernstein’s inequality). Let n ∈ N∗ and (Ai)i∈{1,...,n} be n zero
mean independent random variables such that there exists a constant M > 0
satisfying, for any i ∈ {1, . . . , n}, |Ai| ≤M <∞. Then, for any y > 0, we have

P

(∣∣∣∣∣
n∑
i=1

Ai

∣∣∣∣∣ ≥ y
)
≤ 2 exp

− y2

2
(∑n

i=1 E (A2
i ) + yM

3

)
 .

See Petrov (1995) for details.
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