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Elasto-geometrical modeling and calibration

of robot manipulators:

Application to machining and forming applications

Stéphane MARIEa,∗, Eric COURTEILLEa, Patrick MAURINEa

aUniversité Européenne de Bretagne, INSA-LGCGM - EA 3913

Abstract

This paper proposes an original elasto-geometrical calibration method to im-
prove the static pose accuracy of industrial robots involved in machining, form-
ing or assembly applications. Two approaches are presented respectively based
on an analytical parametric modeling and a Takagi-Sugeno fuzzy inference sys-
tem. These are described and then discussed. This allows to list the main
drawbacks and advantages of each of them with respect to the task and the user
requirements. The Fuzzy Logic model is used in a model-based compensation
scheme to increase significantly the robot static pose accuracy in a context of
incremental forming application. Experimental results show the efficiency of the
Fuzzy Logic model while minimizing development and computational resources.

Keywords: Elasto-geometrical modeling, robot calibration, stiffness
identification, Fuzzy Logic modeling, data-driven identification, forming
applications

1. Introduction

Industrial robots propose an interesting alternative to dedicated machines,
when it comes to perform applications such as machining, forming or assembly
since they offer the advantage of a very large working envelope compared to
traditional machine tools or machining centers [1, 2]. However these applications
require that the robots apply high level force at the TCP but their serial open
structures lack stiffness. As a result consequent elastic deformations of the
robot generate TCP pose errors that degrade the process in terms of geometry,
surface state, etc [3, 4, 5, 6, 7]. Therefore rigidity and accuracy remain the
major obstacles to the widespread use of robots for these processes. In order to
overcome these problems different solutions are available.

The first solution consists in modifying their structure with shortened links,
increased sections, parallelogram loops or increased reduction gear ratios and
actuator powers. This kind of robots are already available such as the KUKA
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500-2 MT or the ABB IR7600-500 but these machines remain less versatile and
more expensive than usual structures.

The second solution, which is more economical, is to perform the identifica-
tion of both geometrical and elastic models of the robot’s structure or, in other
words, to perform an elasto-geometrical calibration. In past decades, much of
the work in the area of robot calibration has concerned geometrical calibration
including studies about the modeling of their structure [8, 9, 10, 11], the mea-
surement data collection [12, 13] and the error model identification [14]. Due to
the difficulty to modify the model’s parameters within the robot controller, the
proposed methods use fakes poses to enhance the position and the orientation of
the tool. Compared to geometrical calibration, only few works have investigated
the compensation of the TCP pose errors due to elastic deformations. For that
purpose two main approaches are available in the literature.

Some authors proposed dynamic models of the robot’s structure in order to
compensate the pose errors due to elastic effects by linear or non-linear feedback
controls [15, 16, 17]. In these methods, the actuator torques are modified by
the control and are therefore difficult to implement on actual industrial robots.
Even if open controller would be ideal, actual robot controllers only allow the
TCP position/orientation to be controlled. Moreover, the dynamic parameters
(inertia, center of gravity, gear ratio) must be identified by dedicated method-
ologies [18, 19, 20].

The other approach consists in deriving realistic parametric models to pre-
dict the elastic deformations. In the literature, the proposed methods are:

• Lumped-parameter model: These models describe the structure of a ma-
nipulators as a set of rigid bodies, which are connected by springs [3, 4,
13, 21, 22, 23, 24, 25, 26, 27, 28, 29]. These springs are used to describe
the elastic behavior of the joints and the links. It has the advantage to
be easily derived but its accuracy and consistency depend on the number,
size and location of the springs used.

• Finite element model:

– The structure’s elastic displacements can be calculated by assuming
the robot’s links as beam elements according the Euler-Bernoulli’s
theory. This allows to calculate the parametric equivalent stiffness
matrix of the structure from which the elastic model is derived in a
systematic and analytical way [30, 31, 32]. This kind of method is
used here for the calculation of the TCP pose errors resulting from
the structure’s elastic displacements.

– The elastic displacements can also be obtained with volumetric FE
CAD softwares but the calculation time does not allow its use for
quick estimation and for real time pose or trajectory compensations
[33, 34, 35].

These traditional physical modeling methods assume a complete knowledge
and understanding of the physical model interrelationships. However some ef-
fects cannot be easily integrated in the model as the non-linear joint’s stiffness
with respect to robot joint configurations for instance. In order to overcome this
problem, a fuzzy modeling approach for data-driven identification of the elas-
tic behavior of robot manipulators can be used [36, 37, 38, 39, 40]. The main
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advantage of this approach is to quickly develop an accurate model without
assumptions about the structure’s elasto-geometrical behavior. The resulting
fuzzy inference system can accurately describe the elastic behavior while mini-
mizing development and computational requirements.

The work presented in this paper focuses on these two approaches ie the
parametric finite element and the fuzzy logic. In order to propose an efficient
compensation of the pose errors induced by elastic deflections, the modeling
and identification methods are described, tested on an industrial robot and
then discussed for forming, assembly or machining applications. This allows to
list the main drawbacks and advantages of each method with respect to the task
and the user requirements.

The paper is organized as follows. In the first section the elasto-geometrical
calibration of a robotic structure based respectively on an analytical parametric
modeling and a Takagi-Sugeno fuzzy inference system is described. Next section
presents their application to the KUKA IR-663 robot manipulator. Both mod-
eling methods are analyzed and discussed. Then an experimental validation of
the elasto-modeling method based on the fuzzy inference system is conducted
in an industrial forming context.

2. Elasto-Geometrical calibration of a robotic structure

In this section, the elasto-geometrical modeling of the robot’s structure is
done by the superposition of its geometrical and elastic models. This allows to
take into account all the geometrical and elastic effects that have a significant
influence onto its pose accuracy. The geometrical model is obtained in the
classical way but two different approaches are developed to derive its elastic
model. The first one is based on an analytical parametric modeling and the
second one on a fuzzy inference system.

2.1. Geometrical modeling

2.1.1. Definition of the frames

In order to describe a robot structure in its cell, the following frames are
used (Fig. 1):

• R−1 and R0: the frames attached respectively to the cell and the robot’s
base,

• Rn and Rn+1: the frame attached respectively to the robot’s end-effector
and the tool,

• Rp: the frame attached to the part to be manufactured.

For the modeling, the frame Ri, attached to the body Ci, is defined by:

Ri = (Oi,xi,yi, zi) .
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2.1.2. Definition of the poses controlled and reached

In the frame R−1, the vector that defines the tool pose −1Sk
n+1 (position

and orientation) that is controlled by the joint configuration qk is defined by:

−1Sk
n+1 =

[

−1Pk
n+1

−1Φk
n+1

]

= f
(

qk, ξ
)

, (1)

with:

−1Pk
n+1 =

[

−1P k
n+1,x

−1P k
n+1,y

−1P k
n+1,z

]T
,

−1Φk
n+1 =

[

−1Φk
n+1,x

−1Φk
n+1,y

−1Φk
n+1,z

]T
.

(2)

The vector that defines the pose that is actually reached by the robot is:

−1S
r,k
n+1 =

[

−1P
r,k
n+1

−1Φ
r,k
n+1

]

. (3)

2.1.3. Forward geometrical modeling

The forward geometrical model is defined by the relation (1) that links the
controlled pose −1Sk

n+1 to the joint configuration qk and the vector of the geo-
metrical parameters ξ.

This model is obtained by using the product of the following homogeneous
transformation matrices (Fig. 1) [10]:

−1Tn+1 = −1T0
0Tn

nTn+1 (4)

for which the homogeneous transformation i−1Ti giving the position, i−1Pi,
and orientation, i−1Ai, of Ri within Ri−1 is:

i−1Ti =

[

i−1Ai
i−1Pi

0 0 0 1

]

. (5)

Figure 1: Frames and transformation matrices between R−1 and Rn+1
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2.1.4. Inverse geometrical modeling

The inverse geometrical model that links the joint configuration qk to the
controlled pose −1Sk

n+1 and the vector of the geometrical parameters ξ is noted:

qk = g(−1Sk
n+1, ξ). (6)

2.1.5. Linear error model

For the joint configuration qk, the pose error vector −1dSk
n+1, induced by

the geometrical errors gathered in the vector dξ is defined by:

−1dSk
n+1 = −1S

r,k
n+1 −

−1Sk
n+1 = f

(

qk, ξ + dξ
)

− f
(

qk, ξ
)

. (7)

The linear error model is obtained using the Jacobean matrix −1Jk
n+1 of all

geometrical parameters calculated for the robot configuration k:

−1dSk
n+1 = −1Jk

n+1dξ. (8)

Using a number nm of robot configurations qk, (k = {1, ..., nm}) and mea-
suring the corresponding pose errors −1dSk

n+1, the global error model can be
formulated as follows:









−1dS1
n+1

−1dS2
n+1

...
−1dSnm

n+1









=









−1J1
n+1

−1J2
n+1

...
−1Jnm

n+1









dξ. (9)

This leads to:

−1dSG
n+1 = −1JG

n+1dξ. (10)

The global Jacobian matrix −1JG
n+1 allows to study the influence of the

geometrical errors onto the robot pose errors as well as their observability [41].
By removing the columns of −1JG

n+1 corresponding to the parameters that have
no or a little influence onto the pose accuracy, it is possible to obtain the modified
Jacobian matrix −1JB

n+1 from which the vector of identifiable errors dξB can
be calculated. This can be done through the least-square method using the
pseudo-inverse matrix:

dξB =
[

−1JB
n+1

+
]

−1dSB
n+1 (11)

where −1JB
n+1

+
stands for the pseudo-inverse matrix of −1JB

n+1.

The vector of identifiable parameters dξB can also be calculated in an iter-
ative way. For that purpose, the equation (12) is formulated for the first pose
measurement data only (k = 1) and it is solved to obtain a first least-squares
estimation of the geometrical error vector dξB noted dξB,1.

−1dSB
n+1 = −1JB

n+1dξ
B (12)

The procedure is then iterated for each pose measurement until the error
vector’s components of dξB,k tend toward zero and the geometrical parameters
of vector ξB,k converge to some stable values. At each iteration k, the geomet-
rical parameters are updated by adding dξB,k to the current value of ξB,k. The
Jacobian matrix −1J

B,k+1
n+1 as well as the vector dS

B,k+1
n+1 are updated at each

iteration [42].
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2.2. Elastic modeling

The gravity and the applied forces elastically strain the robot’s structure
and the resulting elastic displacements can be calculated by the relation:

−1dSn+1 =
[

−1Keqn+1

]−1 −1Feqn+1 = −1Ceqn+1

−1Feqn+1 (13)

where:

• −1Keqn+1 is the equivalent stiffness matrix of the robot structure calcu-
lated at the center of the tool frame Rn+1 (TCP) for the configuration
qk,

• −1Feqn+1 is the equivalent wrench acting on TCP,

• −1Ceqn+1 is the equivalent compliance matrix for the configuration qk.

Two approaches are proposed and described for the elastic modeling. They
are respectively based on an analytical parametric modeling and a Takagi-
Sugeno fuzzy inference system. For that purpose only the elastic behavior
of the mechanical structure is considered. Measurements of the TCP’s elas-
tic displacements have been conducted with the controller on and off (actuators
blocked) and have shown exactly the same elastic behavior of the robot. As a
results, we can assume that the robot controller does not compensate the elastic
displacements and do not have to be integrated in the elastic models.

2.2.1. Analytical parametric modeling

Description of the structure. In order to derive the elastic model, the robot is
first described as a set of nodes corresponding to the characteristic points of
its structure (ends of links, centers of frames used to perform the geometrical
modeling, joint centers). These nodes are set to define the elastic beams used
to describe bodies, joints and connections with the environment (Fig. 3).

Nodal wrenches and nodal displacements. The vector of nodal wrench, Fv, ap-
plied at the node v is:

Fv =

[

fv
mv

]

=
[

fv,x fv,z fv,z mv,x mv,z mv,z

]T
. (14)

Expressed in Ru,v and R−1, the wrench Fv will respectively be written u,vFv

and −1Fv. Ru,v is the local frame attached to the beam defined between u and
v with xu,v along the neutral fiber (u, v) (Fig. 2). The nodal displacements
resulting of the application of Fv at the node v are:

dSv =

[

dPv

dΦv

]

(15)

with:

• dPv =
[

dPv,x dPv,y dPv,z

]T
, the translational displacement vector

of v and,

• dΦv =
[

dφv,x dφv,y dφv,z

]T
, the vector gathering the three rotation

angles of the beam’s section.

6



Figure 2: Elastic beam, nodal wrench and displacement

Stiffness matrices. The stiffness matrix associated to the beam defined between
the nodes u and v is:

u,vKu,v =

[

u,vK11
u,v

u,vK12
u,v

u,vK21
u,v

u,vK22
u,v

]

(12×12)

. (16)

The sub-matrices u,vK11
u,v,

u,vK12
u,v,

u,vK21
u,v and u,vK22

u,v are defined in [32].
All mechanical parameters involved in the calculation of these matrices describ-
ing the robot structure are gathered in the vector Λ (the length and the section
of the beams, the Young and the Coulomb modulus, the quadratic and the polar
momentum).

Modeling of joint stiffness. The stiffness of the robot’s joints are also described
using elastic elements with their associated stiffness matrices. For example, the
stiffness of the compliant joint defined between the nodes k and l and which
axis is along the xk,l of the frame Rk,l is described by the (12× 12) matrix:

k,lKk,l =

[

k,lKD
k,l −k,lKD

k,l

−k,lKD
k,l

k,lKD
k,l

]

(12×12)

(17)

where:

k,lKD
k,l = diag [Ka Kr Kr Kar Krr Krr ](6×6) . (18)

Ka and Kr respectively stand for the axial and radial translational stiff-
nesses. Kar and Krr are the axial and radial rotational stiffnesses [43]. All the
joint’s stiffness parameters of the robot’s structure will further be gathered in
the vector Γ.

Assembly of the global stiffness matrix. In order to calculate the global stiffness
of the robot’s structure, the stiffness matrices of all links and joints have to be
expressed in the same frame. The calculation in R−1 of the stiffness matrix
components of the beam (u, v) is done using the transformation matrix Bu,v

according to the relation:

−1Ku,v = [Bu,v]
−1 −1Ku,vBu,v =

[

−1
K

11
u,v

−1
K

12
u,v

u,v
K

21
u,v

−1
K

22
u,v

]

(19)
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for which:

Bu,v =

[

Au,v 03,3 03,3 03,3

03,3 Au,v 03,3 03,3

03,3 03,3 Au,v 03,3

03,3 03,3 03,3 Au,v

]

(12×12)

. (20)

Au,v is the cosine matrix used to describe the orientation of the frame Ru,v

with respect to R−1. The assembly of all matrices is then performed by adding
the effects at all nodes according to their labels [32] (the −1 indices of each
sub-matrix have been omitted for clarity). For the structure described by Fig.
3 this leads to the following global stiffness matrix −1KG (21).

Figure 3: Elastic modeling and equivalent (beam) structure

−1KG =





















d e f g h
d K

11
de K

12
de 06 06 06

e K
21
de K

22
de+K

11
ef+K

D
eo K

12
ef 06 06

f 06 K
21
ef K

22
ef+K

D
fg −K

D
fg 06

g 06 06 −K
D
fg K

D
fg+K

11
gh K

12
gh

h 06 06 06 K
21
gh K

22
gh+K

D
hi

i 06 06 06 06 −K
D
hi

j 06 06 06 06 06

k 06 06 06 06 06
··· ··· ··· ··· ··· ···

i j k ···
d 06 06 06 ···
e 06 06 06 ···
f 06 06 06 ···
g 06 06 06 ···

h −K
D
hi 06 06 ···

i K
D
hi+K

11
ij K

12
ij +K

D
jl 06 ···

j K
21
ij K

22
ij +K

11
jk K

12
jk ···

k 06 K
21
jk K

22
jk ···

··· ··· ··· ··· ···



















(21)

We defined:

• −1FG =
[

−1FT
d · · · −1FT

o

]T
, the vector obtained by the concatena-

tion of all wrenches that act on the structure’s nodes,

• −1dSG =
[

−1dST
d · · · −1dST

o

]T
, the corresponding vector of the nodal

displacements.
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The forces due to the own weight of all bodies also induce elastic deforma-
tions of the robot’s structure. Therefore they have to be merged in the vector
−1FG. For that purpose, equivalent forces and torques due to gravity are cal-
culated for each body at their respective nodes [44]. Moreover, the conditions
imposed by the links between the structure and the environment (ground, ma-
chine frame, etc.) have to be considered. These boundary conditions correspond
to the nodes for which some translational and/or rotational displacements are
nil. This is expressed in the global stiffness matrix −1KG as well as in the vec-
tors −1FG and −1dSG by removing the columns and lines corresponding to the
nodes with nil displacements. This leads to the stiffness matrix −1KC and to
the vectors −1FC et −1dSC .

For the example of Fig. 3, the boundary conditions at node d are due to the
embedment of the robot into the ground. Therefore, the resulting translational
and rotational displacements of the node d are zero. This gives for −1KC :

−1
KC =



























e f g h i ···

e K
22
de

+K
11
ef

+K
D
eo K

12
ef

06 06 06 ···

f K
21
ef

K
22
ef

+K
D
fg

−K
D
fg

06 06 ···

g 06 −K
D
fg

K
D
fg

+K
11
gh

K
12
gh

06 ···

h 06 06 K
21
gh

K
22
gh

+K
D
hi

−K
D
hi

···

i 06 06 06 −K
D
hi

K
D
hi

+K
11
ij

···

j 06 06 06 06 K
21
ij

···

k 06 06 06 06 06 ···

··· ··· ··· ··· ··· ··· ···



























. (22)

The vectors −1FC and −1dSC are:

• −1FC =
[

−1FT
e · · · −1FT

o

]T
,

• −1dSC =
[

−1dST
e · · · −1dST

o

]T
.

Since the matrix −1KC is definite positive, its inversion allows the calcula-
tion of the nodal displacements vector −1dSC due to the wrench −1FC applied
on the structure. The elastic parametric model taking into account boundary
conditions then becomes:

−1FC = −1KC .
−1dSC . (23)

Sub-structure and equivalent stiffness model. The elastic displacements can be
calculated for a given load of the structure (body own weight, payload, external
forces, etc.). It is possible to obtain them at the node corresponding to the
end-effector frame center, −1dSn, or at the TCP, −1dSn+1. The whole elastic
behavior of the structure is described by an equivalent elastic beam of stiffness
matrix −1Keqn+1 and an equivalent wrench −1Feqn+1 of the loading case. For
the previous structure (Fig. 3), this leads to find the equivalent beam between
the nodes d et k. In the general case, the stiffness matrix and the vector of
nodal wrenches and displacements are defined between the base and the TCP
nodes using the following partition matrices:

[

−1
KR,R

−1
KR,n+1

−1
Kn+1,R

−1
Kn+1,n+1

] [

−1dSR
−1dSn+1

]

=
[

−1
FR

−1
Fn+1

]

. (24)

The index R corresponds to the components of all nodes excepted the one
of the TCP, n+ 1. Expanding the previous relations, one can obtain:
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{

−1
KR,R

−1dSR + −1
KR,n+1

−1dSn+1 = −1
FR

−1
Kn+1,R

−1dSR + −1
Kn+1,n+1

−1dSn+1 = −1
Fn+1

(25)

The vector of nodal displacements −1dSn+1 at the TCP can then be calcu-
lated according to:

−1dSn+1 =
[

−1Keqn+1

]−1 −1Feqn+1 (26)

with:

−1
Feqn+1

= −1
Fn+1 − −1

Kn+1,R
−1 (KR,R)−1 −1

FR,
−1

Keqn+1
= −1

Kn+1,n+1 − −1
Kn+1,R

(

−1
KR,R

)

−1 −1
KR,n+1.

(27)

The equation (26) defines the equivalent parametric Direct Elastic Model of
the structure which can be described by the general relation:

−1dSn+1 = h
(

qk, ξ,−1Feqn+1 ,Λ,Γ
)

. (28)

Elastic parameters identification. This consists in the estimation of the struc-
ture’s stiffness parameters independently of the geometrical parameter errors
because their effects on the elastic behavior are negligible. We define −1dS

m,k
n+1

and −1dSk
n+1 the vectors of the displacements measured and calculated, there-

fore, for a pose and a wrench k, the position and orientation errors −1Ek
P,n+1

and −1Ek
φ,n+1 are respectively:

−1Ek
P,n+1 =

∥

∥

∥

−1P
m,k
n+1 −

−1Pk
n+1

∥

∥

∥
, (29)

−1Ek
φ,n+1 =

∥

∥

∥

−1Φ
m,k
n+1 −

−1Φk
n+1

∥

∥

∥
. (30)

Considering nm measurement points, the error functions used to identify the
parameters of the elastic model are:

−1EP,n+1 =
1

nm

nm
∑

k=1

(

−1Ek
P,n+1

)

, (31)

−1Eφ,n+1 =
1

nm

nm
∑

k=1

(

−1Ek
φ,n+1

)

. (32)

The identification of the elastic parameters can be done using either one of
the two error functions or by using both through a multi-objective optimization
scheme. Another way is to normalize position and orientation contributions
(units or weight factors) in a single criterion. Moreover, to insure the creation
of a valid model, the measurement data used to identify these parameters must
thoroughly cover the operating range corresponding to the process (machining,
forming, etc.).
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2.2.2. Fuzzy logic modeling

This section presents the application of fuzzy logic modeling to the elastic
behavior identification from measured data. Fuzzy set theory is used in data-
driven extraction of rule-based models. This concept is based on the fact that
Tagagi-Sugeno fuzzy model provides an universal approximation property [45,
36, 46, 38, 47, 39]. Fuzzy Logic (FL) was developed by Zadeh [48]. Basically, FL
is a multivaluated logic that allows intermediate values to be defined between
conventional boolean values. Notions like ”rather tall” or ”very fast” may be
formulated mathematically and processed by computers in order to apply a
more human-like way of thinking in programming. Fuzzy inference is the actual
mapping process from a given set of input/outputs measurements, based on a
set of fuzzy rules.

The input variables are fuzzified by considering convenient linguistic subsets
such as ”medium”, ”low” or ”heavy”. In order to guarantee the completeness
and the semantics of the rules, strong triangular fuzzy partitions are used (Fig.
4). A strong fuzzy partition of an input xj is defined by:

∀xj

∑

j

µ
A

kj
j

(xj) = 1 (33)

where: xj , j = {1, .., n} are the n inputs of the model; A
kj

j , kj = {1, ..,mj}
are the mj fuzzy sets and µ

A
kj

j

(xj) is the membership degree of input xj to the

fuzzy subset A
kj

j .

0

0.5

1

Figure 4: Strong fuzzy partition with triangular Membership Functions

Triangular form is chosen for the strong fuzzy partition since the number
of parameters necessary to describe the partitioning of an input is the lowest
possible. Thus the identification of the FL model will be easier. With the
notations of Fig. 4, the partition is totaly defined by the modal values of
the triangles

{

cj,1, ..., cj,mj

}

. As the Membership Functions (MFs) cross at
µ (xj) = 0.5, the completeness is guaranteed. The semantics is guaranteed
under the condition:

cj,1 < cj,2 < ... < cj,mj
. (34)

Transition between fuzzy input sets and output is determined by a group of
fuzzy If-Then rules constructed on an expert knowledge and/or on the available
data. The general form of the ith rule of a system containing N rules is:

If x1 is Ak1
1 and ... and xn is Akn

n then y = bi (35)
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where bi is a real value defining the conclusion of the rule. The fuzzy input
MFs are combined with a logical and. The name given to these combinations
is the premises of the rules. The output of a FL model is calculated using the
membership degrees of each input to the MFs. For an input vector x the output
y is obtained as a weighted average of the rules’ contribution:

y (x) =

∑N
i=1 αi (x)× bi
∑N

j=1 αj (x)
(36)

where αi is the firing strength of the rule i for the observation x. Since the
product is used as conjunction operator, αi value is computed by:

αi (x) =

n
∏

j=1

µ
A

kj
j

(xj) . (37)

A multi-output fuzzy inference system is developed to describe the elastic
behavior of a robot in position as well as in orientation over the global workspace.
The driven joint coordinates of vector qk and the external wrench acting on the
TCP −1Feqn+1 are the inputs. The outputs are the six components of the TCP
elastic displacement vector −1dSn+1 computed using the equivalent compliance
matrix, −1Ceqn+1 :

−1dSn+1 = −1Ceqn+1

−1Feqn+1 = l
(

qk, c{1..n},{m1...mn},A, T
)

. (38)

Since the Takagi-Sugeno model of order 0 allows a single output, the problem
space for the identification of the compliance matrix is partitioned into smaller
and easily tractable subspaces. Each component of the matrix is considered as
a single fuzzy output system.

An algorithm for data-driven identification, structure optimization and rule
extraction of the FL model is introduced. The FL model is entirely identified
from the measured displacements obtained for different poses over the workspace
and in the case of external wrenches corresponding to the application. Two
different databases are used in the identification process, namely the training
set A and the test set T . The test set is used to prevent over-learning of the
FL model which would imply a specialization in a particular area of the input
space.

With the training and test data established, a quasi-automated identification
program processes the data to create each individual FL model in order to
predict the compliance behavior of the manipulator. Before training occurs,
an initial FL model is created with two MFs per input (mj = 2). Then, the
problem of FL model identification may be divided into three iterative steps:

i) In a first approximation the input domain is automatically divided into
(mj − 1) equal parts and triangular strong fuzzy partitions are generated (Fig.
4). This initialization of MFs placement

(

cj,1, ..., cj,mj
, j = {1, .., n}) gives an

initial solution. The initialization of the conclusions of the rules is achieved
using a Rapid Prototyping Algorithm (RPA) [49, 50]. This method is based on
the properties of the grid defined by the partitioning of the input space. This
algorithm allows an automatic extraction of a first set of rules. A sub-optimal
solution for the placement of MFs is found by using a modified version of the
method proposed by Solis and Wets [51].
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ii) For this structure and MFs placement, a Gradient Descent method is used
for the optimization of the vector of fuzzy rule conclusions b by minimizing the
quadratic difference between the measured and calculated TCP poses.

iii) A systematic method is used to determine an enhanced structure for the
FL models. The simplest possible structure is initialized (i.e. mj = 2 for each
input). The complexity is then increased in a systematic way: MFs are added
to the inputs while a suitable compromise between the performance and the size
of the fuzzy rule basis is obtained [52].

The major difficulty is to derive a fuzzy model with a good trade-off between
the approximation quality, the complexity and the clarity of the model [40].

2.3. Elasto-geometrical calibration of a structure

Based on the geometrical and elastic models obtained, the elasto-geometrical
model of the robot’s structure can be calculated either by relation (39) using the
analytical parametric approach or by relation (40) using the fuzzy description.

−1Sn+1 = f
(

qk, ξ
)

+ h
(

qk, ξ,−1Feqn+1 ,Λ,Γ
)

(39)

= f
(

qk, ξ
)

+ l
(

qk, c{1..n},{m1...mn},A, T
)

(40)

3. Elasto-Geometrical calibration of the KUKA-IR663

The KUKA-IR663 hybrid robot on which the study focuses is first presented.
Then the systematic approaches that have been proposed before are developed
to derive the elasto-geometrical models of its structure. Simulations and exper-
imental tests are presented in order to evaluate the limitations and the benefits
of the proposed methods.

3.1. System description and measurement method

The KUKA-IR663 is shown on Fig. 5. This robot has been chosen for the
study because:

• The closed-loop kinematic chain of its structure increases the global stiff-
ness of the robot which fits well with the applications that we are interested
in.

• To our thinking it is one of the most complicated structures of industrial
robots that can be modeled [4].

Its kinematic structure can be described by Fig. 5 and 6. This robot has a
special wrist made of 4 revolute joints. Two of them are coupled (biconic wrist).
The wrist is carried by an articulated mechanical structure with 6 revolute joints.
If n denotes the number of links excluding the one attached to the ground, the
global robot structure has thus a number l = 10 joints and n + 1 = 10 links
where link 0 is the fixed base and B = l−n = 1 closed loop. This loop is a four-
bar linkage; two of those links are actuated by slider-crank type mechanisms.
The number N of active joints is equal to 6 which corresponds to the robot’s
degrees of freedom number.

The experimental setup consists of a flexible multi-camera system for a pre-
cise tracking of the moving end-effector. A loading device is connected to the
robot and involved to exert forces along the different axis of the manipulator
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Figure 5: KUKA-IR663 Industrial robot and the experimental setup for elastic calibration
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Figure 6: Kinematics of KUKA-IR663

base frame (Fig. 5). Horizontal forces are generated by deadweight suspended
to the free-end of a cable guided by a pulley mounted on the end-effector of
a FANUC S420iF available in the cell. Deadweight is suspended directly to
the end-effector of the KUKA-IR663 in order to create vertical payload. The
measurement device is the photogrammetric Nikon Metrology K600-10 system1

based on three CCD linear cameras and infra-red light active LED. Three or
more LED are attached to the object and their positions are measured simul-
taneously by the camera. This allows the simultaneous multiple point tracking
and the measurement of both, position and orientation. The system has a po-
sition measuring accuracy up to 37 µm for a single point. In this work, the
system is first involved to identify the transformation linking the measuring
system frame to the robot base frame. Therefore, the robot TCP pose measure-
ments, required for the model identification, are all expressed in the robot base
frame R0.

1http://www.nikonmetrology.com/optical cmm/
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3.2. Geometrical calibration of the KUKA-IR663

3.2.1. Derivation of the Forward and Inverse Geometrical Models

In order to achieve a systematic procedure, Khalil and Kleinfinger’s method
[10] is used to establish the parametric elasto-geometrical model. This method
is derived from the well-known Denavit and Hartenberg’s notation and can be
used to describe, with a minimum set of parameters, the open- and closed-loop
robots. This notation is based on a specific frame definition, detailed in [10] and
[53]. On each body Ci, a frame Ri is defined for which, zi axis is aligned with
the axis of joint i and xi is along the common normal to zi and zi+1. Therefore,
the transformation from Ri with respect to the previous frame Ra(i) is defined

by the homogeneous matrices a(i)Ti:

a(i)Ti = rot (z, γi) trans (z, bi) rot (x, αi)
trans (x, di) rot (z, θi) trans (z, ri)

(41)

where γi, αi and θi are angles and bi, di and ri are distances. Three more
parameters are added for closed-loop structures. The binary variable σi, is equal
to one if the joint i is a prismatic and zero if it is a rotoid. The binary variable
µi, is equal to one if the joint i is motorized and zero otherwise. The variable
a(i) specifies the label of the body preceding the body Ci. The geometry of the
manipulator’s kinematic chain can thus be defined by Table 1.

i a(i) µi σi γi bi αi di θi ri

1 0 1 0 0 0 0 0 θ1 0
2 1 1 0 0 0 −π

2 0 θ2 − π
2 0

3 2 0 0 0 0 0 d3 θ3 0
4 3 1 0 0 0 −π

2 0 θ4 − π
2 r4 + d10

5 4 1 0 0 0 π
6 0 θ5 0

6 5 0 0 0 0 −π
3 0 θ6 = −θ5 0

7 6 1 0 0 0 π
6 0 θ7 0

8 1 1 0 0 0 −π
2 0 θ8 0

9 8 0 0 0 0 0 d9 θ9 0
10 3 0 0 π

2 0 0 d10 θ10 − π
2 0

11 9 0 0 0 0 0 d11 θ11 = 0 0
E 7 0 0 0 0 0 0 0 rE

Table 1: Geometrical Parameters of the KUKA-IR663

The global structure is first described by an equivalent tree structure. This
structure is obtained by cutting the closed loop at joint 10 (Fig. 6). The total
number of frames is equal to n + 1 + 2B = 12 (R0 = R−1 is the reference
frame) since 2 frames have been added while cutting the joint 10. It is to be
noted that the geometric parameters used to locate the frame 11 relatively to
the frame 9 are constants. The pose of the TCP frame Rn+1 is referred as
RE in the following. The nominal values for the geometrical parameters of the
KUKA-IR663 are given in Table 2.

Parameter r1 d3 r4 d9 d10 d11 rE

Nominal Value (mm) 885 1047 1760 473 400 1212 244

Table 2: Values of Geometrical Parameters of the KUKA-IR663

In order to calculate the Forward and Inverse Geometrical Models of the
robot (respectively functions f (1) and g (6)), one has to establish the mathe-
matical relation connecting the pose 0Sk

E of the frame RE attached to the TCP
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to the configuration of the actuated joints qk (47). For that purpose, one open
kinematic chain has been selected after cutting the joint 10.

The relation from which the functions f and g are deduced is obtained
by multiplying the homogeneous matrices describing the relative pose of each
robot’s frames:

0
T

k
E =

0
T1(θ

k
1 )

1
T2(θ

k
2 )

2
T3(θ

k
3 )

3
T4(θ

k
4 )

4
T5(θ

k
5 )

5
T6(θ

k
6 )

6
T7(θ

k
7 )

7
TE . (42)

The matrix 0Tk
E gives the pose of the frame RE within R0. However, as

one can see (Table 1), the joints 3 and 6 are passive and relations linking their
values to the actuated joints values of the robot have to be calculated. The
relation (43) links the rotation angles of the wrist joints 5 and 6.

θk6 = −θk5 (43)

Then relation (44) is derived in order to link the value of θk3 to the actuated
joint values θk2 , θ

k
8 and the geometrical parameters of the four-bar linkage d3,

d9, d10 and d11.

θk3 = U(θk2 , θ
k
8 , d3, d9, d10, d11) (44)

Moreover, as the joints 2 and 8 are actuated by slider-crank mechanisms, the
relations (45) and (46) link the actuated translational displacements r′2

k
and r′8

k

and the geometrical parameters to the joint values θk2 and θk8 . All calculation
details of the expressions U , V and W are given in Appendix A.

θk2 = V (r′2
k
, κ2, λ2, l12, l32) (45)

θk8 = W (r′8
k
, κ8, λ8, l18, l38) (46)

The vector of the actuated joints is thus:

qk =
[

θk1 r′2
k

r′8
k

θk4 θk5 θk7

]T

. (47)

Using the relations (42), (43), (44), (45) and (46), the Forward Geometrical
Model f (1) and the Inverse Geometrical Model g (6) are obtained. These
relations link the controlled pose 0Sk

E to the (6x1) vector of the actuated joint
values qk and the vector of the geometrical parameters ξ (including all slider-
crank mechanisms’ geometrical parameters) (48).

ξ = [α1 d1 r1 α2 d2 r2 κ2 λ2 l12 l32 β3 α3 d3

r3 α4 d4 r4 α5 d5 r5 α6 d6 r6 α7 d7 r7

βE αE dE rE κ8 λ8 l18 l38 d9 d10 d11]
T (48)

3.2.2. Error model and sensitivity analysis

The geometrical error model is derived by calculating for each pose 0Sk
E , the

Jacobian matrix of all parameters 0Jk
E linking the positioning error 0dSk

E to the
vector of the geometrical errors dξ according to the relation:

0dSk
E = 0Jk

Edξ. (49)
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The columns of 0Jk
E are computed by considering the variation of each ge-

ometrical parameter involved in the homogeneous matrices a(j)Tj used to de-
scribe the kinematic chain of Fig. 6. As a result 0Jk

E can be viewed as the
concatenation of the following submatrices:

0Jk
E = [ 0

J
k
1,E

0
J
k
2,E

0
J
k
3,E

0
J
k
4,E

0
J
k
5,E

0
J
k
6,E

0
J
k
7,E

0
J
k
E,E ] . (50)

0Jk
j,E are the sub-matrices related to the transformations a(j)Tj (for j =

{1, 2, 3, 4, 5, 6, 7, E}) and their columns are calculated based on the relation (41)
according to the method developed in [54]. A parameter dβ3 is introduced
to describe the small orientation errors between the joint axes 2 and 3. dβ3

represents the possible orientation errors of the whole four bar linkage with
respect to the open kinematic chain [9]. Moreover, the relations (43), (44), (45),
and (46) have to be considered since the geometrical parameters they depend of
can also be affected by some errors. Since these errors decrease the robot pose
accuracy, they have to be included in the vector dξ and their related columns
have to be added to the Jacobian matrix 0Jk

E . This is done by differentiating
those relations with respect to the geometrical parameters. This leads to:

dθ5 = −dθ6,

dθ3 = ak3 (dθ2 − dθ8) + bk3dd3 + ck3dd9 + dk3dd10 + ek3dd11,

dθ2 = ak2dr
′

2 + bk2dκ2 + ck2dλ2 + dk2dl12 + ek2dl32,

dθ8 = ak8dr
′

8 + bk8dκ8 + ck8dλ8 + dk8dl18 + ek8dl38.

(51)

The analytical values of akm, bkm, ckm, dkm and ekm (for m = {2, 3, 8}) are
obtained using symbolic Matlab Software and are merged into the expression of
0Jk

E in (52). The resulting formulation of 0J
′k
E can be written as follows:

0J
′k
E =

[ 0J
′k
1,E

0
J
′k
2,E

0
J
′k
3,E

0
J
′k
4,E

0
J
′k
5,E

0
J
′k
6,E ...

... 0
J
′k
7,E

0
J
′k
E,E

0
J
′k
8,E

0
J
′k
9,E

0
J
′k
10,E

0
J
′k
11,E ]

. (52)

Details of 0J
′k
E submatrices are given in Appendix B. As a result, for each

configuration k, the calculation of the 6 × 43 matrix 0J
′k
E allows to calculate

according to (49) the effects of the 43 geometrical errors dξ on the pose error
0dSk

E . All geometrical errors are gathered in the vector dξ defined in (53). This
resulting linear model is used for both sensitivity/observability study and linear
identification of the geometrical errors.

dξ = [dα1 dd1 dr1 dα2 . . . dl38 dd9 dd10 dd11 ]
T

(53)

For a geometrical error dξj of vector dξ and a robot configuration k, two
sensitivity indexes µk

Pj
and µk

Φj
can be defined as the norm of the column j

of respectively the Jacobian matrices of position and orientation 0JP

′k
E,j and

0Jφ

′k
E,j

that are defined according to:

0J
′k
E,j =

[

0JP

′k
j,E

0Jφ

′k
j,E

]

. (54)

The values of the two indexes are calculated according to the relations [55]:
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µk
Pj

=

√

0JP
′k
j,E,x

2
+ 0JP

′k
j,E,y

2
+ 0JP

′k
j,E,z

2
, (55)

µk
Φj

=

√

0JΦ
′k
j,E,x

2
+ 0JΦ

′k
j,E,y

2
+ 0JΦ

′k
j,E,z

2
. (56)

For the robot configuration k the indexes link the norm of the position

and orientation errors 0dP
′k
j,E and 0dΦ

′k
j,E to the geometrical error value dξj

according to:

∥

∥

∥

0dP
′k
j,E

∥

∥

∥
= dξj

√

0JP
′k
j,E,x

2
+ 0JP

′k
j,E,y

2
+ 0JP

′k
j,E,z

2
= µk

Pj
dξj , (57)

∥

∥

∥

0dΦ
′k
j,E

∥

∥

∥
= dξj

√

0JΦ
′k
j,E,x

2
+ 0JΦ

′k
j,E,y

2
+ 0JΦ

′k
j,E,z

2
= µk

Φj
dξj . (58)

All indexe’s values are derived by calculating the Jacobian matrices [42]
0JP

′k
E,j and 0Jφ

′k
E,j

for 27 robot configurations corresponding to uniformly dis-

tributed poses in the work volume defined by (59) and shown in Fig. C.20
(Appendix C):

1.4 ≤ 0Pk
E,x ≤ 2.1 m, −0.3 ≤ 0Pk

E,y ≤ 0.3 m, 1.4 ≤ 0Pk
E,z ≤ 1.7 m. (59)

For each geometrical error dξj , the maximum and the mean values of all
indexes are given in Fig. C.21, C.22 for the position error and C.23, C.24 of
the orientation error (Appendix C). Results show that the geometrical errors of
the four bar linkage and the slider-crank mechanisms have the most important
influence onto the position and orientation errors of the end-effector.

3.2.3. Geometrical identification

Using the linear error model derived in 3.2.2, the parameters observability
study is performed by studying the norm of the columns and the conditioning
of the global jacobian matrix 0JG

7 [14]. This allows to select the vector dξB of
the geometrical errors that can be identified independently. For the 27 robot
configurations corresponding to the poses described by (59) the observability
study shows that 6 parameters dκ8, dκ2, dr

′

8, dd9, dr2 and dr7 cannot be
identified independently of other parameters of dξ. Therefore, they are removed
from vector dξ to define dξB. The linear combinations existing between dξB

and the set of parameters dκ8, dκ2, dr
′

8, dd9, dr2, dr7 are given in Appendix C.
They are due to the fact some of these errors act along or around parallel or
collinear axes and therefore their effects onto the position and/or orientation of
frame R7 cannot be decoupled.

The 37 geometrical errors of dξB are then identified iteratively using the 27
measurements of the position and orientation of frame R7 achieved using the
NIKON-METROLOGY K600-10 system (See section 2.1.5). The values of iden-
tified geometrical errors are given in Appendix C. The figure 7 gives the norm
of both position and orientation residual pose errors vector for each iteration.
The resulting pose accuracy after calibration is tested using 16 poses different
from the 27 used for identification and uniformly distributed the workspace de-
fined by (59). This verification shows that the final pose error is reduced from
0.96 mm and 0.14 deg to 0.24 mm in position and 0.03 deg in orientation in
the work volume considered. The geometrical calibration allows to improve the
static pose accuracy about 75 % in both position and orientation.
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Figure 7: Residual pose error obtained during iterative identification of geometrical errors

3.3. Elastic calibration of the KUKA-IR663

3.3.1. Calibration of the KUKA-IR663 parametric elastic model

Derivation of the parametric elastic model. In order to derive the stiffness model
of the KUKA, all links of the closed-loop kinematic chain are considered as
beams and nodes. The method that has been presented in the first section is
developed to derive in an analytical and systematic way, the stiffness matrix of
the structure. The assumptions we made to derive the stiffness model of the
KUKA’s structure are the following:

• The beam theory is applicable to all links.

• The wrist is stiff enough to be neglected in the stiffness modeling (it is
considered as a rigid body).

• The structure is modeled in the plane but can be excited in the three
dimensions. It can be extended to a 3D model by applying a solicitation
on the TCP along y0 axis.

For the elastic modeling, all nodes of the robot have been labeled (Fig. 8).
The compliance of the joints has been integrated in the model to fully describe
the elastic behavior of the closed-loop kinematic chain. Based on the labels used
in Fig. 8, all the stiffness matrices of the beams and joints are expressed within
the reference frame R0 and are then mapped into the global stiffness matrix of
the robot structure 0KG (21). Boundary conditions are introduced to express
the fact that the robot is embedded in the ground at node 0. These conditions
are expressed by the equation system:

{

0dP0 = 03,1
0dΦ0 = 03,1

. (60)

To integrate these conditions, the size of the global stiffness matrix 0KG

is reduced by deleting the rows and the columns corresponding to the blocked
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Figure 8: Beam model of the KUKA-IR663 structure

displacements. The dimension of the reduced stiffness matrix 0KC is (60× 60)
(61).
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(61)

As the boundary conditions are perfectly defined, so as to prevent any possi-
ble structure’s displacements, the stiffness matrix is symmetric positive definite
and therefore invertible.

The vectors 0FC and 0dSC that describe the nodal wrenches and displace-
ments of the structure are expressed within R0 as follows:

0FC =
[

0FT
1

0FT
2 · · · 0FT

9′
0FT

10′

]T
,

0dSC =
[

0dST
1

0dST
2 · · · 0dST

9′
0dST

10′

]T
.

From the relation (23), the positioning error 0dSE of the end-effector linked
to the elastic deformations of the structure can be calculated as a function of
0FC (function of the wrench 0FE applied on the TCP during the process) and
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from the joint configuration qk∗ =
[

θ2 θ8
]T

(Fig. 8). For that purpose, the
stiffness matrix, the nodal wrench and nodal displacements are partitioned as
below:

[

0KR,R
0KR,E

0KE,R
0KE,E

] [

0dSR
0dSE

]

=

[

0FR
0FE

]

. (62)

Rewriting the equation (62), following the expression of an equivalent para-
metric elastic model (26), the nodal displacement of the TCP can be calculated
as follows:

0dSE =
[

0KeqE

]−1 0FeqE (63)

with:

0FeqE = 0FE − 0KE,R

(

0KR,R

)−1 0FR,

0KeqE = 0KE,E − 0KE,R

(

0KR,R

)−1 0KR,E .

Elastic identification. The resulting Direct Elastic Model whose parameters
have to be identified is described by the relation:

0
dSE =

[

0dPE
0dΦE

]

= h
(

q
k
, ξ,

0
Feq ,Λ,Γ

)

=
(

0
Keq

)

−1 0
Feq. (64)

The joint stiffness parameters are gathered in the vector Γ. Since the joints
3, 9 and 10 are passive (Fig. 8), their axial rotational stiffness Kar is sup-
posed being close to zero. For numerical problems, this value is set to 10−10

Nm.rad−1. Since the structure is loaded in the plane (O0,x0, z0), the values of
the translational axial stiffness Ka and the rotational radial stiffness Krr of the
joints cannot be identified using the loading cases and thus are set to high values
(respectively 1015 N.m−1 and 1015 Nm.rad−1) [43, 56]. To fully describe the
elastic behavior of the closed-loop kinematic chain (Fig. 8), the Kar parameters
for the active joints 2 and 8, which stands for the axial rotational stiffness of
the actuators, and the Kr parameters for the joints 2, 3, 8, 9 and 10 have to be
identified by using the robot’s elastic pose error measurements.

The pose errors that are measured correspond to a range of payloads for
different robot configurations. Due to the possible use of a FANUC S420iF
available in the cell, the horizontal force vector is generated by deadweight
suspended to the free-end of a cable guided by a pulley mounted on its end-
effector (Fig. 5). Four loads of 30, 60, 90 and 110 kg were used to apply the
horizontal force. The same loads were also applied directly to the end-effector in
order to create a vertical payload. The poses for the identification are selected
from a regular grid of k = 63 poses included in a vertical plane (65).

1.25 ≤ 0Pk
E,x ≤ 2.25 m 0.85 ≤ 0Pk

E,z ≤ 2.15 m 0Pk
E,y = 0. (65)

Therefore the TCP is moved to each of the 63 poses for which position
and orientation measurements are done. For each pose, data acquisition is
performed with the K600-10 system during 5 s with a 20 ms sampling rate. In
order to minimize the effects of measurement noise after pose stabilization, we
considered the mean of 100 measurement points as the measurand value. The
statistic average of the distance differences is about 35 µm per 3D-point with
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a standard deviation about 80 µm and a maximum difference of 190 µm. The
position accuracy of the K600-10 system for a single point is up to 37 µm.

The elastic displacements have been obtained by the substraction of the
poses measured with and without payload. The error 0Ek

E , merged into a cost
function (67), is used to identify the structure elastic model is:

0Ek
E =

∥

∥

∥

0dP
m,k
E − 0dPk

E

∥

∥

∥
. (66)

Note that only the pose position error is used for the calculation of 0Ek
E but

the orientation error could also have been involved for accuracy purpose. The
norms of the measured elastic displacements within the plane (O0,x0, z0) are
depicted by Fig. 9. For distant configurations from the vertical axis z0, the
elastic displacements are important. The norm ranges from 1.6 mm to 2.5 mm

for a vertical load of 1100 N . Complementary figures of the TCP measured
elastic displacements are given in Appendix D. Furthermore, horizontal loads
induce substantial vertical TCP deflections for low heights (0.9 mm for a 1100
N load).
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The numerical values of the joint stiffness gathered in the vector Γ are iden-
tified by minimizing the quadratic criterium (67) for a set of nm pose and load
configurations:

C (Γ) =
1

nm

nm
∑

k=1

(

0Ek
E

)2
. (67)

From a total of 8 measurement sets (4 loads along z0 and 4 along x0 di-
rections), the two sets of elastic displacements measured for the 900 N load
are selected for the identification. This choice has been done to minimize the
influence of measurement noise (very important for low payloads) and to fit
the considered robot applications (assembly, forming, machining) that require
a high level of load. A total of nm = 126 data configurations were used for the
identification which can be achieved either with traditional methods (Newton,
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Figure 10: Experimental and parametric model validation of data set: (a) horizontal elastic
displacement for a 600N horizontal load (b) vertical elastic displacement for a 1100N vertical
load

Levenberg-Marquardt) or with stochastic methods. Nevertheless, the genetic
algorithms find here all their utility considering the difficulties to obtain an ini-
tial value of the joint stiffness (from the manufacturers data). To identify the
stiffness parameters an optimization procedure is implemented in modeFRON-
TIER2, a multi-objective optimization software. An object-oriented program-
ming language, MATLAB 2008b, is used for the parametric elastic modeling.
In order to minimize the difference between numerical and experimental results
for the 900 N load, a genetic optimization algorithm is applied to automatically
launch the parametric elastic model and minimize the criterium described by
(67) [57].

The identified stiffness values (Tab. 3) obtained with an optimum design
have been used to evaluate the elastic displacements of the manipulator for
the other sets of loads (Fig. 10). The identified elastic model is appropriate
for the calculation of the manipulator TCP deflections under an external load.
Moreover, the elastic behavior of the manipulator is linear over the range of
load (Fig. 9). Another fact is the good fitting of the elastic displacement when
the wrist is far from the vertical axis of the base frame R0. On the contrary,
when the end-effector is moved close to z0 axis, the model is too stiff and does
not fit anymore with the experimental data. The error exceeds 15% on the
vertical elastic displacements for a 1100 N vertical load (Fig. 10-(b)). This
error may come from the assumption made on the modeling of the two slider-
crank mechanisms. The stiffness of the two slider-crank mechanisms has been
described by an equivalent rotational stiffness located at the center of the joints
(1, 2) and (1, 8). A more realistic model should integrate each ball screw using
extra beams connected to robot links 2 and 8 on one hand and to the first
link through prismatic and revolute joints on the other hand (Fig. A.19). The
stiffness of the actuators will thus be reported on the prismatic joints of the ball
screws.

The Fig. 11, obtained through a numerical approach, shows the beam de-
formations represent about 10% of the overall elastic displacements of the TCP.
This can be easily understood considering the design of the robot’s links which
gives them a high level of stiffness. Note on Fig. 11-(b) that the vertical defor-

2http://www.esteco.com/home/mode frontier
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Complete Model Reduced Model
Γ \ Design Design 1 Design 2 Design 3

K12
ar (Nm.rad−1) 1.72.109 1.72.109 1.72.109 1.72.109

K18
ar (Nm.rad−1) 1.56.109 1.56.109 1.56.109 1.56.109

K12
r (N.m−1) 5.27.1010 2.32.1010 6.22.1010 -

K18
r (N.m−1) 2.25.108 7.92.109 2.22.109 -

K33′

r (N.m−1) 5.10.109 7.1.1010 3.68.1010 -

K99′

r (N.m−1) 6.63.105 3.63.109 1.56.106 -

K1010′

r (N.m−1) 6.12.104 5.56.104 6.11.104 -

K12
req (N.m−1) 4.65.109 1.75.1010 2.31.1010 8.32.109

K18
req (N.m−1) 5.59.104 5.55.104 5.56.104 5.56.104

C (Γ) 0.92 0.92 0.92 0.92

Table 3: Identified values of the joint stiffness parameters

mation due to the beam stiffness is more important for a vertical load. This is
due to the flexion of the main arm corresponding to the beam (10, 7).

This remark shows that the elastic modeling of the robot’s structure could
have also been achieved by simplifying our complete model into a parametric
lumped model [55]. Nevertheless, for applications requiring a high level of accu-
racy (assembly, Friction Steer Welding, machining, etc.) all elastic effects that
degrade the robot’s pose accuracy (joints, bodies, robot support frame) have to
be described and compensated. We think this systematic approach of the para-
metric beam model is more suitable since all stiffness elements can be modeled
which may lead to an interpretation of all effects.

Whatever parametric approach is used (beam models or lumped), some im-
portant problems remain:

• The first concerns the coupling between some stiffness elements. In some
robot’s configurations, the stiffness of certain joints or beams can be re-
placed by serial or parallel equivalent stiffness elements. This leads to
singularities in the elastic model since some columns of the stiffness ma-
trix 0KC are dependent the ones from the others and thus the matrix
is not full ranked. For the KUKA-IR663, the radial stiffness values of
joints corresponding to the nodes (1, 2) and (3, 3′) on one side and to the
nodes (1, 8), (9, 9′) and (10, 10′) on the other side of the closed loop can
be viewed as springs in serial and therefore they can be replaced by two
equivalent radial stiffness values K12

req and K18
req such as:

1

K12
req

=
1

K12
r

+
1

K33′
r

, (68)

1

K18
req

=
1

K18
r

+
1

K99′
r

+
1

K1010′
r

. (69)
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For the identification of the stiffness values, an infinity of solutions for
K12

r , K18
r , K33′

r , K99′

r and K1010′

r are possible. One can see that different
sets of these joint-stiffness’ values lead to a minimum of the quadratic
index as shown in Table 3. The resulting joint-stiffness parameters are
not independent and thus the global solution does not depict the physical
stiffness elements of the real structure.

• Some stiffness effects cannot be easily described and identified, since they
are non-linearly dependent of the robot joint configurations, the exter-
nal load, the temperature, etc. For the KUKA-IR663, this occurs if one
considers the stiffness of the slider-crank mechanisms driving the revolute
joints (1, 2) and (1, 8) of Fig. 8.

• The elastic modeling can be complex and time consuming to establish for
complex structures with closed loops (parallel robots and machines).

In these cases, an interesting alternative approach to the previously pre-
sented parametric method is to perform the elastic modeling using fuzzy in-
ference systems. Next section gives an illustration of this fuzzy logic modeling
with experimental results for the elastic calibration of the KUKA-IR663.

3.3.2. Fuzzy Model Identification

The identification method detailed in section 2.2.2 processes the experimen-
tal data obtained with the K600-10 system to create a fuzzy inference system of
the elastic behavior of the KUKA-IR663. The KUKA’s structure is only mod-
eled in the plane (O0,x0, z0) as in the elastic parametric modeling. The fuzzy
logic model development is driven by measurement data and without any priori
assumption made on the possible elastic sources.

Figure 12: Input and output variables for FL model

The fuzzy inference system is designed with four parallelized single output
FL models (Fig. 12). Each sub-FL model predicts a component of the equiv-
alent compliance matrix of the manipulator. Inputs from the FL model are
the joint values θ2 and θ8. The TCP’s translational elastic displacements in the
plane (O0,x0, z0),

0dPE,x and 0dPE,z are obtained by multiplying the identified
compliance matrix’s components with the horizontal and vertical forces 0fE,x

and 0fE,z by relation (70). So it is assumed that the elastic displacements are
linear with respect to external load.

{

0dPE,x = 0Ceqxx

0fE,x +
0Ceqxz

0fE,z
0dPE,z = 0Ceqzx

0fE,x + 0Ceqzz
0fE,z

(70)
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The FL model is entirely identified from the experimental data, since a
sufficiently rich database has been obtained using the K600-10 system. The 900
N payload subset of measurements is selected to create training and test sets.
Among the 126 poses of the grid for the 900 N payload 36 measurements points
are selected randomly to construct the test set T . The 90 remaining points are
the learning set A.
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Figure 13: Fuzzy Logic model of the compliant coefficient 0Ceqxx and Membership Functions
for the model variables θ2 and θ8
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Figure 14: Experimental and Fuzzy Logic model validation of data set: (a) horizontal elastic
displacement for a 600N horizontal load (b) vertical elastic displacement for a 1100N vertical
load

An initial FL model is created with two MFs per input to begin the iter-
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ative identification procedure. Using Solis and Wets algorithm a sub-optimal
solution of the modal values, i.e. the placement of the MFs, is obtained. The
conclusions of the rules are modified by a Gradient Descent method to estab-
lish appropriate correlation between the measured and calculated TCP poses.
After few iterations, the use of four and three MFs for θ2 and θ8, respectively,
allows to obtain the best compromise for the prediction of the compliance be-
havior of the KUKA-IR663. So a total of 12 rules are used in each single output
model. The aggregated output of a single FL model is a weighted average of
the contribution of the 12 rules according to (36).

Table 4 gives the modal values defining the fuzzy sets and the conclusions
of the rules for the compliance coefficient 0Ceqxx

. Fig. 13 shows the surface
that represents the compliance coefficient 0Ceqxx

, over the input domain, and
the associated MFs for the input variables θ2 and θ8. The shape of the surface
is regular and shows a nonlinear change of the structure’s compliance with a
variation of either θ2 or θ8.

Table 4: Rule base of the Fuzzy Logic Model of the compliant coefficient 0Ceqxx

Rule i cθ2,mθ2
(deg) cθ8,mθ8

(deg) bi(mm)

1 -24.15 33.04 -0.639
2 -24.15 48.63 -0.718
3 -24.15 62.90 -0.910
4 1.37 33.04 -0.730
5 1.37 48.63 -0.953
6 1.37 62.90 -1.040
7 12.54 33.04 -0.711
8 12.54 48.63 -1.010
9 12.54 62.90 -1.218
10 36.83 33.04 -0.769
11 36.83 48.63 -1.057
12 36.83 62.90 -1.156

In order to verify the global FL model accuracy, the TCP elastic displace-
ments that this model allows to predict are compared with those measured ex-
perimentally. This is done by using two other sets of measurements performed
with loads of 600 and 1100 N that are not already used for the training of the
FL model. As one can see on Fig. 14, the pose errors induced by the elastic
effects which are predicted by the FL model do fit the experimental results. The
values of the RMS errors, for the 600 and the 1100 N loads, given in table (5)
are about 52 and 84 microns respectively. Their magnitude can be regarded as
minor compared with the measurement system accuracy.

Method Load RMS (mm)
Max error Max error Max error

norm (mm) x0 (mm) z0 (mm)

FL

300 0.064 0.138 0.127 0.080
600 0.052 0.160 0.159 0.076
900 0.057 0.144 0.114 0.121
1100 0.084 0.183 0.145 0.175
all 0.065 - - -

Parametric

300 0.082 0.142 0.140 0.079
600 0.093 0.184 0.166 0.167
900 0.122 0.282 0.252 0.271
1100 0.136 0.371 0.196 0.351
all 0.110 - - -

Table 5: Comparison of the elastic parametric and fuzzy logic modeling methods
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Figure 15: Error in percent on the vertical displacement for a 1100N load: (a) parametric
modeling (b) fuzzy logic modeling

3.3.3. Discussion

Compared to the results obtained with the elastic parametric model, the FL
model allows to get a better accuracy. The RMS errors, considering all sets
of loads, is about 65 µm. With the parametric approach the RMS is 110 µm.
Moreover, Table (5) shows that the FL model prediction of pose errors is more
robust to the load changes. Indeed in the case of the 900 and 1100 N loads, the
RMS error are 57 and 84 µm respectively with the FL modeling and about 122
and 136 µm respectively with the parametric approach. Moreover, maximum
errors are about 144 and 183 against 282 and 371 µm respectively. As we
explained before, this must be due to the fact that the parametric model does
not take into account the effects of all possible elastic sources which non-linear
behavior degrades the pose accuracy. For example the parametric model does
not consider the compliance induced by robot slider-crank mechanisms whereas
the FL in its global approach allows to compensate these lacks of modeling.
The accuracy of the FL model is also described by Fig (15) where one can see
that the errors are predicted uniformly within the robot workspace. This figure
depicts the error in percent between the measurements and the elastic models.

Simulation and experimental results show the effectiveness of the proposed
identified FL model under various loading conditions. The proposed modeling
and identification method uses the advantage of fuzzy logic such as simplicity,
rapidity and robustness. Hence, the fuzzy modeling approach has great potential
in developing accurate prediction models and in improving the understanding of
structure’s characteristics. The KUKA IR-663 illustrative example, given in this
paper, shows that the proposed method is general and thus useful. To extend
the validity of the method, the elasto-geometrical behavior of the robot has to
be performed as well in position as in orientation over the global work volume.
In this case, the six driven joint coordinates would be the inputs of the FL
model, and the outputs would be the six components of the elastic displacement
vector. The number of rules will be increased and thus the model will lose its
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interpretability. To overcome this problem, the use of a fuzzy decision tree
would limit the number of rules and thus enhance the interpretability [58, 59,
40]. Another solution could be to use a gray box approach that consists in
describing some parts of the elastic behavior of the robot structure by using
some parametric sub-models and to link them through fuzzy logic inference
systems.

4. Application to forming process

The elasto-geometrical modeling procedure described in the previous sec-
tions can be applied for machining, assembly or forming applications using an
industrial robot. The main problem, in a forming context, concern the TCP pose
errors due to the robot’s elastic deformations induced by the exerted quasi-static
forces during the process. This leads to deviations of the tool from the target
path. To enhance the robot pose accuracy during the process, a compensation
method is developed based on the modeling approach previously described.

Figure 16: Experimental setup with the KUKA-IR663, a cantilever beam and its clamping
device

The performance of the proposed elasto-geometrical FL model is verified
through a simple but robust experimental procedure emulating a forming pro-
cess. The KUKA-IR663 robot is used to bend elastically an aluminium (Al-5005)
cantilever beam (585× 50× 14 mm) clamped on a frame as shown on Fig. 16.
The beam is deformed only elastically since its reduces the force applied by the
robot and avoids a time consuming calculation of the forming force, with a FE
software [7]. Here to produce the elastic deformation of the beam, the forming
tool tip is moved along a trajectory defined in frame Rp (Fig. 1). A vertical
motion of 25 mm along zp is planed followed by an horizontal motion of 200
mm along xp starting at the beam’s free-end. During the process emulation,
the actual tool path is measured by the K600-10 system. A dead weight of 920
N is carried by the end-effector in order to increase the vertical payload (Fig.
16).

Despite its simplicity, this experimental test is realistic regarding the mod-
eling of a forming process. The forming forces acting on the tool lead to large
TCP elastic deviations (up to 1.5 mm) that requires a model-based compensa-
tion. This compensation method allows to predict the path deviations due to
the robot structure compliance and to plan a corrected tool path [7]. The strain
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and deflection characteristics of the cantilever beam are calculated using two
approaches. Euler-Bernoulli theory is first used assuming small deflections of
the beam. Then incremental analysis with reactualization of the beam geometry
is involved assuming the loadings create large displacements and/or rotations.
The simulation of the robot elasto-geometrical behavior along the forming path
is then done using the proposed Fuzzy Logic approach. The two beam deforma-
tion models and the Fuzzy Logic model are coupled to get a robust calculation
of the tool path without compensation (Fig. 17). Once this path is identified,
the trajectory is corrected, computing fake poses with the FL model, so as to
reach the target path.
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Figure 17: Target tool path, measured and simulated paths in the vertical x-z-plane of the
beam frame

A significant deviation between the target and the measured path can be
identified. It ranges from 0.4 mm to 1.5 mm along zp direction. Obviously, the
nearer the tool is from the free-end of the beam, the lower the vertical forming
force is. The comparison between the measured and simulated paths shows good
qualitative and quantitative agreements. As one can see, the model based path
prediction using the incremental analysis leads to more accurate results. Both
horizontal and vertical forces induced by the beam deformation are considered
and thus the calculation of the robot TCP elastic displacements is more accurate.
The gap between the predicted trajectories respectively obtained with Euler-
Bernoulli and incremental approaches is about 0.2 mm when the tool is near
the beam’s embedment. The robot trajectory is corrected efficiently using the
incremental model-based prediction. Fig. 17 shows the compensated tool path
and the target path. The tool path accuracy has been enhanced from 80 %
applying the presented compensation strategy based on the elasto-geometrical
modeling of the robot structure using the FL model. The variation remaining
between the target path and the compensated tool path can be explained partly
by not taking into account the longitudinal force resulting from the friction of
the tool on the beam’s surface. These results validate the modeling approach
proposed in this paper.
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5. Conclusion

This paper studies the elasto-geometrical calibration of robot manipulators
in order to improve their static pose accuracy and to fit with machining, forming
or assembly process precision requirements. A key result is that the proposed
framework can be used to obtain parametric or fuzzy logic elasto-geometrical
models of robot structures. The first solution consists in using analytical finite
element theory for the calculation of the equivalent structure stiffness matrix
required to predict accurately the TCP pose errors under high level forces.
The Forward Elasto-Geometrical model of the KUKA-IR663 is derived analyt-
ically in a systematic manner and its complete identification is then performed
using experimental data obtained with the NIKON METROLOGY K600-10
measurement system. The errors on the geometrical parameters and the stiff-
ness parameters are identified. The simulation results obtained with this model
have been compared to experimental results in order to show the efficiency of
the parametric approach. However, while considering the whole work volume,
the measured elastic displacements exhibit nonlinear behavior that cannot be
described precisely using conventional parametric method.

Therefore, a second modeling approach, based on a fuzzy inference system,
is proposed. In fuzzy logic modeling, the model development is mainly driven
by measurement data and has been proved to have the ability of modeling
elastic behavior without any priori assumptions. The fuzzy approach can be
considered to be a more versatile and have an efficient mathematical structure
for nonlinear system mapping. The proposed procedure has been successfully
validated by experimental investigations. The experimental results show the
method relevance to minimize defects due to the compliances of the robot’s
structure. The TCP’s pose accuracy has been improved up to ±0.15 mm for
the elastic bending of an aluminium cantilever beam and this relative value of
the maximal error fits the tolerance level of incremental forming applications.
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Appendix A. Four-bar linkage

For the calculation of the relation U , the assumption that the four bar linkage
is a plane mechanism is made (Fig. A.18). In other words, the axes of the joints
2, 3, 8, 9 and 10 are assumed to be perfectly parallel. Using the closure equation
of the linkage, 11T9

9T8
8T1

1T2
2T3

3T10 = I4, the value of θk3 is calculated as
a function of the other loop parameters as follows:

θk3 = Atan2(sin(θk3 ), cos(θ
k
3 )) (A.1)

= U(θk2 , θ
k
8 , d3, d9, d10, d11) (A.2)

where: sin(θ3) =
B1B3−B2

√

B2
1+B2

2−B2
3

B2
1
+B2

2
,

cos(θ3) =
B2B3−B1

√

B2
1+B2

2−B2
3

B2
1
+B2

2

,
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and: B1 = 2Z2X, X = d9 cos(θk
2 − θk

8 ),

B2 = −2Z2Y , Y = d3 − d9 sin(θk
2 − θk

8 ),
B3 = W 2 − X2 − Y 2 − Z2

2 , Z2 = −d10,
W = −d11.

Figure A.18: Description of the four-bar linkages

The relation V linking the actuated translational displacements r′2
k
to the

joint values θk2 and the parameters of the screw is calculated considering the
resulting slider crank type mechanism of Fig. A.19.

Figure A.19: Ball screws for the actuation of joints 2 and 8

Writing the closure equation of the mechanism in the plane, the following
relation is obtained:

θk2 = V (r′2
k
, κ2, λ2, l12, l32) (A.3)

where: θk
2 = κ2 − Atan2(sin(θk

2 ), cos(θ
k
2 )) +

π
2 ,

sin(θk
2 ) =

X2Z2−Y2

√

X2
2
+Y 2

2
−Z2

2

X2
2+Y 2

2
,

cos(θk
2 ) =

Y2Z2−X2

√

X2
2
+Y 2

2
−Z2

2

X2
2+Y 2

2
,

and: X2 = 2yBl12, xB = l32 cos(π
2 − λ2),

Y2 = 2xBl12, yB = l32 sin(π
2 − λ2),

Z2 = r′2
k − x2

B − y2
B − l212.

In the same way, the slider crank mechanism that drives the joint 8 is consid-
ered to calculate the function W linking θk8 to r′8

k and the ball screw parameters:

θk8 = W (r′8
k
, κ8, λ8, l18, l38). (A.4)
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Appendix B. Columns of 0J
′
k

E

The submatrices involved in the calculation of 0J
′k
E are obtained using the

following relations [54] :

• 0
J
′k
1,E =

[

0
J
k
α1,E

0
J
k
d1,E

0
J
k
θ1,E

0
J
k
r1,E

]

•
0
J
′k
2,E =

[

0
J
k
α2,E

0
J
k
d2,E

0
J
k
r2,E

ak
2J23 bk2J23

ck2J23 dk
2J23 ek2J23

]

with: J23 = 0
J
k
θ2,E

+ ak
3
0
J
k
θ3,E

• 0
J
′k
3,E =

[

0
J
k
β3,E

0
J
k
α3,E

0
J
k
d3,E

+ bk3
0
J
k
θ3,E

0
J
k
r3,E

]

• 0
J
′k
4,E =

[

0
J
k
α4,E

0
J
k
d4,E

0
J
k
θ4,E

0
J
k
r4,E

]

• 0
J
′k
5,E =

[

0
J
k
α5,E

0
J
k
d5,E

(

0
J
k
θ5,E

− 0
J
k
θ6,E

)

0
J
k
r5,E

]

• 0
J
′k
6,E =

[

0
J
k
α6,E

0
J
k
d6,E

0
J
k
r6,E

]

• 0
J
′k
7,E =

[

0
J
k
α7,E

0
J
k
d7,E

0
J
k
θ7,E

0
J
k
r7,E

]

• 0
J
′k
E,E =

[

0
J
k
βE,E

0
J
k
αE,E

0
J
k
dE,E

0
J
k
rE,E

]

•

0
J
′k
8,E =

[

−ak
8a

k
3
0
J
k
θ3,E

−bk8a
k
3
0
J
k
θ3,E

−ck8a
k
3
0
J
k
θ3,E

− dk
8a

k
3
0
J
k
θ3,E

−ek8a
k
3
0
J
k
θ3,E

]

• 0
J
′k
9,E =

[

ck3
0
J
k
θ3,E

]

• 0
J
′k
10,E =

[

dk
3
0
J
k
θ3,E

]

• 0
J
′k
11,E =

[

ek3
0
J
k
θ3,E

]

Appendix C. Geometrical calibration
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Figure C.20: Robot poses used for measurements
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Linear combinations between the parameters of dξB and the parameters that
cannot be identified independently dκ8, dκ2, dr

′

8, dd9, dr2, dr7:































































































































dr
′ id

2 = dr
′

2 + 0.003.dd9 − 0.011.dr
′

8

dλid
2 = dλ2 − dκ2

dlid12 = dl12 + 0.0011.dd9 + 0.0066dr
′

8

dlid32 = dl32 + 0.0019.dd9 − 0.018.dr
′

8

dλid
8 = dλ8 − dκ8 + 0.098.dd9 +−0.78.dr

′

8

dlid18 = dl18 − 0.0014.dr
′

8

dlid38 = dl38 − 0.0012.dd9 − 0.84.dr
′

8

drid1 = dr1 − 0.0012.dd9
ddid3 = dd3 + 0.0013.dd9
drid3 = dr3 + dr2
ddid5 = dd5 + 0.0053.dd9 + 0.0025.dr

′

8

drid5 = dr5 − 0.0036.dd9 − 0.0019.dr′8
drid6 = dr6 − 0.0038.dd9 − 0.0021.dr′8
ddid7 = dd7 − 0.0057.dd9 − 0.0025.dr

′

8

ddid10 = dd10 − 0.82.dd9
ddid11 = dd11 − 0.39.dd9
dridE = drE + dr7

. (C.1)

Values of identified geometrical errors (deg, mm, ×: non identifiable):















dαid
1 = −0.0045

dd1 = −0.1117
dθid1 = 0.0059
drid1 = −0.04512

(C.2)















































dαid
2 = −0.0058

ddid2 = 0.0944

dr′2
id

= −0.0453
dκid

2 = ×
dλid

2 = −0.0026
dlid12 = −0.0456
dlid32 = ×
drid2 = ×

(C.3)















dβid
3 = 0.0067

dαid
3 = −0.0013

ddid3 = 0.1804
drid3 = −0.0855

(C.4)















dαid
4 = 0.0032

ddid4 = −0.4196
dθid4 = 0.0395
drid4 = −0.030

(C.5)















dαid
5 = −0.0033

ddid5 = 0.0729
dθid5 = −0.0056
drid5 = −0.0995

(C.6)
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





dαid
6 = −0.0011

ddid6 = −0.4267
drid6 = −0.1536

(C.7)















dαid
7 = 0.0272

ddid7 = −0.6448
dθid7 = 0.0228
drid7 = ×

(C.8)















dβid
E = 0.0132

dαid
E = 0.0048

ddidE = −0.0285
dridE = 0.7799

(C.9)























dr′8
id

= ×
dκid

8 = ×
dλid

8 = 0.0027
dlid18 = 0.3134
dlid38 = −0.080

(C.10)







ddid9 = ×
ddid10 = −0.4441
ddid11 = 0.2074

(C.11)
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Figure C.21: Sensitivity of the end-effector position to the length geometrical errors
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Figure C.22: Sensitivity of the end-effector position to the angular geometrical errors
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Figure C.23: Sensitivity of the end-effector orientation to the length geometrical errors
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Figure C.24: Sensitivity of the end-effector orientation to the length geometrical errors

Appendix D. Measured elastic displacements of the end-point of the

KUKA-IR663
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Figure D.25: Horizontal and vertical measured elastic displacements of the end-point for
horizontal static loads of 300, 600, 900 and 1100 N
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Figure D.26: Horizontal and vertical measured elastic displacements of the end-point for
vertical static loads of 300, 600, 900 and 1100 N
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