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Existence results for the A − ϕ magnetodynamic formulation

of the Maxwell system

Serge Nicaise∗

December 11, 2013

Abstract

The A/ϕ magnetodynamic Maxwell system given in its potential and space/time formulation is a
popular model considered in the engineering community. We establish exitence of strong solutions with
the help of the theory of Showalter on degenerated parabolic problems; using energy estimates, existence
of weak solutions are also deduced.
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1 Introduction

Let T > 0 and Ω ⊂ R
3 be an open connected bounded domain with a lipschitz boundary Γ that is also

connected. In this work, we consider the Maxwell system given in Ω × [0, T ] by :

curl E = −∂tB, (1)

curl H = ∂tD + J, (2)

with initial and boundary conditions to be specified. Here, E stands for the electrical field, H for the
magnetic field, B for the magnetic flux density, J for the current flux density (or eddy current) and D for the
displacement flux density. In the low frequency regime, the quasistatic approximation can be applied, which
consists in neglecting the temporal variation of the displacement flux density with respect to the current
density [1], so that the propagation phenomena are not taken into account. Consequently, equation (2)
reduces to

curl H = J. (3)

The current density J can be decomposed in two terms such that J = Js + Je. Js is a known distribution
current density generally generated by a coil. Je represents the unknown eddy current. Both equations (1)
and (3) are linked by the material constitutive laws :

B = µ H, (4)

Je = σ E, (5)

where µ stands for the magnetic permeability and σ for the electrical conductivity of the material. Figure 1
displays the domain configuration we are interested in. It is composed of an open connected conductor domain
Ωc ⊂ Ω which boundary B = ∂Ωc supposed to be lipschitz, connected and such that B ∩ Γ = ∅. In Ωc, the
electrical conductivity σ is not equal to zero so that eddy currents can be created. The domain Ωe = Ω\Ωc is
defined as the part of Ω where the electrical conductivity σ is identically equal to zero. Boundary conditions
associated with the previous system are given by B ·n = 0 on Γ and Je ·n = 0 on B, where n denotes the unit
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Figure 1: Domains configuration.

outward normal to Ω and Ωc respectively. In order to solve the problem with the quasistatic approximation,
a formulation which is able to take into account the eddy current in Ωc and which verifies in Ωe Maxwell’s
equations must be developed. This can be obtained by chosing the potential formulation often used for
electromagnetic problems [10]. Indeed from the fact that div B = 0 in Ω and that its boundary is connected,
by Theorem 3.12 of [3], a magnetic vector potential A can be introduced such that

B = curl A in Ω, (6)

with the boundary condition A × n = 0 on Γ allowing to guarantee B · n = 0 on Γ. Like B, the vector
potential A exists in the whole domain Ω. To ensure the uniqueness of the potential, it is necessary to
impose a gauge condition. The most popular one is div A = 0 (the so-called Coulomb gauge). Moreover,
from equations (1) and (6), an electrical scalar potential ϕ can be introduced in Ωc so that the electrical field
takes the form :

E = −∂tA −∇ϕ in Ωc. (7)

As for the vector potential, it must be gauged. To obtain uniqueness, the averaged value of the potential ϕ
on Ωc is taken equal to zero. From (4),(5),(6) and (7), equation (3) leads to the so-called A−ϕ formulation :

curl
(
µ−1 curl A

)
+ σ

(
∂tA + ∇ϕ

)
= Js. (8)

The great interest of this formulation relies in its effectivity in both domain Ωc and Ωe. Indeed, in Ωe where
σ is zero the second term vanishes and the A − ϕ formulation becomes the classical A formulation used in
the magnetostatic case.

Our main goal is to prove existence results for problem (8) completed with appropriated boundary con-
ditions. More particularly, we have in mind to derive a weak formulation that will be used for the numerical
resolution of (8) by the Finite Element Method in the context of electromagnetic problems [7].

Concerning the harmonic formulation of some Maxwell problems, several contributions have been proposed
in the last decade. In that case, since no time derivatives are involved, we have only to deal with spatial
problems for which existence results are easier to obtain (see for instance Theorem 2.1 in [6]).

Recent contributions on evolution Maxwell equations of degenerate parabolic type can be found in [2,
4, 5, 8, 9, 11]. A characteristic feature of these papers is the presence of conducting and nonconducting
regions in the spatial domain. While [5] and [9] consider the model in bounded regions and [5] also sketches
a quasilinear system, in [2] and [4] the problem is discussed in the whole space. The paper [8] deals with
induction heating and considers a coupled system of the evolution Maxwell and heat equations. Finally in
[11], an integrodifferential system was studied that accounts for the magnetic induction law that couples the
given electrical voltage with the induced electrical current in the induction coil.

Let us finish this introduction by some notation used in the whole paper. On a given domain D, the
L2(D) norm is denoted by ‖ · ‖D, and the corresponding L2(D) inner product by (·, ·)D. The usual norm and
semi-norm on H1(D) are respectively denoted by ‖ · ‖1,D and | · |1,D. In the case D = Ω, we drop the index
Ω. Recall that H1

0 (D) is the subspace of H1(D) with vanishing trace on ∂D. Finally, the notation a . b and
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a ∼ b means the existence of positive constants C1 and C2, which are independent of the quantities a and b

under consideration such that a ≤ C2b and C1b ≤ a ≤ C2b, respectively.
The paper is organized as follows. In section 2, the strong and weak formulations of the problem are

presented and the existence result is stated. Then, section 3 is devoted to the proof of some preliminary
results in order to apply a result of Showalter on degenerated parabolic problems. Finally, in section 4 we
prove energy estimates and the main result of our paper.

2 Formulation of the problem and the main result

Assuming that div Js = 0, the A−ϕ formulation of the magnetodynamic problem with given initial conditions
on A can be written as

curl
(
µ−1 curl A

)
+ σ

(
∂tA + ∇ϕ

)
= Js in Ω × (0, T ), (9)

div
(
σ
(
∂tA + ∇ϕ

))
= 0 in Ωc × (0, T ), (10)

A × n = 0 on Γ × (0, T ), (11)

σ (∂tA + ∇ϕ) · n = 0 on B × (0, T ), (12)

A(t = 0, ·) = 0 in Ωc. (13)

We suppose that µ ∈ L∞(Ω) and that there exists µ0 ∈ R
∗
+ such that µ > µ0 in Ω. We also assume that

σ ∈ L∞(Ω), σ|Ωe
≡ 0, and that there exists σ0 ∈ R

∗
+ such that σ > σ0 in Ωc. At last, we recall the Gauge

conditions. Like mentioned in section 1, we choose the Coulomb one div A = 0 in Ω, and we ask for the
averaged value of ϕ in Ωc to be equal to zero.

We now define

X(Ω) = H0(curl,Ω) =
{
A ∈ L2(Ω) ; curl A ∈ L2(Ω) and A × n = 0 on Γ

}
,

XN (Ω) = {A ∈ X(Ω) : div A ∈ L2(Ω)},

X0(Ω) = {A ∈ X(Ω) ; div A = 0 in Ω},

H̃1(Ωc) =
{
ϕ ∈ H1(Ωc) ;

∫

Ωc

ϕ dx = 0
}
,

equipped with their usual norm

‖A‖2
X(Ω) = ‖A‖2 + ‖ curl A‖2,∀A ∈ X(Ω),

‖A‖2
X0(Ω) = ‖A‖2 + ‖ curl A‖2,∀A ∈ X0(Ω),

‖A ‖2
XN (Ω) = ‖A ‖2

X(Ω) + ‖div A‖2,∀A ∈ XN (Ω),

‖ϕ‖fH1(Ωc)
= |ϕ|1,Ωc

,∀ϕ ∈ H̃1(Ωc).

Similarly, we set
H(div = 0,Ω) = {A ∈ L2(Ω)3 : div A = 0 in Ω},

that is a closed subspace of L2(Ω)3.
Note that, here and below, div A = 0 in Ω means equivalently that

(A,∇ξ) = 0 ∀ ξ ∈ H1
0 (Ω).

The variational (or weak) formulation associated with (9)-(13) is obtained in a usual way, multiplying

(9) by a test function A ∈ X0(Ω) (resp. (10) by a test function ϕ′ ∈ H̃1(Ωc)), integrating the results in Ω,
formal integrations by parts and taking the sum we find
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(µ−1 curl A, curl A′ )+(σ (∂tA+∇ϕ), A′+∇ϕ′ )Ωc
= ( Js, A

′ ),∀(A′, ϕ′) ∈ X0(Ω)×H̃1(Ωc),∀ a.a. t ∈ (0, T ).
(14)

An existence result for this problem can be stated as follows

Theorem 2.1. Let us assume that Js ∈ H1((0, T );H(div = 0,Ω)) and set Js,0 = Js(t = 0). Assume that

Js,0 · n = 0 on B, (15)

and that there exists A0 ∈ X0(Ω) satisfying

A0 = 0 in Ωc,

and
(µ−1 curl A0, curl A

′ ) = (Js,0, A
′ )Ωe

,∀A′ ∈ XN (Ω).

Then problem (14) has a unique solution (A, ϕ) in H1(0, T ;X0(Ω))×L2(0, T ; H̃1(Ωc)) with A(t = 0) = A0.

Proof. The proof is postponed to section 4.

By the uniqueness of the solution, this local existence result directly allows to obtain a global one.

3 Preparations for the application of a theorem by Showalter

Our results on existence and uniqueness rely on the following theorem:

Theorem 3.1 ([12], Theorem V4.B). Let Vm be a seminorm space obtained from a symmetric and non-
negative sesquilinear form m(·, ·), and let M ∈ L(Vm, V

′
m) be the corresponding operator given by Mx(y) =

m(x, y), for all x, y ∈ Vm. Let V be a Hilbert space which is dense and continuously embedded into Vm. Let a
be a continuous, sesquilinear and elliptic form on V and denote by A the corresponding isomophism from V

onto V ′. Let D = {u ∈ V : Au ∈ V ′
m}. Then for any f ∈ C1([0,∞), V ′

m) and y0 ∈ Vm, there exists a unique
solution y to {

(My)t(t) + Ay(t) = f(t) in V ′
m, ∀t > 0,

My(0) = My0 in V ′
m,

(16)

with the regularity
My ∈ C([0,∞), V ′

m) ∩ C1((0,∞), V ′
m)

and such that
y(t) ∈ D,∀t > 0.

In order to apply this theorem, we show that problem (9)-(13) fits in the associated framework. Before

we need some preliminary results. First for A ∈ L2(Ω)3, we consider the unique solution ϕA ∈ H̃1(Ωc) of
∫

Ωc

σ∇ϕA · ∇χ̄ dx = −

∫

Ωc

σA · ∇χ̄ dx,∀χ ∈ H̃1(Ωc). (17)

Such a solution exists by Lax-Milgram lemma and furthermore by Cauchy-Schwarz’s inequality, we have

‖σ1/2∇ϕA‖Ωc
≤ ‖σ1/2A‖Ωc

. (18)

¿From this problem, we deduce that the field

σ(A + ∇ϕA)

is divergence free in Ωc, i.e.,
div (σ(A + ∇ϕA)) = 0 in Ωc, (19)
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and satisfies the boundary condition

σ(A + ∇ϕA) · n = 0 on ∂Ωc. (20)

As the boundary of Ωc is connected, by Theorem 3.12 of [3], there exists a vector potential BA ∈ X0(Ωc)
such that

σ(A + ∇ϕA) = curl BA in Ωc. (21)

Note that the previous properties also show that for any H1 extension ϕ̃A of ϕA to Ω, one has

div (σ(A + ∇ϕ̃A)) = 0 in Ω.

Recall that for B ∈ X0(Ωc), we have

‖ curl B‖Ωc
∼ ‖B‖XN (Ωc).

Hence
σ−1 curlX0(Ωc) := {σ−1 curl B : B ∈ X0(Ωc)}

is a closed subspace of L2(Ωc)3.
Note that (21) shows that σ−1 curl BA is the orthogonal projection of A on σ−1 curlX0(Ωc) for the inner

product

(A,B)Ωc,σ :=

∫

Ωc

σA · B dx,∀A,B ∈ L2(Ωc)3. (22)

Now we consider the mapping

Mc : L2(Ωc)3 → curlX0(Ωc) ⊂ L2(Ωc)3 : A → σ(A + ∇ϕA). (23)

By (18), this mapping is linear and continuous. Furthermore it is symmetric and non negative (for the
standard inner product). Indeed for A,B ∈ L2(Ωc)3, we first show that

∫

Ωc

σ∇ϕA · B dx = −

∫

Ωc

σ∇ϕA · ∇ϕ̄B dx. (24)

Indeed by (17), we have
∫

Ωc

σ∇ϕA · B dx =

∫

Ωc

σB∇ϕ̄A dx

= −

∫

Ωc

σ∇ϕB∇ϕ̄A dx

= −

∫

Ωc

σ∇ϕA∇ϕ̄B dx.

This proves (24).
With this identity we directly deduce that

(McA,B)Ωc
= (A,McB)Ωc

,

and the symmetry of Mc is proved.
For the non negativeness, we first notice that (17) is equivalent to

∫

Ωc

McA · ∇χ̄ dx = 0,∀χ ∈ H̃1(Ωc). (25)

This identity directly implies that

(McA,A)Ωc
=

∫

Ωc

σ(A + ∇ϕA) · Ā dx

=

∫

Ωc

σ(A + ∇ϕA) · (A + ∇ϕA) dx

= ‖σ1/2(A + ∇ϕA)‖2
Ωc

∼ ‖McA‖2
Ωc
.
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We now equip L2(Ω)3 with the semi-inner product

m(A,B) := (Mc(A|Ωc
),B)Ωc

,

that is denoted by Vm (and is not closed). Before going on, we directly see that m is a symmetric and
non-negative sesquilinear form on Vm since

m(A,B) := (Mc(A|Ωc
),B|Ωc

)Ωc
.

Furthermore let M be the linear and continuous operator from Vm into its dual V ′
m defined by

(MA)(B) = m(A,B),∀A,B ∈ Vm.

Now recall that (see for instance [12]) the dual space V ′
m of Vm is a Hilbert space that is characterized in the

next lemma.

Lemma 3.2.
V ′

m = curlX0(Ωc).

In other words, l ∈ V ′
m if and only if there exist B ∈ X0(Ωc) such that

l(A) :=

∫

Ωc

curlB · Ā dx,∀A ∈ L2(Ω)3,

and
‖l‖V ′

m
∼ ‖ curlB‖Ωc

.

Proof. The inclusion curlX0(Ωc) ⊂ V ′
m is direct since for B ∈ X0(Ωc) and A ∈ Vm we can define

lB(A) :=

∫

Ωc

curl B · Ā dx,

that is a continuous linear form on Vm since

lB(A) =

∫

Ωc

σ−1/2 curl B · σ1/2(Ā + ∇ϕ̄A) dx.

Therefore,
|lB(A)| . ‖σ−1/2 curl B‖Ωc

‖σ1/2(A + ∇ϕA)‖Ωc
. ‖B‖X0(Ωc)m(A,A)1/2.

For the converse inclusion, let us fix l ∈ V ′
m, which means that

|l(A)| . m(A,A)1/2,∀A ∈ Vm. (26)

We first notice that for χ ∈ H̃1(Ωc), we have

M∇χ = 0,

hence m(∇χ,∇χ) = 0 and therefore
l(∇χ) = 0.

This identity implies that
l(A) = l(A + ∇ϕA) = l(σ−1 curl BA). (27)

As said before we have
σ−1 curlX0(Ωc) ⊂ Vm,

and for any C ∈ X0(Ωc), we have

m(σ−1 curl C, σ−1 curl C) = ‖σ−1/2 curl C‖2
Ωc

∼ ‖C‖2
X0(Ωc)

.
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Therefore the mapping
l0 : C → l(σ−1 curl C),

is linear and continuous from X0(Ωc) to C. Hence since X0(Ωc) is a Hilbert space for the inner product

(B,C) :=

∫

Ωc

σ−1 curl B · curl C̄ dx,∀B,C ∈ X0(Ωc),

there exists B ∈ X0(Ωc) such that

l0(C) =

∫

Ωc

σ−1 curl B · curl C̄ dx,∀C ∈ X0(Ωc).

By (27), we deduce that

l(A) =

∫

Ωc

σ−1 curl B · curl B̄A dx,∀A ∈ L2(Ω)3,

and by (21), we conclude that

l(A) =

∫

Ωc

curl B · (Ā + ∇ϕ̄A) dx =

∫

Ωc

curl B · Ā dx,∀A ∈ L2(Ω)3.

The first step shows that the mapping

curlX0(Ωc) → V ′
m : curl B → lB,

is linear and continous. Moreover the second step shows this mapping is surjective hence by the closed graph
theorem, it is an isomorphism.

Before going on let us notice that for any A ∈ L2(Ω)3, we see that

MA = σ(A|Ωc
−∇ϕA|Ωc

),

and therefore by the previous consideration, we have

‖MA‖2
V ′

m

∼ ‖McA|Ωc
‖2
Ωc

∼ (MA,A). (28)

At this stage in order to apply Theorem 3.1, we define

a(A,A′) =

∫

Ω

µ−1 curl A · curl Ā
′
dx +

∫

Ω

div Adiv Ā
′
dx,∀A,A′ ∈ XN (Ω),

that is clearly continuous and coercive on XN (Ω) due its compact embedding into L2(Ω)3.
Furthermore XN (Ω) is clearly dense in L2(Ω)3 and continuously embedded into Vm. Therefore we have

checked all assumptions of Theorem 3.1 (with V = XN (Ω)). Before stating a consequence of this theorem,
we recall that

D := {A ∈ XN (Ω) : ∃l ∈ V ′
m : a(A,B) = l(B),∀B ∈ XN (Ω)},

and show that elements of such a set are divergence free.

Lemma 3.3. Any A ∈ D is divergence free in Ω.

Proof. Fix A ∈ D, then there exists l ∈ V ′
m such that

a(A,B) = l(B),∀B ∈ XN (Ω). (29)

For any f ∈ L2(Ω), we take the unique solution uf ∈ H1
0 (Ω) of

∆uf = f in Ω,
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or equivalenty the unique solution of
∫

Ω

∇uf · ∇v̄ dx = −

∫

Ω

fv̄ dx,∀v ∈ H1
0 (Ω).

By taking B = ∇uf in (29) (allowed since ∇uf ∈ XN (Ω)), we find

∫

Ω

div Af̄ dx = l(∇uf ) = 0.

Since f is arbitrary in L2(Ω), we conclude that div A = 0 in Ω.

4 Some existence results

Let us now give a first consequence of Theorem 3.1.

Theorem 4.1. Let F ∈ C1([0, T ], V ′
m) and B0 ∈ Vm, then there exists a unique solution B to

{
∂t(MB)(t) + AB(t) = F(t) in V ′

m,∀t ∈ (0, T ),
(MB)(t = 0) = MB0 in Ωc,

(30)

with the regularity MB ∈ C([0, T ], V ′
m) ∩ C1((0, T ], V ′

m), and

B(t) ∈ D,∀t ∈ (0, T ].

Furthermore one has (where 〈··〉 means the duality pairing between V ′
m and Vm)

〈∂t(MB)(·, t),Z〉 +

∫

Ω

µ−1 curl B · curl Z̄ dx = (F(t),Z),∀Z ∈ XN (Ω),∀t ∈ (0, T ), (31)

and the next estimate holds

‖B‖L2(0,T ;X0(Ω)) + ‖MB‖C([0,T ];V ′
m

) + ‖∂tMB‖L1((0,T );XN (Ω)′) . ‖F‖L2(0,T ;V ′
m

) + ‖B0‖Vm
. (32)

Proof. The existence and uniqueness result directly follows from Theorem 3.1, by taking an appropriate
extension of F in the whole [0,∞). Hence it remains to prove (31) and the estimate (32).

For that purpose, we closely follow the proof of Corollary 3.8 of [11]. As XN (Ω) ⊂ Vm, the first identity
of (30) implies that

〈∂t(MB)(·, t),Z〉 + a(B,Z) = (F(t),Z),∀Z ∈ XN (Ω),∀t ∈ (0, T ).

By Lemma 3.3 we directly arrive at (31).
To prove (32), we first take Z = B in (31), to get

1

2
∂t(MB,B) + ‖µ−1/2 curl B‖2 = (F,B).

Hence by Cauchy-Schwarz’s inequality we get

1

2
∂t(MB,B) + ‖µ−1/2 curl B‖2 ≤ ‖F‖‖B‖,

and with the estimate ‖B‖ ≤ C‖µ−1/2 curl B‖, for some C > 0 and Young’s inequality we obtain

1

2
∂t(MB,B) + ‖µ−1/2 curl B‖2 ≤

C2

2
‖F‖2 +

1

2
‖µ−1/2 curl B‖2.

This shows that
∂t(MB,B) + ‖µ−1/2 curl B‖2 ≤ C2‖F‖2.
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Integrating this estimate in t ∈ (η, u), with η, u ∈ (0, T ] arbitrary but such that η < u, we get

(MB(·, u),B(·, u)) +

∫ u

η

‖µ−1/2 curl B(·, t)‖2 dt ≤ C2

∫ u

η

‖F(·, t)‖2 dt+ (MB(·, η),B(·, η)).

Letting η tends to zero and reminding the regularity MB ∈ C([0, T ], V ′
m) (see also the estimates (28)), we

find that

(MB(·, u),B(·, u)) +

∫ u

0

‖µ−1/2 curl B(·, t)‖2 dt .

∫ T

0

‖F(·, t)‖2 dt+ ‖B0‖
2
Vm
. (33)

In a first step by taking u = T , this shows that

‖B‖L2(0,T ;X0(Ω)) . ‖F‖L2(0,T ;L2(Ω)) + ‖B0‖Vm
. (34)

In a second step, for any u ∈ (0, T ], we also have

|(MB(·, u),B(·, u))| .

∫ T

0

‖F(·, t)‖2 dt+ ‖B0‖
2
Vm

+
∣∣∣
∫ u

0

‖µ−1/2 curl B(·, t)‖2 dt
∣∣∣,

and therefore by (34)

|(MB(·, u),B(·, u))| .

∫ T

0

‖F(·, t)‖2 dt+ ‖B0‖
2
Vm
,∀u ∈ [0, T ]. (35)

It remains to estimate the last term of the left-hand side of (32).
For that purpose, we come back to (31) that can be equivalently written

〈∂t(MB)(·, t),Z〉 = −

∫

Ω

µ−1 curl B · curl Z dx+

∫

Ω

F(x, t) · Z(x) dx,∀Z ∈ XN (Ω).

Now notice that it implies

|〈∂t(MB)(·, t),Z〉| ≤
∣∣∣
∫

Ω

µ−1 curl B · curl Z dx
∣∣∣ +

∣∣∣
∫

Ω

F(x, t) · Z(x) dx
∣∣∣,∀Z ∈ XN (Ω).

Integrating this identity in t ∈ (0, T ) and applying Cauchy-Schwarz’s inequality we get

∫ T

0

|〈∂t(MB)(·, t),Z〉|dt ≤ T (‖F‖L2(0,T ;L2(Ω)) + ‖µ−1 curl B(·, t)‖L2(0,T ;L2(Ω)))‖Z‖XN (Ω),

for all Z ∈ XN (Ω). By (34), this implies that

∫ T

0

|〈∂t(MB)(·, t),Z〉|dt . (‖F‖L2(0,T ;L2(Ω)) + ‖B0‖Vm
)‖Z‖XN (Ω),

for all Z ∈ XN (Ω). This estimate leads to

‖∂t(MB)‖L1(0,T ;XN (Ω)′) . ‖F‖L2(0,T ;L2(Ω)) + ‖B0‖Vm
, (36)

due to the definition of the norm XN (Ω)′.
The proof of the estimate (49) is then complete.

Now we can prove an existence result of a strong solution to problem (9)-(13).

Theorem 4.2. Let us suppose that Js ∈ C3([0, T ], H(div = 0,Ω)) with Js,0 = Js(t = 0) satisfying the
assumptions of Theorem 2.1. Then, there exists one and only one solution (A, ϕ) ∈ H1(0, T ;X0(Ω)) ×

L2(0, T ; H̃1(Ωc)) to problem (9)-(13) with the (additional) initial condition

A(t = 0) = A0. (37)
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Proof. Assume that a solution (A, ϕ) of problem (9)-(13) exists and is sufficiently regular, then comparing
(10) and (13) with (19) and (20), we can say that ϕ = ∂tϕA, ϕA being the unique solution of (17). With
this property, problem (9)-(13) is then (formally) equivalent to

{
∂t(MA) + curl(µ−1 curl A) = Js in Ω × (0, T ),
A(t = 0) = 0 in Ωc.

(38)

Now in order to apply Theorem 3.1 (or equivalently Theorem 4.1), we need that the above right-hand
side Js is in V ′

m (in particular it should be zero in Ωe) which is not the case in physical applications. Hence
we perform an elliptic lifting, namely for all t ∈ [0, T ], we consider the unique solution Lj(t) ∈ X0(Ω) of

{
curl(µ−1 curl Lj(t)) = Js(t) in Ω,
Lj(t) × n = 0 on ∂Ω,

(39)

or in a weak form ∫

Ω

µ−1 curl Lj(t) · curl W̄ dx =

∫

Ω

Js(t) · W̄ dx,∀W ∈ X0(Ω). (40)

This last problem has a unique solution due to Lax-Milgram lemma. Now any W ∈ XN (Ω) can be written
in the form

W = W0 + ∇ψ,

with ψ ∈ H1
0 (Ω) and W0 ∈ X0(Ω) and since

∫

Ω

Js · ∇ψ dx = 0,∀ψ ∈ H1
0 (Ω),

(40) implies that ∫

Ω

µ−1 curl Lj · curl W̄ dx =

∫

Ω

Js · W̄ dx,∀W ∈ XN (Ω), (41)

and therefore the unique solution Lj ∈ X0(Ω) of (40) is a solution of (39).
¿From (40), we also have

‖Lj‖X0(Ω) . ‖Js‖L2(Ω)3 .

Furthermore due to this estimate, if Js ∈ Ck([0, T ], H(div = 0,Ω)), for some k ∈ N, then Lj will be in
Ck([0, T ], X0(Ω)) with

‖Lj‖Ck([0,T ],X0(Ω)) . ‖Js‖Ck([0,T ],H(div =0,Ω)). (42)

At this stage, by setting
B = A − Lj ,

we arrive at the problem

{
∂tMB + curl(µ−1 curl B) = −∂tMLj in Ω,
B(t = 0) = −Lj(t = 0) in Ωc.

(43)

Now as Js ∈ C2([0, T ], H(div = 0,Ω)), MLj ∈ C2([0, T ), V ′
m) (because the range of M is exactly V ′

m).
Hence applying Theorem 4.1, we find a unique (strong) solution of

{
∂t(MB) + AB = −∂tMLj in V ′

m, t ∈ (0, T ],
(MB)(t = 0) = −MLj(t = 0) in Ωc,

(44)

with the regularity MB ∈ C([0, T ], V ′
m) ∩ C1((0, T ], V ′

m), and

B(t) ∈ D,∀t ∈ (0, T ].

Furthermore for any t > 0 we have

〈∂t(MB)(·, t),Z〉 +

∫

Ω

µ−1 curl B · curl Z̄ dx = −(∂t(MLj)(·, t), Z̄),∀Z ∈ XN (Ω). (45)
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Now in order to come back to the original problem, we need more regularity for B in order that

∂t(MB) = M∂tB.

This is the reason of the assumptions on Js ∈ C3([0, T ], H(div = 0,Ω)) and on Js(t = 0) that imply
MLj ∈ C3([0, T ), V ′

m) with M(∂tLj)(t = 0) = ∂t(MLj)(t = 0), as well as Js,01Ωc
= Mθ, for some θ ∈ Vm.

Hence again by applying Theorem 4.1, we find a unique (strong) solution of

{
∂t(MC) + AC = −∂2

t MLj in V ′
m, t ∈ (0, T ],

(MC)(t = 0) = −∂tMLj(t = 0) + Js,01Ωc
in Ωc,

(46)

with the regularity MC ∈ C([0, T ], V ′
m) ∩ C1((0, T ], V ′

m), and

C(t) ∈ D,∀t ∈ (0, T ].

Now we define a primitive of C by

P(t) =

∫ t

0

C(s) ds− Lj(t = 0) + A0,

that has a meaning due to (32).
Integrating the first identity of (46) between 0 and t (meaningful due to (32)), we find that

MC + AP = −∂tMLj in V ′
m,

reminding that AA0 = Js,01Ωe
. But the estimate (32) implies that MP belongs C1(0, T ], V ′

m) and

∂tMP = MC.

Hence we have find that
∂t(MP) + AP = −∂tMLj in V ′

m.

As P(t = 0) = −Lj(t = 0) + A0 and as A0 = 0 in Ωc, we obtain that MP(t = 0) = −MLj(t = 0). In
conclusion we see that P is solution of the same problem as B and therefore by the uniqueness of the solution
of (44) we find that

B = P.

This also guarantees that B is differentiable and by the estimate (32) that

∂tB = C ∈ L2(0, T ;X0(Ω)).

Hence we can consider ∇ϕ∂tB
and by the estimate (18), we get

∇ϕ∂tB
= ∂t∇ϕB.

Once the existence and regularity of B are guaranteed, we can set A = B + Lj that satisfies MA ∈
C([0, T ], V ′

m) ∩ C1([0, T ], V ′
m) (as ∂t(MA) = M(∂tA) = M(C − ∂tLj)), and

A(t) ∈ X0(Ω),∀t ∈ (0, T ].

Notice that A satifies the initial condition (37) because A(t = 0) = P(t = 0) + Lj(t = 0). ¿From (41) and
(45), it also satisfies

〈∂t(MA)(·, t),Z〉 +

∫

Ω

µ−1 curl A(t) · curl Z̄ dx =

∫

Ω

Js(x, t) · Z(x) dx,∀Z ∈ XN (Ω),∀t ∈ (0, T ). (47)

Finally as A is differentiable with

∂t(MA) = M(∂tA) = σ(∂tA −∇ϕ∂tA
),
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(47) becomes

∫

Ωc

(M∂tA)(x, t) · Z̄(x) dx+

∫

Ω

µ−1 curl A · curl Z̄ dx =

∫

Ω

Js(x, t) · Z̄(x) dx,∀Z ∈ XN (Ω),

and by (25) we get

(µ−1 curl A, curl A′ )Ω + (M∂tA, A
′ + ∇ϕ′ )Ωc

= ( Js, A
′ )Ω,∀ A′ ∈ XN (Ω) , ϕ′ ∈ H1(Ωc). (48)

This proves that the pair (A, ϕ∂tA
) is solution of (9)-(13) by taking different tests functions, namely (A′, 0)

with A′ ∈ D(Ω)3, (0, ϕ) with ϕ ∈ D(Ωc) and finally (0, ϕ) with ϕ ∈ C∞(Ω̄c).
Note also that (48) implies that (14) holds.

For the existence of weak solutions, we first keep smooth Js and prove the next a priori estimates.

Lemma 4.3. Under the assumptions of Theorem 4.2, it holds

‖A‖L2(0,T ;X0(Ω)) + ‖MA‖C([0,T ];V ′
m

) + ‖∂tMA‖L1((0,T );XN (Ω)′) . ‖Js‖L2(0,T ;L2(Ω)3), (49)

‖∂tA‖L2(0,T ;X0(Ω)) + ‖M∂tA‖C([0,T ];V ′
m

) . ‖Js‖H1(0,T ;L2(Ω)3) + ‖θ‖Vm
, (50)

where θ ∈ Vm is such that Js,01Ωc
= Mθ.

Proof. The proof of the first estimate is exactly the same as the one of the estimate (32) by using (47) instead
of (31).

The proof of (50) is similar by noticing that ∂tA is solution of

{
∂t(M∂tA) + curl(µ−1 curl ∂tA) = ∂tJs in Ω,
M∂tA(t = 0) = Mθ in Ωc.

We are ready to prove our main result.

Proof. of Theorem 2.1.
For Js ∈ H1((0, T );H(div = 0,Ω)), we can consider

J̃s = Js − Js,0,

that is still in H1((0, T );H(div = 0,Ω)) but is zero at t = 0. Hence there exists a sequence J̃
(n)

s ∈
C∞

l ([0, T ];H(div = 0,Ω)) = {F ∈ C∞([0, T ];H(div = 0,Ω)) : F = 0 in a neighbourhood of t = 0}
such that

J̃
(n)

s → J̃s in H1((0, T );H(div = 0,Ω)) as n→ ∞.

Setting

J(n)
s = J̃

(n)

s + Js,0

we get a sequence in C∞([0, T ];H(div = 0,Ω)) satisfying the assumptions of Theorem 4.2 and such that

J(n)
s → Js in H1((0, T );H(div = 0,Ω)) as n→ ∞.

Hence by the previous arguments, for all n there exists a (strong) solution An of

(µ−1 curl An, curl A′ )Ω + (M∂tAn, A
′ + ∇ϕ′ )Ωc

= ( J(n)
s , A′ )Ω,∀ A′ ∈ XN (Ω) , ϕ′ ∈ H̃1(Ωc), (51)

that satisfies the a priori estimate (owing to (49) and (50)):

‖An − Am‖H1(0,T ;X0(Ω)) + ‖M∂t(An − Am)‖C([0,T ];V ′
m

) . ‖J(n)
s − J(m)

s ‖H1(0,T ;L2(Ω)3),
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for all n,m. Hence there exist A ∈ H1(0, T ;X0(Ω)) and Θ ∈ C([0, T ];V ′
m) such that

An → A in H1(0, T ;X0(Ω)) as n→ ∞, (52)

M∂tAn → Θ in C([0, T ];V ′
m), as n→ ∞. (53)

These two properties imply that

σ(∂tA + ∇ϕ∂tA
) = Θ. (54)

Indeed (52) directly implies that

∂tAn → ∂tA in L2(0, T ;X0(Ω)). (55)

Hence
σ(∂tAn + ∇ϕ∂tAn

) → σ(∂tA + ∇ϕ∂tA
) in L2(0, T ;V ′

m),

hence (54) holds.
The conclusion now follows by taking the limit in (51) and setting ϕ = ϕ∂tA

.

Let us finish this paper by showing that the test functions in (14) can be ungauged.

Theorem 4.4. If Js ∈ H1((0, T );H(div = 0,Ω)), then any solution (A, ϕ) ∈ H1(0, T ;X0(Ω))×L2(0, T ; H̃1(Ωc))
of (14) also satifies

(µ−1 curl A, curl A
′ ) + (σ (∂tA + ∇ϕ), A′ + ∇ϕ′ )Ωc

= (Js, A
′ ),∀(A′, ϕ′) ∈ X(Ω) × H̃1(Ωc). (56)

Proof. In (14), we first take A′ ≡ 0 to deduce that

(σ (∂tA + ∇ϕ), ∇ϕ′ )Ωc
= 0,∀ϕ′ ∈ H1(Ωc).

In a second step taking any ψ ∈ H1
0 (Ω), as Js is divergence free we get

(σ (∂tA + ∇ϕ), ∇ψ )Ωc
= ( Js, ∇ψ ).

We conclude by using the Helmholtz decomposition of A′ ∈ X(Ω) into A′ = B′ + ∇ψ with ψ ∈ H1
0 (Ω) and

B′ ∈ X0(Ω).
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[1] A. Alonso Rodŕıguez, R. Hiptmair, and A. Valli. A hybrid formulation of eddy current problems. Numer.
Methods Partial Differential Equations, 21(4):742–763, 2005.
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[5] F. Bachinger, U. Langer, and J. Schöberl. Numerical analysis of nonlinear multiharmonic eddy current
problems. Numer. Math., 100(4):593–616, 2005.
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