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Chapter 8

Robot Cooperation and Swarm
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Cherfaoui1

1 Heudiasyc Lab., UMR CNRS 7253, Compiègne, France,
2DEIS, Universitá della Calabria, Italy

Abstract. This chapter is devoted to illustrate and characterize the

relationship between Swarm Intelligence and cooperation among robots. In-

dividuals with very limited computational capabilities are able to carry out

very complex tasks when they can work together. From a methodological

point of view, Swarm Intelligence is a set of heuristic solutions inspired by

animal swarm behaviors and capable to offer empirical solutions to many

computationally hard problems pertaining to several disciplines. In this

chapter, we will try to outline the main research directions in Swarm Intelli-

gence implementation within a robot network through the cooperation among

the robots. The latter topic will be presented along with its advantages,

issues and challenges. The convergence of robot cooperation and Swarm

Intelligence is leading towards a new discipline, called Swarm Robotics. In

this chapter, we will introduce this new field of study, its most relevant

works and its main research directions.

8.1 Introduction

Swarm Intelligence is a powerful concept that pivots around the coopera-

tion among the members of a community towards a common goal. From

a methodological point of view, Swarm Intelligence is a set of heuristic so-

lutions inspired by animal swarm behaviors and capable to offer empirical

solutions to many computationally hard problems pertaining to several dis-
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ciplines. In this chapter, we will focus on the relationship between Swarm

Intelligence and cooperation among robots. We will start presenting Swarm

Intelligence, its biological principles and the mechanisms that underlie col-

lective behaviors, the most important Swarm Intelligence heuristics and

their classical applications. After this introduction, we will survey the state

of the art on cooperation among robots in order to present advantages, is-

sues and challenges of this research field. Finally, we will try to bridge

swarm intelligence and cooperation among robots towards the description

of a very recent discipline: Swarm Robotics, of which we will show existing

taxonomies and applications.

8.2 Swarm Intelligence

The word “swarm” evokes the image of a large number of small insects

where each individual performs a simple task, but whose action produces

a complex behavior as a whole [39]. The emergence of such a complex

behavior extends beyond the swarms. Complex social structures are simi-

lar in bigger animals as well as other types of insects. Some examples are

colonies of ants and termites, flocks of birds, schools of fish, colonies of

bacteria, or even herds of terrestrial animals. Swarms are defined as collec-

tions of many simple individuals that interact with both other individuals

and the surrounding environment [60]. The combination of their simple or

microscopic behaviors causes considerably more complex and macroscopic

actions, which enable the whole system to achieve remarkable results as a

whole.

The term Swarm Intelligence was introduced for the first time by Ger-

ardo Beni and Jing Wang in 1989 [9]. The Swarm Intelligence studies the

collective behavior of systems composed of many individuals who interact

locally with each other and with the surrounding environment, using forms

of decentralized and self-organized control to achieve their objectives.

Therefore, the Swarm Intelligence provides a new framework for the

design and implementation of systems consisting of many agents that are

able to cooperate in order to solve highly complex problems. The potential

benefits of such approach are several:

• robustness: the failure of individual elements does not degrade signifi-

cantly the performance of the entire system;

• simplicity: the individual behavior is simple but still it allows to reduce

the complexity of individuals;
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• scalability: the control mechanisms used do not depend on the agents

number within a swarm.

8.2.1 Biological principles for swarm intelligence

The Swarm Intelligence comes from biological insights related to the enor-

mous capabilities that social insects possess to solve daily-life problems

within their colonies. Insects belong to two families: the most ancient is

the “Isoptera” (termites) entirely social, the second is the Hymenoptera,

which includes ants, wasps, bees and also presents social structures. These

insects, even if they belong to two distinct families, which are very far from

each other in evolution, share three important characteristics:

(1) individuals of the same species cooperate in the care for the young ones;

(2) individuals share the reproductive division of labor, sterile individuals

work for the benefit of fertile individuals;

(3) an overlap of at least two generations exists, so that the offspring can

help parents to carry out the tasks necessary to the life of the colony.

On the basis of these three characteristics, the entomologists distinguish

the true sociability, or eusociality, from behaviors that do not present all

the three listed characteristics, and for this reason are defined pre-social. In

what follows, we will analyze the main biological principles that govern the

organization in the colony of insects, that is the mechanisms which give rise

to complex collective behavior of social insects, the concept of stigmergy

and the theory of self-organization in biological systems. After this, we will

introduce the main metaheuristics of Swarm Intelligence.

Ants, wasps and termites are able to build sophisticated nests in coop-

eration, even if none of the individuals have an exact plan of how to proceed

and no coordinator exists [11]. Another example is taken from the behavior

of ants and bees during the search for food. The ants employ a strategy of

indirect communication through the release of a chemical substance, called

pheromone, in order to identify the shortest paths between nest and food

sources (Fig. 8.1);

Bees are very efficient in finding the richest sources of food by using some

explorers that communicate the information about newly-found sources of

food by a waggle dance (so-called for the vibrations generated from the

abdomen of the bees while flying) (Fig. 8.2).

An African species of termites, the Macrotermes bellicosus, builds

mounds that can reach 30 m of diameter and 6 m of height [70] (Fig. 8.3).
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Fig. 8.1 A group of ants following a pheromone trail.

Fig. 8.2 Bees’ waggle dance.

These “skyscrapers” are the result of the biological work of millions of tiny

individuals (1-2 mm long), which are completely blind. Even more fasci-

nating than the size of these mounds is their internal structure.

The nests of the species Apicotermes lamani are probably one of the

most complex structures ever built in the animal kingdom. The hive is a

highly complex structure, high around 20 to 40 cm. On the outer surface

there are a series of micro-structures which provide the air-conditioning and

gas exchange with the external environment, while inside the hive, rooms

are concatenated to each other by means of helical ramps. These spiral

ramps are born from the twisting and welding of consecutive floors. There
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Fig. 8.3 Mound built by Macrotermes bellicosus.

are different stairs on each floor and some of them cross the entire nest.

Hence, even the most distant rooms are connected by these shortcuts. The

complexity of these structures and the collective behavior do not reflect

the relative simplicity of the individual behavior of a single insect. Of

course, insects are complex entities, able to adapt their behavior according

to many sensor inputs. However, the complexity of a single insect in terms

of cognitive or communicative skills may be high according to an absolute

perception, but it is not sufficient to control a large system and explain

the complexity of all the behaviors that govern a colony [73]. In essence, a

single insect is not able to find an efficient solution by itself to a problem of

the colony, while the group to which it belongs manages to find, as a whole,

a solution very easily. Behind this organization with no boss, there are

several hidden mechanisms that enable groups of insects, whose members

have to deal only with partial information about their surroundings, to face

random situations and find solutions to complex problems.

8.2.1.1 Mechanisms for collective behavior

The study of the mechanisms that underlie the collective behavior of in-

sects started more than a century ago. Initially, in order to justify the

complexity of these behaviors, it was assumed that the individual insects

possessed a minimum knowledge of the overall structure that needed to be

produced and that, accordingly, they were able to make the appropriate de-

cisions. In other words, it was thought that there was a causal relationship

between the complexity of decisions, the patterns observed at the level of

the colony, and the behavioral and cognitive complexity that was supposed

to be required at the individual level to make these decisions and models.

Therefore, it was assumed that the model which governed those companies
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was hierarchical and centralized. However, most of the research done in

recent years, has revealed a completely different organization. Today, we

know that the individual insects do not require representation, schema, or

explicit knowledge of global structure they produce. A single insect is not

able to evaluate the global situation to centralize the information about

the state of the entire colony and later to control the tasks that need to

be made by other workers. There is no supervisor in these colonies. A

colony of social insects is quite similar to a decentralized system composed

of autonomous units that are distributed in the environment, and could be

described by simple probabilistic cause-effect behaviors [70].

The principles that underlie the interactions between insects are carried

out through local information of a global model. Each insect follows a set

of few rules. For example, the ants can perform, on average, approximately

20 different elementary behaviors. At the colony level, the organization

emerges from the interactions that occur among individuals who show these

simple behaviors. These interactions ensure the propagation of information

within the colony and also organize the activity of each individual. With

these sophisticated networks of interactions, social insects can solve a wide

range of problems and respond to external challenges in a very flexible and

robust way.

8.2.1.2 Stigmergy

The first scientific explanation of activities organization of social insects

was given 40 years ago by the French biologist Pierre-Paul Grasse, who

introduced the concept of stigmergy to explain some of his observations on

the behavior of termites in the construction of termite mounds [70]. The

self-organization of social insects requires interactions among themselves.

This interaction may be direct or indirect. Direct interactions are obvi-

ous: sight contact and/or chemical; whereas indirect interactions are more

subtle: two individuals interact indirectly when one of them modifies the en-

vironment and the other responds accordingly to the new environment [29].

This interaction is an example of stigmergy. This term, which comes from

the greek words “stigma” that means sign and “ergon” that means work

(led by stimuli), is a form of indirect communication in which each in-

dividual acts on the surrounding environment and other individuals that

detect some changes in the environment react to the stimulus. Since the

overhead of communications does not increase when the size of the group

increases, the stigmergy allows great scalability. It should be noted that
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the stigmergy in itself does not explain how the communication takes place

indirectly, but only provides a general mechanism that relates the behavior

of the individual to the level of the colony. In his studies, Grasse showed

that the coordination and regulation of activities of a colony did not depend

on the workers, but they were mainly driven by the nest. In other words,

the information coming from the local environment and the progress of the

work can drive the individual activity. Each time that a worker performs

an action, this action results in a modification of the local configuration.

The new configuration will affect other subsequent actions and behaviors

of the other workers in the colony. This process leads to an almost perfect

coordination of collective labor and may give us the impression that the

colony is following a definite plan.

A good example of stigmergic behavior is the search for food of the ants.

The ants communicate with each other through the use of pheromones,

chemicals that attract other ants. When an ant finds a source of food, it

quickly returns to the nest and releases a pheromone trail. This trail will

then lead the others from the nest to the food source. While returning to

the nest, the ants release their pheromones along the path, thus reinforcing

the trail. The formation of the trail therefore derives from a positive feed-

back: the greater the number of ants that follow the path, the more the

path will become attractive and appealing. Of course, the trail will disap-

pear after a while, if the reinforcement is too weak, and this may happen

when the food source is exhausted. The interesting thing is that this system

of maintenance of the trail is not only a mechanism used to quickly gather

a large number of purveyors around the source of food, but it also allows

the colony to take efficient decisions such as the choice of the shortest path

that leads to the source of food. From this description, other properties

characterizing the stigmergy have emerged. In fact, stigmergy affects the

overall behavior of the population by two key elements of self-organization

that have already been implicitly introduced: the positive feedback and its

dual, the negative feedback. The positive feedback is the phenomenon by

which the marks on the environment, deployed by individuals, encourage

other members to release additional marks in the same place, making the

population converge toward the reinforcement of the solution. The negative

feedback is the opposite phenomenon, i.e., areas marked weakly tend to be

overlooked by the individuals of the population, leading to the impoverish-

ment of the solution. Another property is that the emerged stigmergy is

a form of communication limited in time, i.e., the changes on the environ-

ment vanish over some time. For example, the pheromone released by ants
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evaporates with time, therefore, it is necessary to operate the reinforcement

of the path to keep it alive.

8.2.1.3 Principles of self-organization

Self-organization is a set of dynamic mechanisms by means of which the

structure of a system appears at the global level as a set of interactions of

its components at the local level. It has four basic components: the positive

feedback that derives from the execution of simple behavioral rules that sup-

port the creation of structures; the negative feedback that counteracts the

positive feedback and leads to the stabilization of the collective behavior;

the amplification of fluctuations through the positive feedback; direct and

multiple interactions or stigmergic interactions among individuals to pro-

duce deterministic results and the appearance of large-scale durable struc-

tures. In addition to the components described so far, the self-organization

is also characterized by some key properties:

(1) Self-organizing systems are dynamic. As mentioned previously, the

production of structures, as well as their persistence, requires constant

interactions among the permanent members of the colony and their

surroundings.

(2) Self-organizing systems exhibit emerging properties. They show more

complex properties of the single contribution of each individual. These

properties arise from a combination of non-linear interactions between

the members of the colony.

(3) Together with emergent properties, nonlinear interactions lead self-

organized systems to bifurcations. A bifurcation is the appearance

of new stable solutions when there is a change of the parameters of

the system. This corresponds to a qualitative change in the collective

behavior.

(4) Finally, the self-organizing systems can be multi-stable. Multi-stability

means that, for a given set of parameters, the system is able to achieve

different stable states that depend on the initial conditions and random

fluctuations.

8.2.1.4 Collective behaviors

The processes of self-organization described above may produce a wide

variety of collective behaviors that are intended for the resolution of a given

problem. In their studies, Camazine et al. [15] have proposed to categorize
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social behaviors of a colony of insects, according to four types of tasks:

individual, group, team and shared tasks. Following this categorization,

each global task in the colony (e.g., nest building) can be hierarchically

split into sub-tasks belonging to any of the mentioned types. This method

can be seen as the decomposition of a problem into simpler tasks, which

are essential for the resolution of the problem. Another way to characterize

social insects collective behavior consists in defining specific functions to

describe insects’ tasks. It is possible to identify four main categories of

functions: coordination, cooperation, evaluation and collaboration. These

categories are not mutually exclusive and they contribute together to the

fulfillment of the various collective tasks of the colony. Below, we provide

a first definition of each of these functions and subsequently explain their

respective roles in some examples of collective behavior of social insects.

Coordination. Coordination is the appropriate organization in space

and in time of all the tasks necessary to solve a specific problem. This

leads to specific spatio-temporal distributions of individuals, of their activ-

ities and/or outcomes of their activities, in order to achieve a certain goal.

For example, the coordination occurs in the organization of the movement

of swarms of bees and locusts. In this case, the interactions between in-

dividuals generate synchronized movements (temporal organization) and

oriented (spatial organization) of individuals towards a specific goal.

Cooperation. The cooperation is a phenomenon that occurs when a

task can not be performed by a single individual but requires a set of them.

Therefore, individuals must combine their efforts in order to successfully

solve a problem that goes far beyond their individual capabilities. For

example, cooperation is required from ants to remove a long wooden stick

that obstructs the entrance of their nest. In this situation, the ants combine

their efforts to pull the stick away from the hole. Some ants raise the stick

while others put their head inside the entrance in order to avoid that the

stick can fall back inside. In the end, the combined efforts lead the group to

remove the stick. The function of cooperation represents the mechanisms

that go beyond the limitations of individuals.

Evaluation. The term evaluation refers to the mechanisms that occur

when a colony is faced with several opportunities. These mechanisms are

the result of a collective choice of at least one of opportunity. For example,

when the ants Lasius niger find different food sources, or different routes

that lead to one food source, they generally choose only one among the var-

ious possibilities. The evaluation is usually guided by competition between

the chemical trails that underlie each possibility. In most cases, the ants

will end up choosing the richest food source reach via the shortest path.
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Collaboration. With the term collaboration we mean the various activi-

ties which are carried out simultaneously by a group of specialized individ-

uals. This specialization stems from both a behavioral and morphological

differentiation of individuals. The most striking expression of this division

of labor is the existence of castes. For example, the workers in a colony of

ants that shred the leaves may belong to four different castes and their size

is closely related to the tasks they perform. Only the workers who have

a head size greater than 1.6 mm are able to shred the leaves, which are

used to grow fungi that are the primary source of food for these colonies.

Conversely, only the worker ants that have a smaller head size of about 0.5

mm are able to take care of fungi cultivation.

Most of the organization of the collective behavior of social insects can

be seen as the combination of the four functions of coordination, coop-

eration, evaluation and collaboration. Each of these functions emerge at

the collective level by the continuous interactions among insects. Together,

the four functions of organization produce solutions to the problems of

the colony and could give the impression that the colony act as a whole,

planning the work to achieve the colony’s goals.

8.2.2 Main meta-heuristics of swarm intelligence

The main disadvantage present in the algorithms that rely on constructive

methods or iterative improvements is that they generate only a limited

number of solutions [26]. In order to try to solve these problems, it is

possible to use metaheuristics. The term metaheuristic comes from two

Greek words: heuristic derives from the verb heuriskein, i.e., search, while

the suffix meta means beyond to a higher level [11]. A metaheuristic is a

heuristic method, i.e., a general algorithm or a set of algorithmic concepts

applicable to a diverse number of optimization problems that, with slight

modifications, can be adapted to describe a specific problem. Below we will

explain the most popular Swarm intelligence metaheuristics.

8.2.2.1 Ant colony optimization

Ant colony optimization (ACO) is a metaheuristic within which a colony

of artificial ants cooperate in order to obtain good solutions to difficult dis-

crete optimization problems. Cooperation is the key component of ACO

algorithms. In fact these algorithms allocate computational resources to a

number of relatively simple agents (artificial ants) that communicate indi-
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rectly through the stigmergy [26]. ACO algorithms can be used to solve

combinatorial optimization problems, both static and dynamic. The static

problems are those in which the characteristics of the problem are known

a priori, when the problem is defined, and do not change during the res-

olution of the problem. A classic example is the TSP (traveling salesman

problem), where cities and the distances among cities are part of the def-

inition of problem and do not change during the execution time of the

algorithm. The dynamic problems are defined as functions of a number

of quantities, the values of which are set by the dynamics of the problem.

The instance of the problem therefore changes at the execution time and,

therefore, the optimization algorithm must be able to adapt to a changing

environment. An example of a dynamic problem can be identified in the

routing problems in networks, in which the data traffic and network topol-

ogy may change very frequently.

Description.

An artificial ant is a constructive and stochastic process that incrementally

builds a solution by adding appropriate components to the partial solution.

Therefore, the ACO metaheuristic can be applied to some combinatorial

optimization problems, for this reason, it can be defined as a constructive

heuristic. If we consider an optimization problem (S, f,Ω), where S is a set

of possible solutions, f is the objective function that assigns a cost to each

candidate solution s belonging to the set S, and Ω(t) is a set of conditions

to satisfy. The parameter t indicates that the objective function and the

conditions imposed are both functions of time. The goal is to find a globally

optimal solution s∗, that is a possible solution at minimal cost. From this,

the ants develop artificial solutions of performing random paths on a fully

connected graphGc = (C,L), called construction graph with L connections.

In many applications, the ants construct feasible solutions, even if, in some

cases, it is necessary to allow them to construct improbable solutions. For

example, a component ci ∈ C and a connection li ∈ L may be associated

with a trace of pheromone ⌧ (⌧i if the trace is associated only to a compo-

nent, ⌧ij if it is associated also to a connection), and a heuristic value µ (µi

and µij , respectively). The pheromone trace encodes a long-term memory

of the entire process, and it is updated by the ants themselves. Instead,

the heuristic value, often called heuristic information, is an input given a

priori information and based on the current problem instance, or otherwise

it is a run-time input provided by the ants through different sources. In

many cases, µ represents a cost, or at least an estimate of the cost of adding
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components or connections to the solution under certain conditions. The

heuristic values are used into ants in order to make decisions on how to

navigate the probabilistic graph. It is important to note that the ants act

simultaneously and independently of each other. Even if it is very com-

plex for each single ant to find a solution to the proposed problem, good

quality solutions can still be obtained as a result of a collective cooperation

among the ants. All this is obtained through an indirect communication

represented by the traces of pheromone. In more specific terms it can be

said that an ACO algorithm can be represented through a combination of

three different procedures: Construct Ants Solutions, Update Pheromones,

and Daemon Actions.

Construct Ants Solutions manages a colony of ants concurrently and

asynchronously in the search for adjacent states of a given problem, mov-

ing through neighboring nodes of the problem graph Gc. They move by

applying a stochastic and local policy decision, which is based on the use of

pheromone trace and heuristic information. In this way, the ants are able

to search for the solution to the optimization problem in an incremental

manner. As soon as an ant has found a solution, or while the solution is

to be added, the ant evaluates the (partial) solution that will be used dur-

ing the following procedure Update Pheromones to determine how much

pheromone must be deposited.

Update Pheromones is the process by which the traces of pheromone

are updated. The importance of the path can both increase, by deposit-

ing pheromone on the components and the connections use, or decrease

due to the evaporation of the pheromone itself. From the practical point

of view, the deposit of new pheromone increases the likelihood that these

components/connections are used again by ants future. Otherwise, the

evaporation of the pheromone realizes a form of forgetfulness, in order to

avoid a too rapid convergence of the algorithm towards a sub-optimal re-

gion. Therefore, it promotes the exploration of a new area within the search

space.

Finally there is Daemon Actions, a procedure used to implement cen-

tralized actions that cannot be performed by the individual ants. Examples

of such procedure are the activation of a local optimization procedure, or

the collection of global information that can be used to decide whether it

is useful or not to deposit additional pheromone, in order to influence the

research process considering a non-local perspective. As a practical exam-

ple, the daemon can observe the path found by each ant in the colony and

select one or more ants, which can thereafter afford to deposit of additional

pheromone on components or connections they have been using.
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Applications.

ACO metaheuristic finds application in most of the cases located problems

in combinatorial optimization. The most classical problem of this type is

the the Traveling Salesman Problem (TSP) [59]. It is a problem of a sales-

man that, starting from her home city, is looking for the possible shortest

paths within a given set of customer cities, visiting each city at least once

before returning home. The TSP can be represented by a weighted and

complete graph. TSP is a problem based on finding the shortest Hamil-

tonian path length in the graph, where the Hamiltonian path is a closed

path that passes through each node of the graph exactly once. The trace of

pheromone ⌧ij in the TSP refers to the desire to visit node j directly after

passing through the node i. The heuristic information µij is typically in-

versely proportional to the distance between two cities i and j, µij = 1/dij .

Each ant is initially placed on a random city and at each step it adds in its

path a city that was not yet visited, The construction of the solution ends

when all cities have been visited. Therefore, TSP is a NP-hard combinato-

rial optimization problem that attracted a lot of research. The TSP has a

central role in ACO problems, in fact it has been used for Ant System, the

first ACO algorithm.

8.2.2.2 Particle Swarm Optimization

The Particle Swarm Optimization (PSO) algorithm is defined as a

population-based algorithm characterized by a set of candidate solutions,

where each solution is “a particle” moving in a search space [37]. The

PSO was introduced for the first time in 1995 by Kennedy and Eberhart,

whose objective was to introduce a new methodology in the computational

intelligence [46]. This technique uses simple analogies with social interac-

tions, rather than purely individual cognitive skills [67]. The roots of this

metaheuristic bring back to ideas and techniques investigated for computer

graphics and social psychology. In the field of computer graphics, the first

work that proposed a PSO algorithm can be traced in the work of Reeves

(1983), who proposed particle systems to model dynamic objects that could

not be easily represented by polygons and surfaces (fire, smoke, water and

clouds). The social psychology, in particular the theory of dynamic social

impact, was another source of inspiration for the development of the first

PSO algorithm. The principle that governs the movement of a particle in

a search space of a problem can also be compared with a model of human

social behavior, in which individuals adapt their behaviors to satisfy those
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of their peers. In PSO, simple entities, called particles, are located in an

area of research of a specific problem or function, and evaluate a fitness

function in their current location. This fitness function is based on a more

important and generic function that characterizes the behavior of the en-

tire swarm, called the objective function. Each particle can determine the

displacement within the search space by combining some aspects of the

its best position history with those of one or more members of the swarm

through some random perturbations. Next iteration takes place when there

is an update of all the particles. Each individual particle in the swarm is

characterized by three-dimensional vectors D, where D represents the size

of the search space and it is associated with the following values:

• current position, xi,

• best past position, pi,

• particle speed, vi.

The current position xi can be seen as a point in the space. At each

iteration of the algorithm, the current position is considered as a solution

to the problem. If the location is the best obtained up to that point, its

coordinates are loaded into the vector pi. The value of the best result can

be loaded in a variable named pbesti in order to perform a comparison with

the results that will be obtained from subsequent iterations. The goal is

to preserve the best position achieved and load it in In the PSO, the sin-

gle particle itself has no power to resolve the problem: the progress occurs

only when a particle interacts with the other. In the process of particle

swarm optimization, the velocity of each particle is updated iteratively in

such a way that the particles oscillate stochastically around the value of pi.

PSO attracted a lot of attention and several different versions have been

presented over the years, interested readers can refer to [30] for a survey.

Population dynamics: Algorithm

(1) Initialize an array of particles with random positions and velocities on

a D-dimensional area of research.

(2) Loop

(3) For each particle, evaluate the fitness function.

(4) Compare the fitness function of the particle with its value pbesti , if

the current value is better than the value in variable pbesti , assign the

current value to pbesti and put pi equal to the current position xi.

(5) Individuate the particle in the population that has obtained the best
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fitness function and assign its position to a variable pg.

(6) Change the speed and the position of the particle in accordance with

the following equations:

~vi ← ~vi + ~U(0, φ1)⊗ (~pi − ~xi) + ~U(0, φ2)⊗ ( ~pg − ~xi) (8.1)

~xi ← ~xi + ~vi (8.2)

where ~U(0, φi) is a random matrix of numbers uniformly distributed

between [0,φi], which is randomly generated at each iteration and for

each particle.

(7) If the criterion is met (usually a threshold value of the fitness function

or a maximum number of iterations), exit the loop.

Population dynamics: Parameters definition

A small, but not insignificant, advantage of PSO is given by the relatively

small number of parameters to be set. A fundamental parameter is the

population size, this parameter is set in an empirical way on the basis of

the size and perceived difficulty of the problem. The parameters φ1 and

φ2 determine the relative magnitudes of random forces in the direction of

the best particle ~φi and of the best neighborhood ~φg, and are often called

acceleration coefficients. The behavior of the PSO can change with the

values of φ1 and φ2. Interestingly, the components ~U(0, φ1)⊗ (~pi − ~xi) and
~U(0, φ2)⊗( ~pg− ~xi) can be interpreted as attractive forces. When we change

φ1 and φ2, we can get a PSO more reactive but possibly unstable, in which

the velocity of the particles increases without any control.

Applications

The first practical application of the PSO was in the field of neural net-

works, which was presented with the same algorithm. Many other appli-

cation areas have been explored since then, including telecommunications,

control, data mining, design, combinatorial optimization, signal processing,

and many others. Although the PSO has been used mainly to troubleshoot

problems with a single goal and without constraints, PSO algorithms have

been developed to solve problems with constraints, multi-objective opti-

mization problems, problems with dynamic changes of the landscape, and

multiple solutions. For a survey on PSO applications, interested readers

can refer to [3].
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8.2.2.3 Stochastic diffusion search

The Stochastic Diffusion Search (SDS), which was introduced by Bishop in

1989, is a research technique that uses a diffusion process to find the best fit

of a given model within an area of research [10]. It is a well-characterized,

robust, and global metaheuristic of the family of Swarm Intelligence, able to

efficiently solve problems of research and optimization through composite

structures. The SDS uses a form of direct communication between the

agents, in a manner more akin to the tandem calling mechanism used by a

particular ant species called Leptothorax acervorum. SDS is an algorithm

for matching of a model based on a population of agents. Each agent takes

care of the information related to the area of research in order to identify

the best solution for a given model objective. The research space and the

target model require to be split into micro features through a predefined

set or alphabetical order [58].

Description of the algorithm SDS In general, the SDS can be easily

applied to optimization problems, in which the objective function is de-

composable into elements that can be assessed independently. To locate

the optimal solutions for a given function objective, SDS employs a set of

n agents, each of which stores a hypothesis xi, in the range of optimal solu-

tions. An iteration of the SDS algorithm involves testing and spread until

one of the agents of the swarm does not converge to an excellent hypothesis.

The agents in the SDS cooperate in a synchronous manner and appear to

be subject to the steps explained below:

Algorithm 8.1 Standard SDS algorithm

Initialization;

repeat

Test;

Diffusion;

until (Termination criterium)

The first step sets the initial hypothesis of each agent. Generally, its

value is selected randomly and uniformly within the search space. However,

any information about the probable solutions available a priori, can be

useful in the setting of assumptions. Then, each agent randomly selects

a function fi, with i ∈ 1, . . . , n, and performs the evaluation of its own

hypothesis sh ∈ S. Based on this evaluation, the agents are divided into two

groups: active and inactive. For the active agents we have that fi(sh) = 0,

while for the inactive ones we have that fi(sh) = 1. It should be noted that,
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since fi is a probabilistic function, it is possible that different evaluations

of fi(sh) give different results [43]. In the diffusion step each inactive agent

randomly selects another agent to communicate with. If the latter is active,

it can duplicate the hypothesis of the passive agent, hence the dissemination

of information. If the selected agent is inactive, there can be no transfer of

information between the two agents, and so the chosen agent will adopt a

new random value. In contrast, the active agents in the standard SDS can

not initiate any communication with other agents. While the iterations

proceed, groups of agents assuming the same hypothesis constitute, for

convergence, the largest group of agents that defines the optimal solution.

The convergence is defined by two termination criteria:

• Strong Halting Criterion: after having determined that a group of

agents larger than a threshold, verify that the size of the group is

(stochastically) stable over a certain number of iterations.

• Weak Halting Criterion: it simply checks the stability and the min-

imum size of the total number of active agents (the total activity is

strongly dependent on the current best solution found).

Since the tests occur with high frequency in the points of the solution

space that show a good objective value, on average the agents spend more

time on these optimal solutions, and at the same time, attract other agents.

However, limited resources (a finite size of the population) ensure that only

the best solution discovered up to that moment is able to maintain a stable

group of agents. This different resources allocation allows the largest group

of agents to determine the optimal solution, without requiring the indi-

vidual agents to evaluate the objective function in an explicit way. Three

recruitment strategies have been introduced for SDS: the passive recruit-

ment (the standard mechanism), the active recruitment and the double

recruitment. The passive recruitment has been briefly introduced above.

The active recruitment is modeled on the behavior of the species of insects

that swarm. They actively try to recruit other members to direct them to-

wards a preferred direction, which can be a source of food or the selection

of the site to build the nest. A practical example is the waggle dance of

the bees in the hive. The waggle dance is performed to indicate to other

bees the location of a promising source of food. During the deployment

phase, in the active recruitment, the active agents seek the passive agents

to communicate their hypotheses. Each active agent randomly contacts

another agent B, if B is passive, it will be recruited from A (the hypothesis

of A is communicated to B). Unlike the passive recruitment, in which the

larger group, in theory, may increase disproportionately at each iteration,
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the active recruitment allows, at most, to double, in the size of the group,

at each iteration (if any active agent chooses a passive agent). Finally, in

the double recruiting, the mechanism of active and passive recruitment act

simultaneously. Thus, both active and passive agents choose the agents and

the hypotheses are transferred from the active agents to the passive ones.

This mix of recruitment mechanisms in a system is considered to be the

most truthful, from a biological point of view, and is therefore of particular

interest. This may lead to a conflict in the allocation of hypotheses, so it

is necessary to define some priorities among an active agent that assigns

a hypothesis to a passive agent (active priority) and a passive agent that

copies hypothesis from an active agent (passive priority). The SDS has a

greedy assignment process, that is, once a good solution has been found,

a large portion of the swarm is allocated for the operations, making these

agents not available for further explorations. A mechanism that frees some

of these resources without significantly affecting the stability properties of

the groups of agents could increase the efficiency of SDS for many types of

problems, in particular in dynamic optimization.

Applications

The SDS has been applied to many different problems of research and opti-

mization such as the site selection for wireless networks, the identification

of the sequence in bio-informatics, self-localization of mobile robots, object

recognition, motion tracking of eyes and lips, and text search.

8.3 Robot Cooperation

Robot cooperation is a challenging domain that researchers have been in-

vestigating since the 1980’s. It is the ability of solving a task by a group

of robots. Robots cooperate as a team in order to achieve a common

goal. Multi-robot cooperation increases efficiency of robots and allows the

achievement of complex tasks, which cannot be accomplished by a single

robot. Multi-robot cooperation comes into applications and extends re-

search on single robot for many reasons:

• Tasks are basically too complex for a single robot to achieve because

single robot is spatially limited;

• Using multiple simple robots may be cheaper and simpler than handling

one complex robot;

• Multi-robot systems are more flexible and fault-tolerant than single

robots acting alone.
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Robots act through a cooperative behavior. They are aware of their team-

mates, they share goals and their actions are useful for the whole group. Cao

et al. [82] have defined robots cooperative behavior over a multi-robot sys-

tem as it follows: Given some task specified by a designer, a multiple-robot

system displays cooperative behavior if, due to some underlying mechanism

(i.e., the “mechanism of cooperation”), there is an increase of the overall

system utility.

In other works, scientists classified multi-robot cooperative systems into

two categories: active and passive. In active system, robots communicate

between them in order to exchange information. They can organize their

tasks and make decisions. In passive systems, there is no communications

link between robots which makes the system easy to design and robust.

Robots do not share information and do not make decisions together.

Robots community has been interested in this domain in the last

decades, where many researchers wrote a number of surveys on multi-robot

systems. Cao et al. [82] summarized the research into a taxonomy of co-

operative systems. They surveyed five main research directions: group

architecture, resource conflicts, origins of cooperation, learning problems,

and geometric problems. L.E. Parker organized current research works

in multi-robot systems by principal topic areas [64], and focused on the

interaction of multiple mobile robots in chapter “Multiple mobile robots

systems” of the handbook of robotics [75]. Verret gave a brief history of

robotics and detailed some inspirations and influences in multi-robot sys-

tems [79]. Cai et al. explored few research fields in the multi-robot sys-

tems [14]. In this section, we will explore several robot cooperation aspects

such as distributed fusion, cooperative localization and architectures and

we will discuss communication effects on a multi-robot system. We will

focus on active cooperative systems and consider the basic functionalities

of such systems. Another aspect that should be developed is related to

artificial intelligence such as control, planning and task allocation. Issues

related to distributed artificial intelligence will be explored in the second

part of this chapter.

8.3.1 Communication

Accomplishing a cooperative task needs some form of communication. Re-

searchers distinguished between implicit and explicit communications. Im-

plicit communication allows robots to communicate through their environ-

ment. In this case, communication is based upon the environment change
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or behavior of other robots. Robots are equipped with sensors to observe

the changes. Whereas, in explicit communication, robots exchange mes-

sages to transfer various information like positions, current status, future

actions, etc. They devise also effective cooperative schemes.

Several works explored communication effect on performance of multi-robot

systems in different cooperative tasks. They concluded that communication

between robots can multiply their capabilities and can improve their effi-

ciency. It can provide benefit for many tasks. Exchanging a small amount

of information can lead to better performances.

Using wireless communication among multi-robot systems has become an

important area of research [65] and a requirement for different scenarios

( [20], [52]). It has contributed to the cooperative systems using explicit

communication. Robots use this technology for exploration, distributed

sensing or tracking, environmental monitoring and surveillance [40]. They

should be able to send and receive information at any time. Even though

there is no clear conclusion on which type of communication is better for

robot cooperation: implicit communication can fulfill some tasks, while ex-

plicit communication can improve flexibility of multi-robot systems. Recent

work took advantage of implicit and explicit communications in order to

improve cooperation and competition between robots [81].

8.3.2 Research fields

8.3.2.1 Distributed sensor data fusion

Robots may be equipped with different sensors such as vision sensors (cam-

era), sensitive sensors, distance measurement (radar and laser scanner) or

position sensors (odometry, GPS, etc.). These sensors help robots discover

their environment and are considered as important input for the percep-

tion task. This process consists in fusing data collected by the sensors,

exploiting redundant information and reducing uncertainty. Different fu-

sion algorithms have been developed and used in literature for single robots.

Main fusion methods include weighted average method, Bayesian inference,

Dempster Shafer theory, Kalman filter, fuzzy logic and neural networks.

Zhao et al. presented a survey on robot multi-sensor fusion technology and

explored different applications of multi-sensor fusion [85].

Multi-sensor fusion improves robots sensing and decision making while

accomplishing different tasks. That is why these methods are exploited

for multi-robot systems. Thanks to communication capabilities, robots can
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exchange information that can be used to enhance their perception perfor-

mances. They exchange data with their teammates through two different

approaches. In the first approach, the robot sends its own perception, in

this case the fusion algorithm considers data sent by robots as it comes

from an off-board sensor. In the second approach, robot sends data result-

ing from the fusion of all the received information. The same information

can be received many times; this is what is called “data incest” [61]. Due to

the latter, robots suffer from cycles of data dissemination where the same

information is provided by independent sources and can be combined many

times. Distributed multi-sensor fusion process should manage data incest

issue and take account of the latency of distributed data and the different

references systems. The main fusion method that had been appropriated

to robot cooperation and that can manage all these latter are the Bayesian

inference, Dempster Shafer theory and Kalman filter.

Bayesian inference combines multi-sensor information according to rules

of probability theory based on observational evidences. It depends on the

prior knowledge. In general, robots share their fused data. To avoid the

data incest the method of covariance intersection is used ( [41], [17]). For

example, Santos et al. [72] developed a multi-robot cooperative object lo-

calization based on a decentralized Bayesian approach. Their method is

composed of a local filter and a team filter. The local filter receives a re-

duced dimension representation of its teammates sample belief about the

object location. The team filter receives Gaussian Mixture Model (GMM)

representations of the object in the world frame, from the sensor team-

mates, and fuses them all performing Covariance Intersection among GMM

components.

Dempster Shafer theory, which generalizes the Bayesian inference, deals

with incomplete and uncertain data. It represents the knowledge by mass

functions, updates the beliefs and combines the evidences. Wang Shuo et al.

were interested in map-building task for multi-robot system [80]. A robot

detects its environment using its own sensors and can exchange its sensing

information with other robots to build a global map. Information is fused

by using the Dempster operator adapted to the combination of indepen-

dent sources. Authors explored the cooperative strategies in order to avoid

invalid sensing information. Nowadays, different studies were interested in

using Dempster–Shafer theory for distributed data fusion in vehicle net-

works [28]. This method is based on the cautious rule of combination [22]

that allows combination of dependent sources due to its idempotent prop-

erties [86]. It can be suited for data combination in multi-robot systems.
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Kalman filter uses statistical characteristics of the system model to re-

cursively determine estimates for data fusion. It deals with dynamic models

and fuses the low level redundant data of independent sources. Fused data

is local to each robot and is not a result of combination. The communication

regarding the robots’ positions increases certainty and reduces imprecision

about the robots’ own poses [4]. Kalman filter was applied to improve the

ball position estimation for a robotic soccer team [76] and its extensions

were explored for cooperative behavior of mobile robots [68]. It is also

applied for robot localization, we will detail this in the next section.

Distributed multi-sensor fusion is inevitable in different applications of

multi-robot systems. Robots can receive different kinds of information from

their teammates when cooperating to achieve a task. This information

should be combined with the best fusion algorithm that can avoid data

incest, latency and exploit the redundancy and complementarity of infor-

mation.

8.3.2.2 Cooperative localization

Localization is an essential problem in multi-robot systems. Robots should

be able to estimate their positions in order to navigate autonomously in an

environment, which may be known or unknown for robots. Usually, most

robots tasks require information about their positions and orientations.

Distributed tasks require information about the whole group of robots or

at least those detected in the scene. To supply multi-robot systems with a

solution for these needs, cooperative localization has been introduced. It

consists in locating each robot in a group within the same environment.

Nowadays, we find localization methods based on proprioceptive sensors,

inertial unit and/or GPS. Other methods take the assumption of known

environment and locate robots with exteroceptive sensors.

For a strong cooperation, each robot should know positions of other

members of the team. In general, they use their sensors in order to detect

other robots and to recognize their environment. They communicate to

exchange their pose, their maps, and the state of team. Therefore, com-

munication capabilities allow cooperative localization. Some recent studies

investigated the cooperative localization approach especially to improve lo-

calization accuracy. In the following, we will explore different examples.

Different localization methods dedicated for single robots were extended

to multi-robot systems. In [32] collaborative robot localization of indoor

robots is developed based on Markov Localization. Robots can localize
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themselves in the same environment, maps are supposed to be known.

Whenever one robot detects another, probabilistic methods are used to

synchronize each robot’s belief. The Kalman filter and its extensions were

deployed for cooperative localization in different studies. In [69], each robot

shares the information regarding its own motion with the rest of the team.

The Kalman filter is used to process the available positioning information

from all the team members. It estimates a pose for each robot. The authors

showed that the Kalman filter estimator can be distributed in a number of

smaller communicating filters, one filter for each robot. Each filter processes

sensor data collected by its robot and communication with other filter when

two robots detect each other and measure their relative pose. Martinelli et

al. [55] extended what have been developed in [69] and introduced an EKF

approach by considering the most general relative observation between two

robots. Karam et al. described a cooperative approach for collective lo-

calization of a heterogeneous group of vehicles where each vehicle updates

its group state with its own sensor data [45]. The vehicles exchange their

information about the positions of the rest of the group, then fuse it in

order to obtain the global state of the system. In [50], Lee et al. pre-

sented a cooperative localization method for a multi-robot system. They

incorporated different sensors such as GPS, odometer and gyro sensor to

localize absolute and relative position. They utilized correlation between

GPS errors and differential position data between the robots to refine their

position data. In [66], the authors treated the problem of absolute lo-

calization of a team of robots for unknown initial robot positions. They

proposed a particle clustering method which reduces the complexity of the

overall localization algorithm.

Other methods were based on exteroceptive sensors and used communi-

cation to exchange information. Franchi et al. in [33] took the assumption

that each robot is equipped with a sensor that measure the relative pose of

nearby robots without their identity. They proposed a two stage localiza-

tion system where data is processed by an associator, and EKF is used to

isolate and treat the best estimates. The localization approach presented

in [77] is based on stereo vision system helping each robot to recognize the

others and its environment. The authors used serial and parallel fusion.

The first approach identifies the position uncertainty of an observed robot

while the second method reduces errors of the position.

Different studies explored robot formation for localization. Hidaka et al.

proposed a method for optimizing the geometry of robots formation [38].

They evaluated the trace of the steady-state covariance of the robots posi-
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tion estimates. This method was applied on heterogeneous robots teams.

The authors studied the effects of optimal formation on robot’s localization.

As presented above, researchers have been interested in cooperative lo-

calization. Some of them used method initially designed for single robots.

Others developed new approaches for multi-robot system. They profit from

the advantages of collecting and integrating sensors information from dif-

ferent robots. They proved that cooperative localization can give a system

better localization performance and improve robustness of localization for

each robot in the group.

8.3.2.3 Control architectures

Control architecture is needed to handle robot control system complexity.

This is because robots need to interact in a certain environment. The con-

trol architecture influences the system robustness. It should allow robots

to act in real time and to control sensors and actuators. L.E. Parker de-

scribed in the chapter “Multiple Mobile Robot Systems” in [75] four types

of architectures: centralized, hierarchical, decentralized and hybrid.

• In Centralized architecture one agent controls the remaining agents

in the system. The centralized controller provides a strategy for coop-

eration and decision making. Each robot in the team takes the com-

mands.

• Hierarchical architecture is based on an approach where one robot

supervises the action of a group of robots. Each robot of this group

supervises another group of other robots and so on. Each robot receives

a part of the task to execute.

• Decentralized architecture does not employ a central agent that

controls all remaining agents. Robots take actions based on informa-

tion detected in their environment. This architecture is very robust

to failure, flexible and scalable, since control is not centralized. Each

robot is responsible of its own actions.

• Hybrid architecture profits from the advantages of the above control

strategies. In this strategy, agents are decentralized while a centralized

planner supervises the team.

Different control architectures have been developed over the years. The

interested readers can refer to [84] for a survey on the topic.
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8.3.3 Applications

Cooperative robotics may be applied to different domains such as underwa-

ter and space exploration, building surveillance, large objects transporta-

tion and hazardous environment (Landmine detection, de-mining, etc.).

They may also be implemented for air and underwater pollution moni-

toring, forest fire detection, service robotics in both public and private

domains, transportation systems, search and rescue operations after large-

scale disasters and the entertainment field:

• Exploration is an important application because it concerns areas

where humans cannot access easily. Belbachir et al. treated the prob-

lem of underwater exploration where autonomous underwater vehicles

exchange their information and cooperate to optimize their motions [8].

Leitner studied space applications [51], while Bautin et al. presented

a frontier-based exploration method for multi-robot system [6]. In [48]

air and ground robots were deployed.

• Object transportation and manipulation is a task where coop-

eration between a group of robots is essential. Robots surround the

object and transport it to the desired destination by pushing it (Figure

8.4). Different works in literature treated this application and proposed

different control approaches and motion planning ( [83], [56]).

Fig. 8.4 Experimental Results of tumbling a rectangle with two robots [83].

• Robots soccer is considered as a dynamical and adversarial applica-

tion. A ball moves and robots should act to catch and shoot it. Robots
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of one team should cooperate to compete with the opponent team. This

application requires a lot of knowledge in different research areas such

as robotics, intelligent control, communication, computer and sensor

technology, image processing, mechatronics, and artificial intelligence.

It is an important application for robot cooperation and competition.

Figure 8.5 shows the RoboCup Soccer platform league in Robocup 2010.

J.-H. Kim et al. [47] explored a soccer robot system and presented two

control schemes: vision-based and robot-based. They discussed both

control structure and action selection mechanisms. D.-H. Lee [49] pro-

posed a task and role selection strategy where each robot in a team

selects its task and role.

Fig. 8.5 RoboCup soccer league in 2010 (www.robocup.org)(Copyright c©1998–2013).

A plethora of applications was developed for multi-robot cooperation.

Nowadays, researchers explore applications in different domains such as

intelligent vehicles and swarm robotics, about which we will talk in the

next section.

8.3.4 Challenges

Distributed information engenders a main challenge in robot cooperation.

Robots exchange information through communication, thus increasing co-

operation vulnerability towards errors. Communication between robots re-

quires bandwidth and solution for data dissemination. Researchers should

choose a robust network architecture capable of handling connection fail-

ures and ensuring message passing. Furthermore, by sharing information,

the system is confronted to issues due to the different representation of

the environment that each robot can have. This is due to several reasons
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such as errors in localization of each robot or different sensor equipment

available on different robots. Data incest remains a challenging issue for

multi-robot system. Scientists should tackle this problem by developing ap-

propriate fusion algorithms. Several research challenges still remain such as

robot computational capabilities, control architecture design, organization

of high number of robots...

8.4 Swarm Robotics

It is difficult to define properly a swarm robotics, due to wide range of

applications. Maybe, the most appropriate definition is:“Swarm robotics is

the study of how large the number of relatively simple physically embodied

agents can be designed such that a desired collective behavior emerges

from the local interaction among agents and between the agents and the

environment” [71]. In this definition, the main characteristics of a swarm

robotics are summarized: simplicity of robots, fully distributed system,

scalability, robustness. Swarm Robotics are required to be characterized

with specific key advantages such as:

• Parallelism: typically a big, complex task is divided in many sub-task

and each unit accomplishes a given task quicker than a single robot;

• Robustness: the system is required with a high degree of fault tolerance.

In practice, if some robot fails the execution of its task, the system will

evolve in a novel and dynamic configuration that will reestablish the

correct functioning of the system;

• Scalability: the increment of the number of devices does not degrade

the performance of the whole system;

• Heterogeneousness: each unit can be characterized with specific prop-

erties that will be effectively exploited to accomplish suitable tasks;

• Flexibility: a system has to be reconfigurable in order to accomplish

different tasks and execute different applications;

• Complex Tasks: generally, a single unit is not able to accomplish a com-

plex task, whereas a swarm is able to, because of the joint capabilities

of the single devices;

• Cheap Alternative: devices are simple, easy to build and cheaper than

a single powerful robot.

Typically, Swarm Robotics operate based on some sense of biological

inspiration [74]. In this sense, the application of Swarm Intelligence to
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collective robotics can be identified as “Swarm Robotics”. The sense of the

interaction between bio-inspiration, Swarm Intelligence and Self-organized

and Distributed System can be explained through the Fig. 8.6.

Fig. 8.6 Swarm Robotics as the intersection between bio-inspired systems, robots
Swarm Intelligence and Self-Organized and Distributed Systems [63].

From an historical point of view, the first experiments on systems of

robots that could be identified as Swarm Robotics, were realized in late

1940s. Grey Walter and his team showed a system of simple robots interact-

ing in a seemingly social manner and by exhibiting “complex behavior” [24],

but Swarm Robotics becomes an active field of research only in the 1990’s.

G. Beni [9] introduced the concept of Swarm Robotics by discussing cellular

robotics systems. In the 1990’s Deneubourg et al. introduced the concept

of stigmergy in robots that behave like ants [21], [7]. Since then, numer-

ous researchers have developed collective and self-organized systems [18]

and have introduced robots’ behaviors inspired by insects’ social organiza-

tion [53], [25], [16].

8.4.1 Classification of swarm robotics

Different types of classification have been proposed for Swarm Robotics.

In [1] authors propose a taxonomy and classify existing studies. Specifically,

they split existing studies into the most important research directions. The

five fields they identify are: modeling, behavior design, communication,

analytical studies and problems. The taxonomy is summarized in Fig. 8.7.

Concerning modeling, authors found that modeling is a very suitable

method for Swarm Robotics. In fact, there are some risks related to the
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Fig. 8.7 Classification of Swarm Robotics literature [1].

robots that require a human to follow the experiments. Typically, to vali-

date results, a high number of experiments is required and simulation and

modeling of the experiments seem to be an effective way to make the system

work. Another important aspect related to modeling in Swarm Robotics

is scalability. Generally, demonstration of scalability of some control al-

gorithm requires hundreds of robots. Costs related to the use of such a

number of robots could be prohibitive and modeling could become the only

viable solution.

In a biological system, individuals may fine-tune their behaviors in their

lifetime. In practice, they learn how to survive and to stay better when

external conditions change. In Swarm Robotics, researchers considered the

behavioral adaptation to control large number of robots to accomplish a

task collectively.

Communication is sub-divided into three types. The first kind is via

sensing and represents the simplest type of communication based on the
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capacity of a robot to distinguish between other robots and the objects in

the environment. When robots use interaction via the environment, they

consider it as a communication medium (i.e., pheromones used from ants).

Interaction via communication involves explicit communication through di-

rect messages.

Analytical studies include studies that contribute to the theoretical un-

derstanding of swarm systems. In this category, methods for solution of

different problems can be included. Furthermore, mathematical tools that

allow a deeper comprehension of the details of Swarm Robotics systems can

be considered as part of analytical studies.

The last point of the taxonomy formulated in [1] is the problem axis,

where authors individuate general problems that have been investigated

in Swarm Robotics. A researcher could find useful the individuation of

this point when he tries to solve a specific problem and can try to make its

problem matchable with a more general problem already faced in literature.

In [36] authors classified Swarm Robotics literature in different domains.

They suggest a classification based on the characteristics of the swarm as

a whole rather than the architectural characteristics of individual robots.

Authors individuate domains like communication range, communication

topology, swarm size, communication bandwidth, etc.

In [82] authors present a survey of cooperative robotics in a hierarchical

way, as we have already mentioned in the previous section. They indi-

viduate five main axes: group architecture, resource conflicts, origins of

cooperation, learning and geometric problems. Group architecture repre-

sents the necessary infrastructure where the cooperative behavior must rely.

Resource conflicts is strictly related to the communication of the robots,

the management of the shared environment, etc. Origin of cooperation

means how cooperative behavior is achieved and actuated. Learning axis is

strictly related to adaptability and flexibility that represent essential traits

in a task-solving Swarm Robotics. These first four axes are mostly related

to the cooperative aspects of Swarm Robotics. The fifth axis individuated

by the authors is defined as geometric problems and covers research issues

tied to the embedding of robot tasks in a two- or three-dimensional world.

In [44] authors survey existing works on modeling collective behavior

of robot swarms with macroscopic models. Specifically, they consider very

simple robots that can be represented as stochastic Markov processes. A

macroscopic model describes the collective behavior of the robotic swarm.

The choice of macroscopic vs microscopic models, by taking into account the

behavior of some average quantity that represents the system, is related to
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the inherent simplicity and the analytical tractability of such macroscopic

descriptions.

A more recent and interesting classification of Swarm Robotics is given

in [13]. Authors propose a classification based on two taxonomies as shown

in Fig. 8.8.

Fig. 8.8 Taxonomies for Swarm Robotics [13].

Authors classify literature regarding Swarm Robotics according to the

methods used to design or analyze the swarms and its main collective be-

haviors.

8.4.2 Applications of swarm robotics

Concerning potential domains where Swarm Robotics can be applied, var-

ious scenarios can be individuated:

• Foraging - In this scenario, a robot is able to collect the objects and

deliver them to some predefined location. This scenario requires many

fundamental skills from a Swarm Robotic system, such as collective

exploration, efficient task allocation, etc. It seems that the first con-

tribution in terms of implementation of foraging using a group of real

robots is given in [62]. In [57], Mataric considers a formulation of re-

inforcement learning in a concurrent multi-robot learning domain. In

order to validate the fach, the author proposes an experiment involving

four mobile robots learning a foraging task. Sugawara et al. investi-

gate the collective and cooperative behavior of interacting agents [42].
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The task assigned to the swarm consists into pick up and collect pucks

distributed in a field. This task is reformulated as a problem of ants for-

aging even if the movement and interaction of agents (robots) are more

simplified than ants. In [31], Ducatelle et al. study self-organization of

heterogeneous swarms robotic to solve a specific task. Specifically, they

consider two swarms that need to mutually adapt to each other and the

swarm, as a whole, has to solve the task. Their work is related to the

problem on self-organized foraging, where robots have to optimize a

path to follow back and forth between a source and a target [34].

• Aggregation - Aggregation is one of the fundamental behaviors of swarm

in nature. In Swarm Robotics, self-organized aggregation is required

to form a robot cluster and is a very common goal but the approaches

are very diverse. In [27], authors consider an evolving neural network

with 12 neurons to reach robot aggregation. Additionally, aggregation

is a requisite for Swarm Robotics behaviors such as self-assembly and

pattern formation [78]. In [12], authors show how the spatial separation

of two conflictive spots affects the cooperation behavior. In [5], authors

investigate aggregation behavior as a case, and systematically studies

the performance and the scalability of aggregation behaviors of percep-

tron controllers evolved for a simulated Swarm Robotic system with

different parameter settings. Baldassarre et al. successfully evolved

controllers for a swarm of robots to aggregate and move towards a light

source in a clustered formation [35].

• Clustering and Sorting - Clustering and sorting are mostly influenced

by the nest building behavior of termites and wasps. Distributed clus-

tering, and more recently sorting, by a swarm of robots have served

as benchmarks for swarm intelligence based robotics [29]. In [2] a new

method for distributed object sorting by a swarm of robots is intro-

duced. In this work it is shown how an unloaded agent seeks an iso-

lated object to pick up, and an agent already carrying an object seeks

an existing cluster of the same type to deposit its load. Authors em-

ploy only on-board sensing. In [23] authors use the concept of spatial

awareness to accomplish the cluster task and support task allocation

that are spatially differentiated.

• Exploration - Exploration of an unknown environment is a fundamen-

tal issue in mobile robotics. One of the main advantages in the usage

of multiple robots instead of a single one lies on the speed of conver-

gence of the exploration process, accuracy of the solution, and fault

tolerance. Most significant research topics in multi-robot-exploration
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are task sharing and navigation. A useful contribution in terms of

multi-robot exploration is given in [54]. The exploration method pro-

posed by these authors minimizes the overall exploration time, making

it possible to efficiently localize fire sources. In GUARDIANS (Group

of Unmanned Assistant Robots Deployed In Aggregative Navigation by

Scent)FP6, EU funded project, there is a group of robots whose task

is the exploration of the unknown operative environment. In [19] au-

thors propose two techniques based on Particle Swarm Optimization

and Darwinian Particle Optimization to perform in an effective way

exploration task, by explicitly taking obstacle avoidance into account.

8.5 Conclusion

In the first part of this chapter, we tried to express the essence of what

Swarm Intelligence is, namely: “A single ant or bee is not smart, but their

colonies are. The study of Swarm Intelligence is providing insights that

can help humans manage complex systems, from truck routing to military

robots” [60]. After considering the main applications of Swarm Intelligence

itself, we presented the most important results about cooperation of robots,

trying to analyze in a critical fashion the issues and challenges related to

this field and presenting the main advantages. The last contribution of this

chapter is represented by the synergic “fusion” of Swarm Intelligence and

cooperation among robots, that we referred as Swarm Robotics. Specifi-

cally, we presented some interesting taxonomies and typical applications of

this new field of research.
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