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The chord length distribution of a dumbbell shapgdregate:

Analytical expression

Frédéric Gruy* and Soong-Hyuck Suh

a Ecole Nationale Supérieure des Mines, 158 Coamsi®l 42023 Saint-Etienne, France

b Department of Chemical Engineering, Keimyung @nsity, Daegu, 704-701, Korea

Abstract

Dumbbell shaped aggregates are small particlehesised in precipitation reactors. Their
characterization by optical methods needs the chemdth distribution (CLD) of such a
shape. We present in this paper the analyticautaion of two CLD’s corresponding to two
different definitions of CLD. Comparison with Mor@arlo simulations is presented. Good

agreement is found between the exact calculatidrsanulations.

Keywords Chord Length Distribution (CLD), Dumbbell, Aggr@gn, Anomalous Diffraction

1. Introduction

Many manufacturers use solid micro-particles inpsuasion for various applications:
ceramics, paintings, pharmaceutics, cosmetics, fmudl chemicals. Particle sizing can be
performed by physical methods based on the saajtéetween the particles and an incident

electromagnetic wave. The scattered wave is depgnah the particle morphology and on
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the ratio between the refractive indices of pagtichaterial and suspending medium.
Depending on the particle material and the seleatethod the measured signal may be
straightforwardly related to the chord length dsttion (CLD) of the randomly orientated
particles set. This is illustrated by three exarsple

- Small-Angle Scattering (SAS) measurements [1] aréalsle for nano- and micro-
particles interacting with X rays. This method demextended to optically soft micro-
particles interacting with light [2].

- Focused Beam Reflectance Measurements (FBRM) am@ngnthe most widely
techniques for particle sizing [3]. It uses a faadi®eam of laser light that scans across
particles passing in front of the probe window teasure a chord length distribution.
The interpretation of the signal is only based loa teflected light. This method is
suitable for particle size higher than 5um.

- Spectral Turbidimetry, i.e extinction measuremesitan optical method to measure
the light scattering or extinction cross sectiorpafticles. In the case of large micro-
particles (> 1um) and very small optical contrastjnction or forward scattering can
be explained in the framework of anomalous difiactapproximation [2]: then the
scattering cross section is expressed as an ihtagrluding the particle CLD.
Anomalous diffraction approximation was applied @aosphere, an infinitely long
circular cylinder, a prism column, a hexagonal talsf ice, ellipsoids and a finite
cylinder [4].

Depending on the physical principles of measurententdefinition of the CLD for a given
object changes: 3D isotropic uniform flow of intmistraight lines in the case of SAS and
turbidity measurements, or 2D isotropic uniformwlaf infinite straight lines for each

projected area in the case of FBRM.



The CLD of convex and non-convex bodies has beatiext from a mathematical point of
view. Explicit expressions have been obtained fuurialed 2D or 3D convex domains: disc,
triangle, rectangle, regular polygon [5], spheremisphere [6], cylinders of various cross
sections [7, 8], spheroids, polyhedron [9]. Morapwharonyan [10] obtained an explicit
expression for the orientation-dependent CLD for laounded convex body.

Non-convex bodies have paid less attention thawecomnes. Mazzolo et al [11] discussed
the CLD in the context of reactor physics. Theywgitbat some relations between lower
moments of CLD and simple geometric propertiesasme, surface, ... of the body remain
valid for non-convex bodies whereas higher CLD motm@o not obey the simple relations
valid for convex bodies. Gille [12] studied the Cldd an infinitely long circular hollow
cylinder that is a special case of non convex bdlay;corresponding calculation is based on
basic principles. Gille [13] also considered twagbe! circular cylinders separated by a short
distance and calculated the 3D-correlation functibat is related to CLD. Vlasov [14]
introduced the notion of signed chord distributimn convex and non-convex bodies. He
started from the work of Dirac transforming the -dimnensional integral of pairwise
interaction potential for a convex body into a dienpexpression including the CLD; he
extended it to a non convex body. He showed treae#pression of the integral is much more
complicated than the one for convex body: it can deeomposed into several terms
(integrals), each one related to the various setgr@the given chord inside the non convex
body. He formally deduces the expression of the @ulhe non-convex case.

Among the particle shapes observed in industrialcgsses, small clusters of spherical
particles are often present. By the past we caledld15] the CLD for a two-sphere
aggregate. In this paper we extend this calculdiion set of two spheres penetrating each

other. For instance, these dumbbell-like partidppear in the precipitation of inorganic



compounds performed at high supersaturation andk \ggregation conditions. Polymeric
colloids with such a morphology are also synthek[46].

The section two of this paper develops a methodolagorder to calculate the CLD of a
dumbbell shaped aggregate. It is followed by a @mspn with Monte Carlo Simulations in

the section three. Section four is devoted to eaatioly remarks.

2. Calculation of the chord length distribution

A straight line may intersect more than one time&osg€ a non convex body. As a
consequence, two CLD can be defined:

- The multiple chord distribution (MCD) where easbgment interval on the same line is
considered as one chord length separately. FBRMunements are associated to MCD.

- The one chord distribution (OCD) where the sumchbrd lengths for all intersected
intervals is used as the definition of the chondgtb. SAS and turbidity measurements are
associated to OCD.

Even if the latter ones only consider OCD, we wiksent both OCD and MCD calculations
with 3D uniform flow of lines. The correspondingopedure is similar to the one used for a
two-sphere aggregate [15].

Throughout the paper, the chord length distribuensity) is writtenD(1). D(1)dl is the

Imax

number of chords within thierange[l,1 +dI]. D(1) is normalized, i.eJ' D(I)dl =1.
0

2.1. Definition of the different geometrical areas



In the following of the paper, points will be deedtby lower-case letter (except the origin O
of the coordinates system), line by upper-caseerletairea by upper-case letter within
parentheses and a volume by upper-case lettemvidthckets.
The dumbbell projection on a plane is conside@d0< < 77/2) is the angle between the
line binding the centres of the two spheres (radalge equal to one) and the projection plane
(coordinatex,y). The distance between the two sphere centresnistddd. The centre of one
of the two spheres is chosen as the origin O ottmedinates system (Fig. 1). The projection
of the dumbbell is represented in the figures Zartiwo values of thé? angle and for a semi-
plane. The circles C1 and C2 represent the projeaif the spheres (disks (C1) and (C2))
whereas the dashed curve (ellipse later callechBlie paper) represents the projection of the
circular junction J between the two spheres. Letassider a chord (perpendicular to the
projection plane). According to the location of il$ersection (x,y) point with the plane this
line may cross:

- one single sphere: the point belongs to (P1)

- the junction between the two spheres: the poirdgrigd to (PJ)

- or successively the two spheres: the point belem@B12).
The (Pf) area that is bounded by C2 (and C1) andsHictitious. Its definition will be
detailed hereatfter.

The previously defined areas correspond to a fal@

The ellipse E1 has some interesting properties:

- the coordinates of E1 centre a@d(cog6) ,0)

- the ellipse intersects the circles at the two bd a2 points (in fact four points if one

considers the other semi-plane). The coordinates tloé b2 point are



(5/(2003(9)) (1—52 ( 400%(6?)))1/2). The tangent at this point is common to the

circle and the ellipse.

- as the&angle increases E1 tends to a circle. E1 doesntetsect C1 and C2 for
8>6., =acogJ /2

- the equation of the E1 ellipse is:

(x-dcos(8) 12 IsiR(6)+y? = £32 /- @)

- E1 and C2 intersect the horizontal axis at b1* abtf respectively. The area defined

by b1, bl* and b1** is the one-fourth of (Pf).

2.2Decomposition of the CLD
The CLD may be written as a sum of several pa@laD’s.

2.2.1 Calculation of the CLD (OCD)

The chord length distribution of the dumbbell catsiof the contributions of the various

areas:

D% (1) =Dy 1) #D oy 1) +D ol )

- 2DC1,PJ (I ) -2D Cl,PlZ(I ) -D C1,Pf (I ) -D Cl,Ch cz(l ) (2)

D, (1) is the CLD for the chords perpendicularly crossimg X) projected areaD,, , (1) is

the contribution of theX) area to the CLD of a single sphere.

Dcipyr Doy par Dy pr are calculated fod <&, whereasD, ..., is calculated ford >4, .

These partial distributions are equal to 0 outiigepreviously defined range @ivalue.

2.2.2 Calculation of the CLD (MCD)



The chord length distribution of the dumbbell cetsiof the contributions of the various
areas:
DY (1) =Dy, (1) +Dcrvco () =D cipoll ) =D el ) 3)
Dc, s is calculated fol® < 6., whereasD,, ., is calculated for any.
In the following of the paper, the various conttibas are calculated.
As the number of chords perpendicularly crossimg@ection plane and the particle with a

chord length within the rangd,lfdl] is proportional to the corresponding projectedaar

element, the relation between the projected &eaand the chord length distribution

D, (|)=¢NO'—S‘X (4)

N is a normalization factor which will be specifieater. Depending on the calculation, the
areaSy is the part of the projected area connected withaad length smaller or higher than a

givenl value. The equation 4 is integrated over the saligle domain.

The calculation ofD, (1) depends at once on tidand! values. For instance, certdinalues

are not available for a givedivalue; moreover, the shapes of (P1), (PJ), (RP2), projected
areas depend on thievalues. As a consequence, a careful analysiseof/@nious projected

areas has to be performed before calculating tHe'€CL
2.3. Analysis of the various projected areas

2.3.1 Description of area (P12) and the corresponaj chord length

The length of the chord)(which crosses the two spheres obeys the equations

1=2(1-02)"+2(1-d ?)"" it d<1ld'<1



with
d =(x2 + yz)l/2 and d'= ((x—dcos(t?))2 + y2)1/2

The locus of the pointxfy) with constant is a segment of the E2 ellipse:

(X—O_COaj(e) /32 +Z_2=1 ‘X—O-COS(Q) /¢< xT ,(5 Coé@)) 5)

with

{1— 5 cog (6) /4—TT2

_T1_ 52 1/2 _ 2
4767 c03(6) 14 b=[1-8%cos(6) /4T] "and T=1°/16

The dotted curve in the figure 3a represents thesel E2. For small value of(l1 0 1) the
endpoint of E2 is close to the intersection poieiiween C1 and C2. As the/alue increases

the endpoint of E2 is going away from this intetget point. E1 and E2 are matching for a
particular value of (=2Jsin(8)).

The ellipse E2 exists ifo® > 0):

- cos(6) < co$g,)= 2 £T)"* & andT >1-3%/4

or

-T<1-90°/4

The intersection of the ellipse E2 with the cirClg exists ifA<1 with

2T o
ocos(6) ' _ZCOS( %)

The coordinates of the intersecting point ate= A and y, = (1— xﬁ)m.

If A>1, there is no intersection (figure 3b).

One defines the anglé®s and @ _as:

cos(6,) =X, =(1(+ 1)) &



which are the roots oA=1 (if | <2).

The two angles & exist if 0<X,<1. In fact the conditions are more strict:

0< X, <co96b;,) . As only the part of E2 into the region bounded@t, C2 and E1 is
relevant, then the condition dhis | < 29'sin(6) i.e. sin(8) = sin(f,.,) :( a /52)1/2. It can

be proved that,., >6,. As sin(@ElEz) <1, thenl <29 . We emphasize that a chord goes

across the two sphereséf.,.,< 8 </ 2. This leads to an additional condition Brando.

So, the figure 4 defines the different areas in(dfe/ 4,T )-space: Each one corresponds to a

specific configuration concerning C1, C2, E1 and E2ch area also corresponds to a specific
expression of the CLD.

Area 1: intersection between C1 and E&,, 06_; &.,., <6 <7ml2
Area 2: no intersection between C1 and F®,

Area 3: intersection between C1 and EB, ; 0<8 .,.,<0,<8.<ml/2.

2.3.2 Description of area (PJ) and the correspondgichord length
(PJ) area behaves as the (P12) area.

The length of the chord)(which crosses the two spheres obeys the equations
| =(1-d2)"" +(1-d 2)*+ 5 sin(6) it d<1,d'<1

with

1/2

d=(x2+ yz)ll2 and d':((x—dcos(é?))2+ y2)
The locus of the pointx{y) with constant is the E3 ellipse:

(x-ocos(6) 19’ LYy ©
alZ b-2




with

1/2

=(41V2-sin(6))[ 1-0% 14~ 4T+ BTV sife) | [o% 14 F- AT site)]

N
b'=[1-0%/4- 4T + BTV sif6) ]~

The figure 5 represents the E3 ellipse (dotted lifbe properties of E3 are the following:
- E3 corresponds to the inequality 29 sin(6)
- E3exists for any if 4T <1-0°/4
- E3exists ford= 8, with sin(6,) =(1? + 3%~ 4) () if 4T >1-56°/4
- E3=E1 forl =2d5sin(6)
- E3 may intersect E1. The x-coordinate of the imteisn point is:

X, =0cos(8) / 2+ tar{8)(1-o sife)) /:

1/2

- E3  intersects E1 if tan(6)(I-dsin(6)) /2 sifd)( £5° /4, e

B=1>+0?-2Jsin(6) - 4co$(8) < (. Then one can define two anglés, & :

1/2

sin(6) = X* = T? +(1+5°T- 4T-5° /4
which are the roots 0B =0 (if | <2).
The two angles8* exist if 0<X*<1. In fact the inequalites are more strict:

sin(8,) < X* < sin(6,¢,). This leads to an additional condition GandJ

So, the figure 6 defines the different areas in(fe 4,T )-space: Each one corresponds to a

specific configuration concerning E1 and E3. Eackaaalso corresponds to a specific

expression of the CLD.

Area la: no intersection between E1 and B87, /6",6, =0

10



Area 1b: intersection between E1 and E#", 067,68, >0; 6, <0 <.,
Area 2a: intersection between E1 and E87, /167,68, =0; 6,<6" <.,
Area 2b: intersection between E1 and BB, 8, >0; 0<6,<8 <6 <@,
Area 3: intersection between E1 and #8%, 6, >0

Area 4: no intersection between E1 and B3, 8, >0

As only the part of E3 inside E1 is relevant, thiea condition ong is | 225sin(6?) le.

sin(8) < sin(6e,) = (4 132) . As sin(6.,,) < 1, thenl <23

2.3.3 Description of area (P1) and the correspondinchord length
Area (P1) corresponds to the path of a line (chactdss a single sphere. The simplest way to

calculate the corresponding CLD is to consideruwhgous contributions of each projection

area knowing th4tP1) +( PJ) +( PL2) +( Pf) =( Cl) =( C2. However two cases appear:

- E1l is tangential to the circles C1 and C2: we havealculate the contribution of (PJ),

(P12) and (Pf) zones.

- E1lis not tangential to the circles C1 and €R1)+(C1) n (C2)=(Cl)=(C3. Note
that (PJ)+(PL2)#(Cl) n (C2.

The transition between these two cases happensd@) =9 /2 (8=6,).

Contribution of (C1)N(C2) (6> 6.,)

The figure 7 describes the different areas in the/ 4,T )-space: each one corresponds to a

specific configuration concerning C1 and C2. Eackaaalso corresponds to a specific

expression of the CLD. Each area corresponds &b af snequalities:

11



o0>1loro<l
(112)°+(5-2)*>10r (1/2)"+(5-1)°<1

cos(6,) =(1(+ 7)) B< cos =5 /

6, is such agl /2)° +(dcog6)- " = ‘ie.A=1

Each area is characterized by several angulan/mna[rﬁj;ﬁj+l]k (=1, 2) defined as:
Area 1:[6.,;6.], [6.;712],

Area 2:[6.,; 11/ 2],

Area 3:[6,;60.] [6:7/2],

The indexk corresponds to the angular distangg :

LAy=¢
22Ay=m

Whered = acosacos(e) |2- fg co$d))
(1-1274)

Contribution of (PJ) (for any6)

We are looking for the intersection between E1 andircle denoted C3 with radius

(1—I2 /4)1/2 (I is constant). Depending d@hvalue, 0, 1 or 2 intersection points are presient.

d+1sin(6)

case of 2 intersection points, theicoordinates arel, =
© 2coq9)

The figure 8 is a diagram in thé,(x) space showing the intersection of C3 with E1.

12



Each line segment of the dash-dot curve corresptmds angle interval with 0, 1 or 2
intersection points. We called., &' ,d ,d the boundary angles between segments (r: right
branch; I: left branch; +: solid line; -: dasheukl).

Depending ond, |) values, one identifies several areas in e/ @,T ) diagram (figure 9).

Each area has three angular inter\E£ﬂ§9j+1]k (i=1, 2, 3 defined as:

Area 1:[0;91]2 [61;91] [
Area2:[06.| [&:8] |

Area 3:[0;81}0 [6‘_;81]1 6,;m12]
Area 4:[0;91]2 [61;9[] [

The indexk corresponds to the angular distadgg :
0: Ay =0

1: Ay =y

220 =y -y,

AYy=m

Wherey, = acos( u, /( =P /4)1/2)

Contribution of (PJ) (6<6.,)

The various areas in thé{/4,T ) sub-space are already described in the figure 6.

Each area has several angular inter‘{ﬂsﬁjﬂ]k defined as:
Area 1a: 0,6, | [6.:6.

Area 1b:[0;6' | €6, |,

13



Area2a 0,6, | [6:6] [6:6.],
Area ZbI[O;qu [9_;9[]1 [H—;HElL

Area 3:[0;6,],

Contribution of (P12) (8<6,)

The allowed area for the calculation of the CLDhis area denoted 1 (figure 4).

Contribution of (Pf) (8<6y,)

The allowed areas for the calculation of the CLP thie areas denoted 1a and 2a (figure 6).

2.4. Contributions of the different areas to the CID

2.4.1. Contribution of (P12) area to the CLD
The fraction of the projected area, such as thedchemgth is smaller thah) obeys the
equations:
- if C1 and C2 intersect E2

.. 4x25]ose'2K1—( "+ cos(e)n

0

1/2

-H & % /5)1’2] d (7a)

- if C1 and C2 do not intersect E2

S = 2(a — sin( 2a)) - TH? H T+%2 co§(9)j_l/2 —[ T+%2 00?3(9))1/2] (7b)

With sin(ar) = [1—%2 coé(ﬁ)jm

14



The average CLD over all the orientations will belsas:

- areal:
o 2
D, (1)=N | dS/ dicos(6) &+ N[ d$/ dcogd) @ (8-1)
GE1E2 A
- area?2:
7l 2
Dy, (1)=N | dS,/ dicos(6) & (8-2)
OE1E2
- area3:

Dm(l):Nj:dSI dicos(§) &+ NBJ: dS/ dcogs) @+ I]\]LZ dS/ deogd) @

GELE2 6.

(8-3)

2.4.2 Contribution of (PJ) area to the CLD

The fraction of the projected area, such as thedchength is smaller thah) obeys the

eguations:

- if E3 intersects E1

x3-0cog8) /2

S=4 | [(1—52 14" (1= % Isif (6))"° - b( & ¥ /a‘"‘)”z} d (9a)

0

- if E3 does not intersect E1
S, =n(1-5%/4)sin(6) - ma'b (9b)
The average CLD over all the orientations will belsas:

- areala:
GE1E2

D, (1)=N [ dS/ dicos(6) & (10-1a)

0

- arealb:

15



DPJ(I):NgEjEzdSI dicos(8) &9+ Ngj d$/ dcogd) @ (10-1b)

o

area 2a:
GELE2 6"
D, (1)=N j dS,/ dicos(8) B+ Nj d$/ dcogd) @ (10-2a)
o 0
area 2b :

GELE2

DPJ(|)=N9jda/d|cos(e)oy+ Ngj d$/ dcogd) @+ N[ dS/ deofd) @

(10-2b)

areas 3 and 4:

D, (1)=N HEjEzdg/ dicos(6) & (10-3)

g2

If 1 >25 thenb,., =m/2

2.4.3 Contribution of (P1) area to the CLD

Contribution of (C1)N(C2) (6> 6.,)
Let us consider the sphere of centre O and iteption. The area elemet$belonging to the

intersection of the two disks (projected spherex) having the chord length in the range

[11 +dl], is:

-if cos(f)>1/5 dS, = ggpdy  with r,0[(Jcos(6)-1) .1

-if cog(8) < 1/5 dS, = rzdy with 1, 0]0,(1-J cog#)) |
ds, = g dg with 1,0 (1-Jcog6)) .1

With 1, = (1-12/4) " = (1- 7).

16



The average (for the 2 spheres) over all the aatents is written:

- areal:
72
Derenco(l)=-N j 2dS, / dicog(8) B - Nj 2dS / dico§d) @ (11-1)
GE1
- area?2:
7l2
Deycnnca(1)=-N | 2dS, / dicog6) & (11-2)
GE1
- area3:
72
Dere () =-N j 2dS, / dicog(8) B - Nj 2dS / dicogd) @ (11-3)
Contribution of (PJ)
3 Bn
Doy (1) =-NY [ 2rA, g (dr,/dl) cog(6)d @ (12)
=1 g,

With 1, =(1-12/4)

This relation is valid at once foB(< &) and @< 6, and8>6;,)

Contribution of (P12) (8<6,)

One considers th@ld2 arc (or the corresponding angle) defined by the d& and d2 points:
d1 is the intersection point of C3 and E1, d2 esititersection of C3 and C2.

d,d, = ¢ - acos( u /1)

The swept area by increasing the radius of theiCgas:

dS= r'd d, dr
GE1

Deypro(l)=-N [ 2dS/ dicog(6) o (13)

asin(1/(25))

17



Contribution of (Pf) (6<6,)
The swept area by increasing the radius of theiCBads:
dS= @, dg

Hl

Deyer (1) =-N [ 20S/ dicog(8) & (14)

Contribution of (C1)+(C2)
The chord length distribution of the 2 spheres w®red alone is obtained while taking
p=rr.

Derca (1) =2N7(1/2) (15)

Normalization factor
The normalization factdN is the inverse of the dumbbell projected areaayest over all the

orientations:

N7 =(s,) :T Scos(8) @ (16)

0

With

Sp:271+5cos(0)(1—52 co§(8) /)U}IZ— 4 cq® cf8) )

3. Comparison with Monte Carlo Simulations

Two procedures for Monte Carlo Simulations (MCSyénheen used:

18



i) A classical MC (Monte Carlo) software generaa@sisotropic uniform random line across
the geometric object, and then collects the chendth segments. The successive steps of the

algorithm are:
1. Choice of a line or the corresponding unit veatowith random orientation

2. Projection of the dumbbell on the plane perpendiculo the vectorn, i.e.
determination of the coordinates of the centredisds

3. Calculation of the intercept, i.e. length of thgmsent perpendicular to the plane and
crossing the dumbbell

4. Gotostepl

The calculation of the interceptt depends on the value ofQ; given by
Q =1-(x-x)*=(y- y)* with i=1,2 and where , y ) are the coordinates of the centres of

the projected spheres and ) are the coordinates of intersection of the lind ¢he plane.

Then,
If Q<0 andQ,<0 thenl=0
If Q>0 andQ,<0 thenl= 2,/Q,
If Q<0 andQ,>0 thenl= 2,/Q,
If Q>0 andQ,>0 then
12
d=yQ+Q+(& (%~ %)’ ~( %~ ¥)’)

D=2,/Q +2/Q
S=sup{2\/§,2/§}

If D>d then | =sup(S ,d}
If D<d thenl=D for OCD

If D<d thenl= 2\/61 and I:Z\/a2 for MCD

19



2,/Q is the length of the chord in the spheréis the distance between the two end points of

the line crossing the two spheres.

The MC sampling distribution may be visually remmeted as the discrete probability
histogram. The chord length between zero and thamad possible length is divided on m-
bins with the equal size &. All the simulation runs have been carried outgeperating 10
unbiased random lines. The sampling error is smedkn 10",

i) An alternative algorithm is suitable for apgiton in optics (AD approximation, see [15]).
It completes the second step of the preceding idhgohby scanning the discretized projected
area and by calculating the corresponding chordtkefor each point belonging to the grid.
The other steps of the algorithm are not modifiéthis sequence is repeated®iines, the
sampling error is smaller than10The two algorithms are in very good agreementvéi@r

this variant will not be used in this work.

The analytical CLD (section 2) is compared to the data coming fromSVIEigure 11 shows
such a comparison fa=0.4 (MCD). The agreement between the two methed®iy good.

Similar results are obtained for the two types bbDGMCD and OCD) and for ald-values.

Figure 12 represents the relative differendsetween the two methods:

81 The software may be provided by simple requetii¢cauthor.
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o= (Ducs 1) -D(1))D ()

It can be observed that the relative deviationeig/\small except abolt2. This last feature

is due to the sharp discontinuity fD(l) at|=2 (Fig. 11). The range dfvalue corresponding
to this large deviation is [1.98; 2.02]. MCS andr analytical calculations (including
numerical integration) fail together within tHisange. For comparing the two methods by a
guantitative way we have calculated the standdadive deviation as:

Z{%i(Dms(h)/D('i)-l)zr

i=1
The summation is performed with the chords in dreges [0; 1.98] and [2.02; 4].

The 3-value has been calculated for eaetalue and for the two types of CLD. Tkevalue

is always within the [0.002-0.004] range.

4. Conclusion

The CLD for the two types of chord length (OCD an@D) has been analytically calculated.
A good agreement was found between the analytiqakession of the CLD and Monte-Carlo
simulations. The analytical CLD for dumbbell-likggaegates is an illustration of the ideas of
Vlasov [14]: non convexity leads to complicated eegsions for CLD that are built by
considering the contributions coming from seveaitp of the body. This work will be used
for studying systematically the effect of tBgparameter on the CLD and its moments. It also

permits to compare OCD and MCD. The correspondasglts will be soon published.
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Figure 1: 3D drawing of the dumbbell shaped aggeega
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2 2.5

Figure 2a: projection (x,y) of the dumbbell shapgdregated=1.5 andd=0.5rad. Circles C1
and C2: solid lines; ellipse E1: dashed line (red)
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Figure 2b: projection (x,y) of the dumbbell shapegregated=1.5 andd=1.2rad. Circles C1
and C2: solid lines; ellipse E1: dashed line (red)
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Figure 3a: projection (x,y) of the dumbbell shapedregated=1.5 and8=0.5rad;l =0.3 .,
with Imaxz4[1—52 cos (6) /Zﬂllz Circles C1 and C2: solid lines; ellipse El: daslied

(red); ellipse E2: dotted line (blue)
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Figure 3b: projection (x,y) of the dumbbell shapedregated=1.5 andb=1.3rad;| =0.48,
with Imaxz4[1—52 cos (6) /Zﬂllz Circles C1 and C2: solid lines; ellipse El: daslied

(red); ellipse E2: dotted line (blue)
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Figure 5: projection (x,y) of the dumbbell shapedgre@gated=1.5 andd=0.5rad; |=2. Circles
C1 and C2: solid lines; ellipse E1: dashed lind)rellipse E3: dotted line (blue)
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Figure 6: different areas of th&{/4,T) sub-space for a chord crossing the junction. The
equations corresponding to the curves separatmdifferent areas are:
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Figure 7: different areas of thé{/4,T ) sub-space for a chord crossing a single sphére. T
equations corresponding to the curves separatadifferent areas are:

2
Dash-dot line (red)T =1/4 ; solid line (black)T :(1—§j%
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Figure 8: @,x) space for a chord crossing the sphere ((PJ) zdme) dash-dot line (red)

corresponds to the radius of the C3 Cirok-:c(l—l 2 /4)1/2. The solid line (black) corresponds

to the abscissa of the right endpoint of B4, £ dcos(6) /2+( +0° /A)l/2 sifg) ). The
dashed line (green) corresponds to the abscissathef left endpoint of E1

(x. :‘5cos(6?) 12-(x6 14" sirﬁe)‘ ).
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Figure 10: the dashed area (projection plan€jlisaC2.

35



0.9- L B

0.7 -

0.3 -

0.1- f

Figure 11: CLD (MCD): comparison between Monte Gaimulations (dotted line; red) and

analytical calculation (solid line; black)=0.4.
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Figure 12: relative deviation between the CLD (MCBalculated from Monte Carlo

simulations and the analytical method (sectiord2.4.
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