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Abstract

The piston problem for a hyperelastic hyperbolic conservative model where the
stored energy is given in separable form is studied. The eigen�elds corresponding to
the hyperbolic system are of three types : linearly degenerate �elds (corresponding
to the contact characteristics), the �elds which are genuinely nonlinear in the sense
of Lax (corresponding to longitudinal waves), and, �nally, nonlinear �elds which are
not genuinely nonlinear (corresponding to transverse waves). Taking the initial state
free of stresses, we presented possible auto-similar solutions to the piston problem.
In particular, we have shown that the equations admit transverse shock waves hav-
ing a remarkable property : the solid density is decreasing through such a shock (it
is a "rarefaction" shock).

Résumé

Problème du piston en hyperélasticité avec l'énergie interne sous forme
séparable

Le problème du piston pour un modèle hyperélastique hyperbolique conservatif où
l'énergie interne est donnée sous une forme séparée est étudié. Les champs caractéris-
tiques associés aux valeurs propres et aux vecteurs propres du système hyperbolique
sont de trois types : linéairement dégénéré (correspondant aux caractéristiques de
contact), les champs qui sont vraiment nonlinéaires au sens de Lax (correspondant
aux ondes longitudinales), et, en�n, les champs nonlinéaires qui ne sont pas vraiment
nonlinéaires au sens de Lax (correspondant aux ondes transversales). Prenant l'état
initial libre de contrainte, nous présentons de possible solutions auto-similaires du
problème du piston. En particulier, nous avons montré que les équations admettent
des ondes de choc transversales ayant une propriété remarquable : la densité du
solide diminue à travers un tel choc (il s'agit d'une onde de choc de "raréfaction").
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1 Introduction

An Eulerian hyperelastic hyperbolic conservative model is studied (G. H. Mil-
ler and P. Colella [1], S. K. Godunov and E. I. Romenskii [2] and others). We
use here an equivalent formulation better adapted to the numerical study in
the Eulerian coordinates (S.L. Gavrilyuk, N. Favrie, R. Saurel [3]). We consi-
der the case of isotropic elastic solids where the stored energy is a function
of the invariants of the Finger tensor (which is inverse to the left Cauchy-
Green tensor). The hyperelastic hyperbolic model can be extended to deal
with visco-plasticity (Favrie et Gavrilyuk 2011) [4].Recently, we proposed a
criterion of hyperbolicity of the equations of hyperelasticity in the case where
the stored energy is taken in separable form : it is the sum of the energy de-
pending only on the density and the entropy (hydrodynamic part), and the
energy depending only on a the invariants of a reduced Finger tensor having
unit determinant (isochoric part, or elastic part). In this paper, we study the
piston problem for such a model. More exactly, we study auto-similar solutions
appearing when the velocity is prescribed at the boundary of a non-deformed
elastic half-space ("piston" problem). The fact that the elastic half-space is
initially free of shear stresses allows us to simplify the solution. In particular,
we constructed solutions containing transverse shocks in which the solid den-
sity after the shock is lower then that before the shock (so, this discontinuity
is a "rarefaction" shock). This is a consequence of the fact that the eigen�elds
corresponding to transverse waves (shear waves) of the governing equations of
hyperelasticity are not genuinely non-linear in the sense of Lax (E. Godlewski
and P. - A. Raviart [5], P.D. Lax [6], P.G. LeFloch [7],D. Serre [8]).

The paper is organized as follows : in section 2 we present the governing
equations and the hyperbolicity study ; in section 3 we study the eigen�elds ;
in section 4 the piston problem is solved.

2 Governing Equations and Hyperbolicity

2.1 Governing equations of isotropic solids

The general hyperelasticity model in the case of isotropic solids can be written
as follows (G. H. Miller and P. Colella [1], S. K. Godunov and E. I. Romenskii
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[2], S.L. Gavrilyuk, N. Favrie, R. Saurel [3]) :



∂ρ

∂t
+ div(ρu) = 0,

∂(ρu)

∂t
+ div (ρu⊗ u− σσσ) = 0,

∂
(
ρe+ 1

2
ρu2

)
∂t

+ div
((
ρe+ 1

2
ρu2

)
u− σσσu

)
= 0,

∂eβ

∂t
+∇∇∇x(u.eβ) = 0, rot(eβ) = 0, β = 1, 2, 3.

(1)

The operators div, rot and ∇∇∇ are applied in the Eulerian coordinates x =
(x, y, z)T . Here ρ is the solid density, u = (u, v, w)T is the velocity �eld, e (G,η)
is the internal energy, η is the speci�c entropy, G = (FFT )−1 is the Finger
tensor, F is the deformation gradient, σσσ is the Cauchy stress tensor de�ned as

σσσ = −2ρ
∂e

∂G
G, (2)

σσσ is symmetric, because we deal with isotropic solids. The vectors eβ =
(aβ, bβ, cβ)T are the columns of F−T = (e1, e2, e3). Since eβ are gradients of the
Lagrangian coordinates, necessarily, the compatibility condition is rot(eβ) =
0. This condition is time invariant : if it is satis�ed initially, then it is satis�ed
for all the time.

We take the internal energy e in separable form (R. J. Flory [9]) : e = eh(ρ, η)+

ee(g), where η is the speci�c entropy, ρ = ρ0|G|
1
2 , |G| = det(G), ρ0 is a

reference density, g =
G

|G| 13
is a reduced Finger tensor. The stress tensor is

also in separable form

σσσ = −pI + S, p = ρ2∂e
h(ρ, η)

∂ρ
, S = −2ρ

∂ee

∂G
G, tr(S) = 0. (3)

The hydrodynamic sound speed c is de�ned as

c2 =
∂p

∂ρ
.

We will suppose that the following natural inequalities are satis�ed :

∂p

∂ρ
> 0,

∂p

∂η
> 0. (4)

The following particular forms of the energy can be used in applications :

eh(ρ, η) =
Aexp(η−η0

cv
)ργ + (γ − 1) p∞

(γ − 1) ρ
, (5)
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ee(g) =
µ

8ρ0

(
tr(g2)− 3

)
. (6)

The coe�cients A, η0, p∞, γ > 1, cv, µ are constant. In the limit of small de-
formations these equations give us Hooke's law. Obviously, the hydrodynamic
part of the energy veri�es inequalities (4).

A non-conservative form of (1) is :

∂ρ

∂t
+ u·∇ρ+ ρdiv (u) = 0,

∂u

∂t
+
∂u

∂x
u+
∇p
ρ
− div (S)

ρ
= 0,

∂η

∂t
+ u·∇η = 0,

∂eβ

∂t
+
∂eβ

∂x
u+

(
∂u

∂x

)T
eβ = 0, β = 1, 2, 3.

(7)

These equations are invariant under the transformation group

t′ = t, x′ = Ox, u′ = Ou, eβ′ = Oeβ, ρ′ = ρ, η′ =η,

where O is any element of SO (3). In particular, it allows us to reduce the
hyperbolicity study of the multi-dimensional system (7) to the hyperbolicity
study of the corresponding 1D system (see for detail S. Ndanou, N. Favrie and
S. Gavrilyuk [10]. In the case of (5)and (6), the equations (7) are hyperbolic for
any deformations. In particular, this will imply the hyperbolicity of the system
(1) because the system (7) contains (1) in a particular case where rot(eβ) = 0.
The proof of hyperbolicity of (7) is based on the following technical Lemma.

Lemma 2.1 (S. Ndanou, N. Favrie and S. Gavrilyuk [10]). Let the energy

ee (g)be an isotropic function of g =
G

|G| 13
, i.e. ee (g) = ee (j1, j2), where

ji = tr (gi) , i = 1, 2. Let us introduce the vectors a = (aα), b = (bα) and
c = (cα), α = 1, 2, 3.Then the deviatoric part of the stress tensor can be
expressed as :

S = −2ρ
∂ee

∂G
G = −ρ



∂ee

∂a
a
∂ee

∂a
b
∂ee

∂a
c

∂ee

∂a
b
∂ee

∂b
b
∂ee

∂c
b

∂ee

∂a
c
∂ee

∂c
b
∂ee

∂c
c

 . (8)

Moreover,
∂ee

∂a
b =

∂ee

∂b
a,

∂ee

∂a
c =

∂ee

∂c
a,

∂ee

∂b
c =

∂ee

∂c
b,

In particular, the lemma 2.1 guarantees the symmetry of S.

4



Consider the 1D case where all the variables depend only on (t, x). Moreover,
u = (u, v, w) = (u, v, 0) , a3 = 0, b1 = 0, b2 = 1, b3 = 0, c1 = 0, c2 = 0, c3 = 1.
The corresponding system of equations is as follows :

∂ρ

∂t
+ u

∂ρ

∂x
+ ρ

∂u

∂x
= 0,

∂a1

∂t
+ u

∂a1

∂x
+ a1∂u

∂x
= 0,

∂a2

∂t
+ u

∂a2

∂x
+ a2∂u

∂x
+
∂v

∂x
= 0,

∂u

∂t
+ u

∂u

∂x
+

(
c2

ρ
− 1

ρ

∂S11

∂ρ

)
∂ρ

∂x
− 1

ρ

∂S11

∂a1

∂a1

∂x
− 1

ρ

∂S11

∂a2

∂a2

∂x
+
∂p

∂η

∂η

∂x
= 0,

∂v

∂t
+ u

∂v

∂x
− 1

ρ

∂S12

∂ρ

∂ρ

∂x
− 1

ρ

∂S12

∂a1

∂a1

∂x
− 1

ρ

∂S12

∂a2

∂a2

∂x
= 0,

∂η

∂t
+ u

∂η

∂x
= 0.

(9)
If we set U = (ρ, a1, a2, u, v, η)T , the system can be written as follows

∂U

∂t
+ A

∂U

∂x
= 0, (10)

with

A =



u 0 0 ρ 0 0

0 u 0 a1 0 0

0 0 u a2 1 0

c2

ρ
− 1

ρ
∂S11

∂ρ
−1
ρ
∂S11

∂a1
−1
ρ
∂S11

∂a2
u 0 ∂p

∂η

−1
ρ
∂S12

∂ρ
−1
ρ
∂S12

∂a1
−1
ρ
∂S12

∂a2
0 u 0

0 0 0 0 0 u


(11)

Lemma 2.2 The eigenvalues ν6 > ν5 > v4 = ν3 > ν2 > ν1 of the matrix A
are given by :

ν1,6 = u±

√
tr(K) +

√
∆

2
,

ν2,5 = u±

√
tr(K)−

√
∆

2
,

ν3,4 = u,

where

K =

 c2 0

0 0

+ M,
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M =


∂ee

∂a
· a +

∂

∂a

(
∂ee

∂a
.a

)
· a ∂ee

∂a
· b +

∂

∂a

(
∂ee

∂a
· b
)
· a

∂ee

∂a
· b +

∂

∂a

(
∂ee

∂a
· b
)
· a ∂

∂a

(
∂ee

∂a
· b
)
· b

 ,
∆ = (tr(K))2 − 4det(K) = (K11 −K22)2 + 4K2

12,

a = (a1, a2) and b = (0, 1).

The proof of the Lemma 2.2 is direct. The Lemma 2.1 was used to obtain a
symmetric form of K.

Note that M is positive de�nite for the equation of state (6) (S. Ndanou, N.
Favrie and S. Gavrilyuk [10]). Since c2 > 0, K is also positive de�nite. In par-
ticular, the eigenvalues νi, i = 1, ..., 6 are real. We �nd now the corresponding
right eigenvectors of A.

The eigenvectors V3 = (1, 0, 0, 0, 0, 0)T and V4 = (0, 0, 0, 0, 0, 1)T correspond
to the eigenvalues ν3 = ν4 = u. For the eigenvalues νi, i = 1, 6 corresponding
to longitudinal waves the eigenvectors are :

Vi =

(
ρ

(νi − u)
,

a1

(νi − u)
,
2a2K12 +K22 −K11 +

√
∆

2K12 (νi − u)
, 1,

K22 −K11 +
√

∆

2K12

, 0

)
.

Since

(K22 −K11) +
√

∆ =
(K22 −K11)2 −∆

(K22 −K11)−
√

∆
=

−4K2
12

(K22 −K11) +
√

∆
.

the eigenvectors are not singular when K12 vanishes.

For the eigenvalues νi, i = 2, 5 corresponding to transverse waves the eigen-
vectors are :

Vi =

(
ρ

(νi − u)
,

a1

(νi − u)
,
2a2K12 +K22 −K11 −

√
∆

2K12 (νi − u)
, 1,

K22 −K11 −
√

∆

2K12

, 0

)
.

The eigenvalues can be ordered :

ν1 > ν2 > ν3 = ν4 > ν5 > ν6.

ν1 and ν6 are longitudinal wave speeds, ν2 and ν5 are transverse wave speeds,
and ν3 or ν4 are speeds of contact characteristics. Let us also remark that the
equation of the density can be integrated in the form

ρ = ρ0a
1. (12)

Here ρ0 is a constant. In general, it can be a function which is conserved along
trajectories.
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3 Study of eigen�elds

3.1 Eigen�elds associated to ν3 = ν4 = u

Obviously, these �elds are linearly degenerate : ∇∇∇ν3.V3 =∇∇∇ν4.V4 = 0.

3.2 Eigen�elds associated to ν1 and ν6

These �elds corresponding to longitudinal waves and estimated on the variety
(12) are genuinely non-linear in the sense of Lax :

∇ν1.V1|ρ=ρ0a1
> 0

This result can easily be checked analytically in the vicinity of the equilibrium
(a1 = 1, a2 = 0), and numerically out of equilibrium.

3.2.1 Simple waves

We are looking for the solution of (10) in the form :

U (t, x) = U
(
x

t

)
= U (ξ) .

Then U veri�es the following system :

(A−ξI) dU
dξ

= 0.

Hence, ξ is an eigenvalue of A, and
dU

dξ
is the corresponding right eigenvector.

In particular, for the �eld ν1 one has

dU

dξ
=

V1

∇∇∇ν1.V1

.

Or, in developed form :

dρ

dξ
=

ρ

(ν1 − u)∇∇∇ν1.V1

,

da1

dξ
=

a1

(ν1 − u)∇∇∇ν1.V1

,
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da2

dξ
=

2a2K12 +K22 −K11 +
√

∆

2K12 (ν1 − u)∇∇∇ν1.V1

=
a2

(ν1 − u)∇∇∇ν1.V1

+
2K12(

K11 −K22) +
√

∆
)

(ν1 − u)∇∇∇ν1.V1

,

(13)

du

dξ
=

1

∇∇∇ν1.V1

,

dv

dξ
=
K22 −K11 +

√
∆

2K12∇∇∇ν1.V1

,

dη

dξ
= 0.

One can prove that in the case

ee(g) =
µ

8ρ0

(j2 − 3) ,

K12 is proportional to a2. Indeed,

K12 =
µ

8ρ0

(
∂j2

∂a
· b +

∂

∂a

(
∂j2

∂a
· b
)
· a
)

=
µ

8ρ0

4a2
(
(a1)

2
+ (a2)

2
+ 1

)
(a1)4/3

+ a1 ∂

∂a1

4a2
(
(a1)

2
+ (a2)

2
+ 1

)
(a1)4/3


+a2 ∂

∂a2

4a2
(
(a1)

2
+ (a2)

2
+ 1

)
(a1)4/3

 .
Hence, if initially (a2) was zero, it will stay zero. The equation for the vertical
velocity v also gives the solution v = 0 if it was initially zero. In particular, the
equations admit the following Riemann invariant corresponding to the right
facing waves where we have to replace ρ = ρ0a

1 :

u−
∫ a1

√
tr(K)+

√
∆

2

a1
da1 = const.

The study of the �eld ν6 gives another invariant corresponding to the left
facing waves :

u+
∫ a1

√
tr(K)+

√
∆

2

a1
da1 = const.

Since
∇ν1,6.V1,6|ρ=ρ0a1

> 0

the longitudinal simple waves are always rarefaction waves (in which the den-
sity decreases). These invariants are reminiscent of those for the Euler equa-
tions of compressible �uids.
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a cb

∇ν
2
.V

2
>0 ∇ν

2
.V

2
<0

a2

a1

(1,0)

Figure 1. The curve where ∇ν2.V2|ρ=ρ0a1
= 0 is shown in bold line. Di�erent

invariant curves associated to the eigen�eld ν2 are shown by dashed lines.

3.3 Eigen�elds associated to ν2 or ν5

These eigenvalues correspond to the transverse waves. Obviously, ∇∇∇ν2.V2 =
−∇∇∇ν5.V5. Hence, it is su�cient to study only the �eld ν2. The Figure 1 shows
that these �elds estimated at the variety ρ = ρ0a

1 are not genuinely nonlinear
in the sense of Lax (P.G. LeFloch [7] for the solution of the Riemann problem
in the case of such eigen�elds). The curve where ∇ν2.V2|ρ=ρ0a1

vanishes is
shown in bold line.

3.3.1 Simple waves

The equations corresponding to the eigenvalue ν2 are :

dρ

dξ
=

ρ

(ν2 − u) (∇∇∇ν2.V2)
,

da1

dξ
=

a1

(ν2 − u) (∇∇∇ν2.V2)
,

da2

dξ
=

2a2K12 +K22 −K11 −
√

∆

2K12 (ν2 − u) (∇∇∇ν2.V2)
,

du

dξ
=

1

(∇∇∇ν2.V2)
,

dv

dξ
=
K22 −K11 −

√
∆

2K12 (∇∇∇ν2.V2)
,

ds

dξ
= 0.
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Vi =

(
ρ

(νi − u)
,

a1

(νi − u)
,
2a2K12 +K22 −K11 −

√
∆

2K12 (νi − u)
, 1,

K22 −K11 −
√

∆

2K12

, 0

)
.

The Riemann invariant for the right facing transverse waves (corresponding
to ν2) is

u−
∫ a1

√
tr(K)−

√
∆

2
a1

da1 = const.

For for the left facing transverse waves the corresponding Riemann invariant
is :

u+
∫ a1

√
tr(K)−

√
∆

2
a1

da1 = const,

In these formulas a2 should be replaced as a function of a1 as the solution of
the following Cauchy problem (always calculated for ρ = ρ0a

1) :

da2

da1
=
a2

a1
+

2K12

a1
(
K11 −K22 +

√
∆
) ,

a2
∣∣∣
a1=a1∗

= 0.

Here a1
∗ is a state obtained from the state a1 by a simple longitudinal wave

which is always rarefaction wave, or by the longitudinal shock (see the dis-
cussion below about Rankine- Hugoniot relations). In the vicinity of the state
(a1 = 1, a2 = 0) the expression ∇ν2.V2|ρ=ρ0a1

is negative. Hence, if the lon-

gitudinal rarefaction waves (where a1 is decreasing) are not too strong (i.e.
∇ν2.V2|ρ=ρ0a1∗ is negative at (a1

∗, a
2 = 0)), the eigenvalue ν2 has a minimum

along each simple wave passing by that point. Hence, the simple transverse
waves does not exist in this case. In the case of strong longitudinal rarefac-
tion waves transforming the state (a1 = 1, a2 = 0) into (a1

∗ < 1, a2 = 0) where
∇ν2.V2|ρ=ρ0a1∗ is positive (a curve a in Figure 1 ) one can have simple trans-
verse waves which are also rarefaction waves (the density will decrease).

4 Rankine-Hugoniot relations

For any variable X, we denote [X] = Xr − X l (the di�erence between right
and left values at the discontinuity). The Rankine-Hugoniot relations coming
from the conservative system (1) in the case where a3 = 0, w = 0, b1 =

10



ν
2 c

b

a

a2

Figure 2. The behavior of characteristic speed ν2 along transverse waves is shown.
The �rst case (a) corresponds to the rarefaction curve containing in the domain
∇ν2.V2|ρ=ρ0a1

> 0 (see Figure 1). The transverse rarefaction waves are thus possible.
In the cases (b) and (c) the continuous rarefaction waves do not exist.

0, b2 = 1, b3 = 0, c1 = 0, c2 = 0, c3 = 1, can be written as :



[ρ (u−D)] = [m] = 0

m [u] = [σ11] ,

m [v] = [σ12] ,

m
[
e+

1

2
(u2 + v2)

]
= [σ11u+ σ12v] ,

m

[
a1

ρ

]
= 0,

m

[
a2

ρ

]
+ [v] = 0.

(14)
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Here we denoted m = ρ (u−D) where D is the velocity of the discontinuity.
They are equivalent to :



[ρ (u−D)] = 0

m [u] = [σ11] ,

m [v] = [σ12] ,

m[e] = m
σl11 + σr11

2
[τ ]−mσr12 + σl12

2
[a2τ ],

m

[
a1

ρ

]
= 0,

m

[
a2

ρ

]
+ [v] = 0,

(15)

where τ = 1/ρ is the speci�c volume.

Through the contact discontinuities where m = 0 we get ur = D = ul,
[σ11] = 0, [σ12] = 0 and [v] = 0. For shocks where m 6= 0, we will distinguish
two types of shocks : longitudinal and transverse ones.

4.1 Longitudinal shock waves

We suppose in this part that m 6= 0. Obviously, [v] = 0 ⇔ [σ12] = 0 ⇔
[a2τ ] = 0, τ =

1

ρ
. Longitudinal shock waves are de�ned by [a2τ ] = 0. The

Rankine-Hugoniot relations for longitudinal waves are written as :



D =
urρr − ulρl
ρr − ρl

,

[a2τ ] = 0,

[u]2 = [σ11] [τ ] ,

[e] =
σl11 + σr11

2
[τ ].

[v] = 0,

[σ12] = 0.

(16)

a2 vanishes after the shock if it was zero before the shock. The same statement
is valid for the transversal velocity v.
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4.2 Transverse shock waves

Consider now transverse shock waves. In this case [a2τ ] 6= 0 This give us :

D =
urρr − ulρl
ρr − ρl

,

m [u] = [σ11] ,

m [v] = [σ12] ,

[e] =
σl11 + σr11

2
[τ ]− σr12 + σl12

2
[a2τ ],[

a1

ρ

]
= 0,

m [a2τ ] + [v] = 0

(17)

Since [u] = m [τ ], m [u] = [σ11], m2 [τ ] = [σ11] and m2 [v]2 = [σ12]2, we �nally
get :



D =
urρr − ulρl
ρr − ρl

,

m [u] = [σ11] ,

m [v] = [σ12] ,

[e] =
σl11 + σr11

2
[τ ]− σr12 + σl12

2
[a2τ ],

[u]2 = [σ11] [τ ] ,

[v]2 =
[σ12]2 [τ ]

[σ11]
,[

a1

ρ

]
= 0,

[σ11] [a2τ ] + [σ12] [τ ] = 0.

(18)

5 The piston problem

5.1 A special piston problem

Consider a piston (an in�nite plane described initially as x = 0 ) which is
sticked to an elastic solid at rest situated at x > 0. Initially, the elastic solid is
free of shear stresses. The variables in this state will be denoted by index "0".
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Figure 3. We have four di�erent general con�gurations for the piston problem where
the initial state is in equilibrium : The �rst case : a longitudinal shock wave (LS) is
followed by a transverse shock wave (TS). This con�guration can appear not only in
the case where the horizontal piston velocity is positive. The other three cases can
appear only if the horizontal piston velocity is negative. The second case : a longitu-
dinal rarefaction wave (LR) is followed by a transverse shock wave (TS). The third
case : a longitudinal rarefaction wave (LR) is followed by a transverse rarefaction
wave (TR). The fourth case : a longitudinal rarefaction wave (LR) is followed by
a transverse characteristic shock wave (TS) to which a transverse rarefaction wave
(TR) is sticked.

So, a1
0 = 1, a2

0 = 0, u0 = v0 = 0. The piston becomes to move at time t = 0
with a given velocity (up, vp). In the case of vp = 0 the solution is simple. If
up > 0 then we have a longitudinal shock wave. If up < 0, the solution is the
longitudinal rarefaction wave. Consider the case where up > 0 and vp takes
any value (not too large to stay in the domain where ∇ν2.V2|ρ=ρ0a1

< 0 ). The
state "0" will be transformed by a longitudinal shock wave into the state "*"
where a1

∗ > 1, a2
∗ = a2

0 = 0 following by a transverse shock (see Figure 3, the
�rst case). The transverse shock is always a rarefaction shock (i.e. the solid
density will decrease after the transverse shock ). In the Figure the classical
di�erent con�gurations that we can have.

However, in the case where up is negative, the solution depends on the value
of vp. One can have several di�erent situations. The longitudinal rarefaction
wave (LR) transforms the state "0" into a state "*" where we have always
∇ν2.V2|ρ=ρ0a1∗ < 0. Then it will followed by the transverse shock TS (the
second case in Figure 3). The transverse wave can also be a characteristic
shock, i. e. the wave can be followed by a rarefaction continuous transverse
wave (the fourth case). Very large longitudinal rarefaction waves can also be
followed by a transverse rarefaction wave (RT ).

14



Figure 4. Solution with a unique transverse wave

We ask now the following question : what is the relation between up and vp
allowing us to have a solution containing only one transverse shock relating
the state "0" to a state "P" where the velocity is prescribed : (u, v)p = (up, vp)
(see Figure 4). In a sense, this limiting curve will separate the the �rst basic
con�guration LS → TS (which can happen also for negative horizontal piston
velocities when the vertical velocities are quite large), from the other three
con�gurations (see Figure 3). This degenerate con�guration is shown in Figure
5. We wish to connect the equilibrium state �0� with a state �P� by transverse

(0,0)

v
p

u
p

Figure 5. When the piston velocity takes the values belonging to the limit curve
shown by dashed line, the only solution is the TS wave. Outside this curve we have
a two-wave con�guration LS → TS. Inside this curve, the three other con�gurations
can occur.

shock wave. The Rankine-Hugoniot relations are :

(uP )2 = ((σ11)P − (σ11)0) (τP − τ0) , (19)
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(vP )2 =
((σ12)P )2

((σ11)P − (σ11)0)
(τP − τ0) , (20)

0 = ((σ12)P ) (τP − τ0) +
((
a2τ

)
P

)
((σ11)P − (σ11)0) , (21)

(eP − e0) =
1

2
((σ11)P + (σ11)0) (τP − τ0) +

1

2
((σ12)P )

((
a2τ

)
P

)
. (22)

We have four relations for three unknowns a1
P , a

2
P and ηP . Hence, it allows us

to relate the parameters uP and vP .

6 CONCLUSION

The piston problem for a hyperelastic hyperbolic conservative model where the
stored energy is given in separable form is studied. Such an exact solution is
very useful to evaluate the convergence of numerical schemes. The eigen�elds
corresponding to the hyperbolic system are of three types : linearly degenerate
�elds (corresponding to the contact characteristics), the �elds which are genui-
nely nonlinear in the sense of Lax (corresponding to longitudinal waves), and
nonlinear �elds which are not genuinely nonlinear (corresponding to transverse
waves). Taking the initial state free of stresses, we presented possible auto-
similar solutions to the piston problem. In particular, we have shown that the
equations admit transverse shock waves having a remarkable property : the
density is decreasing through such a shock.

For numerical applications, the solution of the general Riemann problem is
needed. However, such a problem is much more complicated because its so-
lution depends on the choice of the equations of state (see, for example, A.
Kulikovskii and E. Sveshnikova [11] for the study of the Riemann problem for
a polynomial equation of state).
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