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Dumbbell shaped aggregates are small particles synthesised in precipitation reactors. Their characterization by optical methods needs the chord length distribution (CLD) of such a shape. We present in this paper the analytical calculation of two CLD's corresponding to two different definitions of CLD. Comparison with Monte-Carlo simulations is presented. Good agreement is found between the exact calculation and simulations.

Introduction

Many manufacturers use solid micro-particles in suspension for various applications: ceramics, paintings, pharmaceutics, cosmetics, food and chemicals. Particle sizing can be performed by physical methods based on the scattering between the particles and an incident electromagnetic wave. The scattered wave is depending on the particle morphology and on the ratio between the refractive indices of particle material and suspending medium.

Depending on the particle material and the selected method the measured signal may be straightforwardly related to the chord length distribution (CLD) of the randomly orientated particles set. This is illustrated by three examples:

-Small-Angle Scattering (SAS) measurements [START_REF] Guinier | Small-Angle scattering of X-rays[END_REF] are suitable for nano-and microparticles interacting with X rays. This method can be extended to optically soft microparticles interacting with light [START_REF] Van De Hulst | Light scattering by small particles[END_REF].

-Focused Beam Reflectance Measurements (FBRM) are among the most widely techniques for particle sizing [START_REF] Li | [END_REF]. It uses a focused beam of laser light that scans across particles passing in front of the probe window to measure a chord length distribution.

The interpretation of the signal is only based on the reflected light. This method is suitable for particle size higher than 5µm.

-Spectral Turbidimetry, i.e extinction measurement, is an optical method to measure the light scattering or extinction cross section of particles. In the case of large microparticles (> 1µm) and very small optical contrast, extinction or forward scattering can be explained in the framework of anomalous diffraction approximation [START_REF] Van De Hulst | Light scattering by small particles[END_REF]: then the scattering cross section is expressed as an integral including the particle CLD.

Anomalous diffraction approximation was applied to a sphere, an infinitely long circular cylinder, a prism column, a hexagonal crystal of ice, ellipsoids and a finite cylinder [START_REF] Kokhanovsky | Optics of light scattering media[END_REF].

Depending on the physical principles of measurement the definition of the CLD for a given object changes: 3D isotropic uniform flow of infinite straight lines in the case of SAS and turbidity measurements, or 2D isotropic uniform flow of infinite straight lines for each projected area in the case of FBRM.

The CLD of convex and non-convex bodies has been studied from a mathematical point of view. Explicit expressions have been obtained for bounded 2D or 3D convex domains: disc, triangle, rectangle, regular polygon [START_REF] Ohanyan | Tomography of bounded convex domains[END_REF], sphere, hemisphere [6], cylinders of various cross sections [START_REF] Gille | Chord length distributions of infinitely long geometric figures[END_REF][START_REF] Gille | Chord length distribution density of a triangular rod[END_REF], spheroids, polyhedron [START_REF] Sukiasian | Three-dimensional Pleijel identity and its application[END_REF]. Moreover, Aharonyan [START_REF] Aharonyan | Chord length distribution functions for polygons[END_REF] obtained an explicit expression for the orientation-dependent CLD for any bounded convex body.

Non-convex bodies have paid less attention than convex ones. Mazzolo et al [START_REF] Mazzolo | On the properties of the chord length distribution, from integral geometry to reactor physics[END_REF] discussed the CLD in the context of reactor physics. They show that some relations between lower moments of CLD and simple geometric properties as volume, surface, … of the body remain valid for non-convex bodies whereas higher CLD moments do not obey the simple relations valid for convex bodies. Gille [START_REF] Gille | Chord length distribution density of an infinitely long circular hollow cylinder[END_REF] studied the CLD of an infinitely long circular hollow cylinder that is a special case of non convex body; the corresponding calculation is based on basic principles. Gille [START_REF] Gille | The small angle scattering correlation function of two infinitely long parallel circular cylinders[END_REF] also considered two parallel circular cylinders separated by a short distance and calculated the 3D-correlation function that is related to CLD. Vlasov [START_REF] Yu | Signed chord length distribution[END_REF] introduced the notion of signed chord distribution for convex and non-convex bodies. He started from the work of Dirac transforming the six-dimensional integral of pairwise interaction potential for a convex body into a simpler expression including the CLD; he extended it to a non convex body. He showed that the expression of the integral is much more complicated than the one for convex body: it can be decomposed into several terms (integrals), each one related to the various segments of the given chord inside the non convex body. He formally deduces the expression of the CLD for the non-convex case.

Among the particle shapes observed in industrial processes, small clusters of spherical particles are often present. By the past we calculated [START_REF] Gruy | the chord length distribution of a two-sphere aggregate[END_REF] the CLD for a two-sphere aggregate. In this paper we extend this calculation to a set of two spheres penetrating each other. For instance, these dumbbell-like particles appear in the precipitation of inorganic compounds performed at high supersaturation and weak aggregation conditions. Polymeric colloids with such a morphology are also synthesised [START_REF] Vutukuri | Synthesis of fluorescent monodisperse non-spherical dumbell-like model colloids[END_REF].

The section two of this paper develops a methodology in order to calculate the CLD of a dumbbell shaped aggregate. It is followed by a comparison with Monte Carlo Simulations in the section three. Section four is devoted to concluding remarks.

Calculation of the chord length distribution

A straight line may intersect more than one time across a non convex body. As a consequence, two CLD can be defined:

-The multiple chord distribution (MCD) where each segment interval on the same line is considered as one chord length separately. FBRM measurements are associated to MCD.

-The one chord distribution (OCD) where the sum of chord lengths for all intersected intervals is used as the definition of the chord length. SAS and turbidity measurements are associated to OCD.

Even if the latter ones only consider OCD, we will present both OCD and MCD calculations with 3D uniform flow of lines. The corresponding procedure is similar to the one used for a two-sphere aggregate [START_REF] Gruy | the chord length distribution of a two-sphere aggregate[END_REF]. Throughout the paper, the chord length distribution (density) is written ( ) D l . ( )

D l dl is the number of chords within the l-range [ ] , l l dl + . ( ) D l is normalized, i.e ( ) max 0 1 l D l dl = ∫ .

Definition of the different geometrical areas

In the following of the paper, points will be denoted by lower-case letter (except the origin O of the coordinates system), line by upper-case letter, area by upper-case letter within parentheses and a volume by upper-case letter within brackets.

The dumbbell projection on a plane is considered.

θ ( 0 / 2 θ π ≤ ≤
) is the angle between the line binding the centres of the two spheres (radius value equal to one) and the projection plane (coordinates x,y). The distance between the two sphere centres is denoted δ. The centre of one of the two spheres is chosen as the origin O of the coordinates system (Fig. 1). The projection of the dumbbell is represented in the figures 2a-b for two values of the θ angle and for a semiplane. The circles C1 and C2 represent the projection of the spheres (disks (C1) and (C2))

whereas the dashed curve (ellipse later called E1 in the paper) represents the projection of the circular junction J between the two spheres. Let us consider a chord (perpendicular to the projection plane). According to the location of its intersection (x,y) point with the plane this line may cross:

-one single sphere: the point belongs to (P1)

-the junction between the two spheres: the point belongs to (PJ)

-or successively the two spheres: the point belongs to (P12).

The (Pf) area that is bounded by C2 (and C1) and E1 is fictitious. Its definition will be detailed hereafter.

The previously defined areas correspond to a full plane.

The ellipse E1 has some interesting properties:

-the coordinates of E1 centre are ( ( )

2 cos δ θ ,0)
-the ellipse intersects the circles at the two b1 and b2 points (in fact four points if one considers the other semi-plane). The coordinates of the b2 point are 

OCD P PJ C C C PJ C P C Pf C C C D l D l D l D l D l D l D l D l + ∩ = + + - - - - (2) 
( ) X D l is the CLD for the chords perpendicularly crossing the (X) projected area.

( )

1, C X D l is
the contribution of the (X) area to the CLD of a single sphere.

1, 1, 12 1, 
, ,

C PJ C P C Pf D D D are calculated for 1 E θ θ < whereas 1, 1 2 C C C D ∩ is calculated for 1 E θ θ > .
These partial distributions are equal to 0 outside the previously defined range of θ-value.

Calculation of the CLD (MCD)

The chord length distribution of the dumbbell consists of the contributions of the various areas:

( ) ( ) ( ) ( ) ( ) 1 2 1, 1, 2 2 MCD PJ C C C PJ C Pf D l D l D l D l D l + = + - - (3) 1, C Pf D is calculated for 1 E θ θ < whereas 1, C PJ D is calculated for any θ .
In the following of the paper, the various contributions are calculated.

As the number of chords perpendicularly crossing a projection plane and the particle with a chord length within the range [l,l+dl] is proportional to the corresponding projected area element, the relation between the projected area S X and the chord length distribution ( )

X D l is: ( ) X X dS D l N dl = ± (4) 
N is a normalization factor which will be specified later. Depending on the calculation, the area S X is the part of the projected area connected with a chord length smaller or higher than a given l value. The equation 4 is integrated over the solid angle domain.

The calculation of ( )

X
D l depends at once on the δ and l values. For instance, certain l values are not available for a given δ value; moreover, the shapes of (P1), (PJ), (P12), (Pf) projected areas depend on the δ values. As a consequence, a careful analysis of the various projected areas has to be performed before calculating the CLD's.

Analysis of the various projected areas

Description of area (P12) and the corresponding chord length

The length of the chord (l) which crosses the two spheres obeys the equations:

( ) ( ) 1/ 2 1/ 2 2 2 2 1 2 1 ' l d d = - + - if 1, ' 1 d d < < with ( ) 1/ 2 2 2 d x y = + and ( ) ( ) ( ) 1/ 2 2 2 ' cos d x y δ θ = - +
The locus of the points (x,y) with constant l is a segment of the E2 ellipse:

( ) ( ) δ θ δ θ -   - - =   +   , ( ) 
1/ 2 2 2 1 cos / 4 b T δ θ   = - -   and 2 /16 T l =
The dotted curve in the figure 3a represents the ellipse E2. For small value of l ( 1 l

) the endpoint of E2 is close to the intersection point between C1 and C2. As the l value increases the endpoint of E2 is going away from this intersection point. E1 and E2 are matching for a particular value of l ( ( )

2 sin δ θ = ).
The ellipse E2 exists if ( 2 0 b > ):

-

( ) ( ) ( ) 1/ 2 0 cos cos 2 1 / T θ θ δ < = - and 2 1 / 4 T δ > - or - 2 1 / 4 T δ < -
The intersection of the ellipse E2 with the circle C1 exists if A<1 with ( ) ( )

2 cos cos 2 T A δ θ δ θ = +
The coordinates of the intersecting point are: 2

x A = and ( ) 3b).

1/ 2 2 2 2 1 y x = - . If 1 A > , there is no intersection (figure
One defines the angles θ + and θ -as:

( ) ( ) ( ) 1/ 2 cos 1 1 4 / X T θ δ ± ± = = ± - which are the roots of 1 A = ( if 2 l < ).
The two angles θ ± exist if 0 1 X ± ≤ ≤ . In fact the conditions are more strict:

( )

1 2 0 cos E E X θ ± ≤ ≤ .
As only the part of E2 into the region bounded by C1, C2 and E1 is relevant, then the condition on θ is ( )

2 sin l δ θ ≤ i.e.

( ) (

) ( )

1/ 2 2 1 2 sin sin 4 / E E T θ θ δ ≥ = . It can be proved that 1 2 0 E E θ θ > . As ( ) 1 2 sin 1 E E θ ≤ , then 2 l δ ≤
. We emphasize that a chord goes across the two spheres if

1 2 / 2 E E θ θ π < <
. This leads to an additional condition on T and δ.

So, the figure 4 defines the different areas in the ( 2 / 4,T δ

)-space: Each one corresponds to a specific configuration concerning C1, C2, E1 and E2. Each area also corresponds to a specific expression of the CLD.

Area 1: intersection between C1 and E2; ,

θ θ + - ∃ ∃ ; 1 2 / 2 E E θ θ π - < <
Area 2: no intersection between C1 and E2: θ ± ∃ Area 3: intersection between C1 and E2; θ ± ∃ ;

1 2 0 / 2 E E θ θ θ π + - < < < < .

Description of area (PJ) and the corresponding chord length

(PJ) area behaves as the (P12) area.

The length of the chord (l) which crosses the two spheres obeys the equations:

( ) ( ) ( ) 1/ 2 1/ 2 2 2 1 1 ' sin l d d δ θ = - + - + if 1, ' 1 d d < < with ( ) 1/ 2 2 2 d x y = + and ( ) ( ) ( ) 1/ 2 2 2 ' cos d x y δ θ = - +
The locus of the points (x,y) with constant l is the E3 ellipse:

( ) ( ) 2 2 2 2 cos / 2 1 ' ' x y a b δ θ - + = (6) with ( ) ( ) 
( ) ( ) 1/ 2 1/ 2 1/ 2 2 1/ 2 2 1/ 2 ' 4 sin 1 / 4 4 2 sin / / 4 4 2 sin / 2 a T T T T T θ δ δ θ δ δ θ     = - - -+ + -     ( ) 1/ 2 2 1/ 2 ' 1 / 4 4 2 sin b T T δ δ θ   = - -+  
The figure 5 represents the E3 ellipse (dotted line). The properties of E3 are the following:

-E3 corresponds to the inequality ( )

2 sin l δ θ ≥ -E3 exists for any θ if 2 4 1 / 4 T δ < - -E3 exists for 2 θ θ ≥ with ( ) ( ) ( ) 2 2 2 sin 4 / 2 l l θ δ δ = + - if 2 4 1 / 4 T δ > - -E3=E1 for ( ) 2 sin l δ θ = -E3 may intersect E1. The x-coordinate of the intersection point is: ( ) ( ) ( ) ( ) 13 cos / 2 tan sin / 2 x l δ θ θ δ θ = ± - -E3 intersects E1 if ( ) ( ) ( ) ( )( 
) ( ) ( )

1/ 2 2 tan sin / 2 sin 1 / 4 l θ δ θ θ δ - ≤ - , i.e. ( ) 
( ) 2 
1/ 2 1/ 2 2 2 sin 1 4 / 4 X T T T θ δ δ δ ± ± = = ± + -- which are the roots of 0 B = ( if 2 l < ).
The two angles θ ± exist if 0 1 X ± ≤ ≤ . In fact the inequalities are more strict:

( ) ( ) 2 1 2 sin sin E E X θ θ ± ≤ ≤
. This leads to an additional condition on T and δ. As only the part of E3 inside E1 is relevant, then the condition on θ is ( )

2 sin l δ θ ≥ i.e.

( ) (

) ( )

1/ 2 2 1 2 sin sin 4 / E E T θ θ δ ≤ = . As ( ) 1 2 
sin 1

E E θ ≤ , then 2 l δ ≤ .

Description of area (P1) and the corresponding chord length

Area (P1) corresponds to the path of a line (chord) across a single sphere. The simplest way to calculate the corresponding CLD is to consider the various contributions of each projection area knowing that ( ) ( ) ( ) ( ) ( ) ( )

1 12 1 2 P PJ P Pf C C + + + = =
. However two cases appear:

-E1 is tangential to the circles C1 and C2: we have to calculate the contribution of (PJ), (P12) and (Pf) zones.

-E1 is not tangential to the circles C1 and C2: ( ) ( ) ( ) ( ) ( )

1 1 2 1 2 P C C C C + ∩ = = . Note that ( ) ( ) ( ) ( ) 12 1 2 PJ P C C + ≠ ∩ .
The transition between these two cases happens for

( ) cos / 2 θ δ = ( 1 E θ θ = ).

Contribution of (C1)∩(C2)

(

1 E θ θ > )
The figure 7 describes the different areas in the ( 2 / 4,T δ )-space: each one corresponds to a specific configuration concerning C1 and C2. Each area also corresponds to a specific expression of the CLD. Each area corresponds to a set of inequalities:

1 δ > or 1 δ < ( ) ( ) 2 2 / 2 1 1 l δ + - > or ( ) ( ) 2 2 / 2 1 1 l δ + -< ( ) ( ) ( ) 1/ 2 1 cos 1 1 4 / cos / 2 E T θ δ θ δ ± = ± - ≤ = θ ± is such as ( ) ( ) ( ) 2 2 / 2 cos 1 1 l δ θ + - = ,i.e. A=1
Each area is characterized by several angular intervals 1 ;

j j k θ θ +     (j=1, 2) defined as: Area 1: [ ] [ ] 1 1 2 ; ; / 2 E θ θ θ π - - Area 2: [ ] 1 2 
; / 2

E θ π Area 3: [ ] [ ] 1 2 
; ; / 2

θ θ θ π + - -
The index k corresponds to the angular distance k ψ ∆ :

1: 1 ψ ϕ ∆ = 2: 2 ψ π ∆ = Where ( ) ( ) ( ) ( ) 1/ 2 2 cos / 2 2 / cos acos 1 / 4 T l δ θ δ θ ϕ - = -

Contribution of (PJ) (for any θ)

We are looking for the intersection between E1 and a circle denoted C3 with radius ( ) 

1/ 2 2 1 / 4 l - (l is constant). Depending on θ-value, 0,
+ + + +             Area 2: 0 1 3 0; ; ; / 2 l l r r θ θ θ θ π - - - -             Area 3: 0 1 0 0; ; ; / 2 l l r r θ θ θ θ π - - + +             Area 4: 2 1 3 0; ; ; / 2 l l r r θ θ θ θ π + + - -            
The index k corresponds to the angular distance k ψ ∆ :

0: 0 0 ψ ∆ = 1: 1 ψ ψ - ∆ = 2: 2 ψ ψ ψ - + ∆ = - 3: 3 ψ π ∆ = Where ( ) ( ) 1/ 2 2 cos / 1 / 4 a u l ψ ± ± = -

Contribution of (PJ)

( 1 E θ θ < )
The various areas in the ( 2 / 4,T δ

) sub-space are already described in the figure 6.

Each area has several angular intervals 1 ;

j j k θ θ +     defined as: Area 1a: 1 2 1 0; ; l l E θ θ θ + +         Area 1b: 1 0 1 0; ; l l E θ θ θ - -         Area 2a: 1 2 1 3 0; ; ; l l r r E θ θ θ θ θ + + - -             Area 2b: 1 0 1 3 0; ; ; l l r r E θ θ θ θ θ - - - -             Area 3: [ ] 1 0 0; E θ Contribution of (P12) ( 1 E θ θ < )
The allowed area for the calculation of the CLD is the area denoted 1 (figure 4).

Contribution of (Pf)

(

1 E θ θ < )
The allowed areas for the calculation of the CLD are the areas denoted 1a and 2a (figure 6).

Contributions of the different areas to the CLD

Contribution of (P12) area to the CLD

The fraction of the projected area, such as the chord length is smaller than l, obeys the equations:

-if C1 and C2 intersect E2

( ) ( ) 2 1/ 2 2 cos / 2 1/ 2 2 2 1 0 4 1 cos 1 / 2 x S x b x a dx δ θ δ θ -         = -+ - -               ∫ (7a) -if C1 and C2 do not intersect E2 ( ) ( ) ( ) ( ) 1/ 2 1/ 2 2 2 1/ 2 2 2 2 2 sin 2 cos cos 4 4 S T T T δ δ α α π θ θ -       = - - + -+               (7b) With ( ) ( ) 1/ 2 2 2 sin 1 cos 4 δ α θ   = -    
The average CLD over all the orientations will be such as:

-area 1:

( ) ( ) ( ) θ θ θ θ θ θ - + + - = + + ∫ ∫ ∫ (8-3)

Contribution of (PJ) area to the CLD

The fraction of the projected area, such as the chord length is smaller than l, obeys the equations:

-if E3 intersects E1 ( ) ( ) ( ) ( ) ( ) 13 cos / 2 1/ 2 1/ 2 1/ 2 2 2 2 2 2 1 0 4 1 / 4 1 / sin ' 1 / ' x S x b x a dx δ θ δ θ -   = - - - -     ∫ (9a) -if E3 does not intersect E1 ( ) ( ) 2 2 1 / 4 sin ' ' S a b π δ θ π = - - (9b) 
The average CLD over all the orientations will be such as:

-area 1a :

( ) ( )

1 2 1 0 / cos E E PJ D l N dS dl d θ θ θ = ∫ (10-1a) 
-area 1b:

( ) ( ) ( )

1 2 1 2 2 / cos / cos E E PJ D l N dS dl d N dS dl d θ θ θ θ θ θ θ θ - - = + ∫ ∫ (10-1b) 
-area 2a:

( ) ( ) ( )

1 2 2 1 0 / cos / cos E E PJ D l N dS dl d N dS dl d θ θ θ θ θ θ θ + + = + ∫ ∫ (10-2a) area 2b : ( ) ( ) ( ) ( ) 1 2 1 2 2 2 / cos / cos / cos E E PJ D l N dS dl d N dS dl d θ θ θ θ θ θ + - - + = + + ∫ ∫ ∫ (10-2b) 
-areas 3 and 4:

( ) ( ) 1 2 2 2 
/ cos

E E PJ D l N dS dl d θ θ θ θ = ∫ (10-3) If 2 l δ > then 1 2 / 2 E E θ π = 2.

Contribution of (P1) area to the CLD

Contribution of (C1)∩(C2)

(

1 E θ θ > )
Let us consider the sphere of centre O and its projection. The area element dS belonging to the intersection of the two disks (projected spheres) and having the chord length in the range [ ]

, l l dl + , is: -if ( ) cos 1/ θ δ > 1 1 dS r dr ϕ ϕ = with ( ) ( ) 1 cos 1 ,1 r δ θ   ∈ -   -if ( ) cos 1/ θ δ < 1 1 dS r dr π π = with ( ) ( ) 1 0, 1 cos r δ θ   ∈ -   1 1 dS r dr ϕ ϕ = with ( ) ( ) 1 1 cos ,1 r δ θ   ∈ -   With ( ) ( ) 1/ 2 1/ 2 2 1 1 / 4 1 4 r l T = - = - .
The average (for the 2 spheres) over all the orientations is written:

-area 1:

( ) ( ) ( ) / 2 1, 1 2 1 2 / cos 2 / cos C C C E D l N dS dl d N dS dl d θ π ϕ π θ θ θ θ θ θ - ∩ - = - - ∫ ∫ (11-1) 
-area 2:

( ) ( )

/ 2 1, 1 2 1 2 / cos C C C E D l N dS dl d π π θ θ θ ∩ = -∫ (11-2) -area 3: ( ) ( ) ( ) / 2 1, 1 2 2 / cos 2 / cos C C C D l N dS dl d N dS dl d θ π ϕ π θ θ θ θ θ θ - + - ∩ = - - ∫ ∫ (11-3)
Contribution of (PJ) (

/ cos

j j C PJ k j j D l N r dr dl d θ θ ψ θ θ + = = - ∆ ∑ ∫ (12) 
With ( )

1/ 2 2 1 1 / 4 r l = - This relation is valid at once for ( 1 E θ θ < ) and ( 1 E θ θ < and 1 E θ θ > ) Contribution of (P12) ( 1 E θ θ < )
One considers the 1 2 d d arc (or the corresponding angle) defined by the two d1 and d2 points: d1 is the intersection point of C3 and E1, d2 is the intersection of C3 and C2.

( )

1 2 1 cos / d d a u r ϕ - = -
The swept area by increasing the radius of the C3 circle is: Contribution of (Pf) (

1 1 2 1 dS r d d dr = ( ) ( ) ( ) ( ) 1 
1 E θ θ < )
The swept area by increasing the radius of the C3 circle is:

1 1 dS r dr ψ + = ( ) ( ) 1, 0 2 / cos l C Pf D l N dS dl d θ θ θ + = -∫ (14) 

Contribution of (C1)+(C2)

The chord length distribution of the 2 spheres considered alone is obtained while taking ϕ π = :

( ) ( )

1 2 2 / 2 C C D l N l π + = (15) 

Normalization factor

The normalization factor N is the inverse of the dumbbell projected area averaged over all the orientations:

( ) 

/ 2 1 0 cos p p N S S d π θ θ θ -= = ∫ (16) With ( ) ( ) ( ) ( ) ( ) 1 

Comparison with Monte Carlo Simulations

Two procedures for Monte Carlo Simulations (MCS) have been used:

2 i
Q is the length of the chord in the sphere i. d is the distance between the two end points of the line crossing the two spheres.

The MC sampling distribution may be visually represented as the discrete probability histogram. The chord length between zero and the maximal possible length is divided on mbins with the equal size of ∆l. All the simulation runs have been carried out by generating 10 7

unbiased random lines. The sampling error is smaller than 10 -4 .

ii) An alternative algorithm is suitable for application in optics (AD approximation, see [START_REF] Gruy | the chord length distribution of a two-sphere aggregate[END_REF]).

It completes the second step of the preceding algorithm by scanning the discretized projected area and by calculating the corresponding chord length for each point belonging to the grid.

The other steps of the algorithm are not modified. If this sequence is repeated 10 5 times, the sampling error is smaller than 10 -3 . The two algorithms are in very good agreement. However this variant will not be used in this work.

The analytical CLD 1 (section 2) is compared to the data coming from MCS. Figure 11 shows such a comparison for δ=0.4 (MCD). The agreement between the two methods is very good.

Similar results are obtained for the two types of CLD (MCD and OCD) and for all δ-values. ( ) ( ) ( )

1/ 2 2 1 1 / 1 N MCS i i i D l D l N =   Σ = -     ∑
The summation is performed with the chords in the ranges [0; 1.98] and [2.02; 4].

The Σ-value has been calculated for each δ-value and for the two types of CLD. The Σ-value is always within the [0.002-0.004] range.

Conclusion

The CLD for the two types of chord length (OCD and MCD) has been analytically calculated.

A good agreement was found between the analytical expression of the CLD and Monte-Carlo simulations. The analytical CLD for dumbbell-like aggregates is an illustration of the ideas of Vlasov [START_REF] Yu | Signed chord length distribution[END_REF]: non convexity leads to complicated expressions for CLD that are built by considering the contributions coming from several parts of the body. This work will be used for studying systematically the effect of the δ-parameter on the CLD and its moments. It also permits to compare OCD and MCD. The corresponding results will be soon published. 

So, the figure 6

 6 defines the different areas in the ( 2 / 4,T δ )-space: Each one corresponds to a specific configuration concerning E1 and E3. Each area also corresponds to a specific expression of the CLD.Area 1a: no intersection between E1 and E3;

-

  1 or 2 intersection points are present. In case of 2 intersection points, their x-coordinates are a diagram in the ( , x θ ) space showing the intersection of C3 with E1.Each line segment of the dash-dot curve corresponds to an angle interval with 0, 1 or 2 intersection points. We called , , , the boundary angles between segments (r: right branch; l: left branch; +: solid line; -: dashed line).Depending on (δ, l) values, one identifies several areas in the (2

Figure 12

 12 Figure12represents the relative difference σ between the two methods: §

-

  It can be observed that the relative deviation is very small except about l=2. This last feature is due to the sharp discontinuity for D(l) at l=2 (Fig.11). The range of l-value corresponding to this large deviation is [1.98; 2.02]. MCS and our analytical calculations (including numerical integration) fail together within this l-range. For comparing the two methods by a quantitative way we have calculated the standard relative deviation as:
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 12a2b Figure 1: 3D drawing of the dumbbell shaped aggregate
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 3a3b4568 Figure 3a: projection (x,y) of the dumbbell shaped aggregate. δ=1.5 and θ=0.5rad;
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 1011 Figure 10: the dashed area (projection plane) is C1∩C2.
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 12 Figure 12: relative deviation between the CLD (MCD) calculated from Monte Carlo simulations and the analytical method (section 2). δ=0.4.

The calculation of the intercept I depends on the value of Q i given by ( ) ( )

with i=1,2 and where ( ,

x y ) are the coordinates of the centres of the projected spheres and (x, y) are the coordinates of intersection of the line and the plane.

Then,