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Abstract—In this paper, we introduce two families of dis-
tributed algorithms to control the movement of groups of flying
robots that are monitoring an event by moving over the field
where the event takes place, while optimizing some specific
objective. In order to show the effectiveness of our algorithms, we
formulate the Sport Event Filming (SEF) problem. The objective
of the problem is to maximize the satisfaction of event viewers
while minimizing the distance traveled by the camera-drones. We
propose two families of solutions to solve the dynamic version of
the problem, where the flying robots do not have any knowledge
of the input sequence and move in reaction to the movements of
the protagonists of the event. The first family (Nearest Neighbor)
is based on a technique used in robotic systems, whereas the
second family (Ball Movement Interception) is designed based on
specific characteristics of the SEF problem. We present extensive
simulation results for both families in terms of average viewer
satisfaction and traveled distance for the flying robots, when
several parameters vary.

Index Terms—Sport Event Filming (SEF) problem, Flying
robots, VRP with Soft Time Windows

I. INTRODUCTION

Flying robots, also know as Unmanned Aerial Vehicles

(UAV) or drones, are aerial vehicles that operate without a

human pilot. Flying robots are usually equipped with a po-

sitioning system, storage memory, and a wireless transceiver.

They can fly at considerable speed, 60 km/h for commercial

devices and 220 km/h for military aircrafts. Since their cre-

ation, flying robots have found many uses in civil and military

applications. Currently, they are most often used for aerial

reconnaissance, scientific research, logistics and transporta-

tion, or more in general, in all the situations where a direct

human intervention would be hazardous. A brilliant example

of flying robots’ usefulness was presented in Fukushima in

2011, when a flying robot was used to explore the disaster site

at Japan’s devastated nuclear power plant. We are convinced

that the real potential of flying robots consists in achieving

coordination and cooperation among the devices of a fleet, and

that the correct design of coordination/cooperation schemes

would pave the way for the realization of mission-oriented

devices.

In this paper, we make a step in the direction of deploying

coordination/cooperation schemes for flying robots operations

*This work has been carried out in the framework of the Labex MS2T,
which is funded by the French Government, through the program “Investments
for the future”, managed by the National Agency for Research (Reference
ANR-11-IDEX-0004-02).

by proposing, formulating and simulating the Sport Event

Filming (SEF) problem. We introduce this problem in order

to provide a novel application scenario, where we can develop

strategies to coordinate the movement of a group of mobile

robots in the presence of highly varying time-space constraints

to film/monitor a sequence of actions while optimizing some

specific objective. Nevertheless, a solution to this problem is of

interest for several application domains. Besides TV filming,

it would be beneficial for environmental monitoring, disaster

recovery, site inspection and exploration, etc.

Specifically, the SEF problem copes with the organization

of a fleet of flying robots able to fly over a limited field to film

a sport event with the objective of maximizing the satisfaction

experienced by viewers who watch the game on TV, while

minimizing the traveled path.

The family of problems we deal with are usually referred

to as Dynamic Vehicle Routing (DVR) problem, and the static

variants taken into consideration in this work are all NP-

hard problems. Specifically for the event filming problem

some solutions have been proposed [2], [7], [8], [4]. The

main disadvantage of these solutions is that cameras are

fixed. Therefore, they are not applicable to the more general

problem of coordinating flying robots movements to film an

event in a hostile or hazardous environment. Furthermore, they

cannot provide the same level of accuracy or entertainment

given by mobile devices. Whereas several solutions exist for

mobile sensor networks in static scenarios, to the best of

our knowledge, no schemes using flying robots have been

proposed to solve this specific and dynamic problem.

The core contributions of our work can be outlined as

follows:

• we describe and formulate an interesting and unexplored

problem in the framework of self-organization of mobile

video sensing devices;

• while in a previous work we proposed a mathematical

model for the static version of the problem [3], in this

work, we propose two families of algorithms to solve the

dynamic version of the problem in a distributed way and

without any knowledge of the sequence of actions.

The rest of this paper is organized as follows. Section II

presents the Vehicle Routing Problem and its variants. In

Section III we propose two families of distributed techniques

for the optimal placement of flying robots. These schemes are

tested and analyzed through several simulation campaigns in

Section IV. Finally, Section V concludes this paper.
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II. RELATED WORKS

The problem of determining the movement pattern for a

certain number of flying robots when they have to film an event

while maximizing viewer satisfaction and minimizing the total

transportation costs can be considered as a special case of

the Vehicle Routing Problem with Time Windows (VRPTW).

Specifically, it can be classified as a Vehicle Routing Problem

with Soft Time Windows (VRP-STW), where the sequence of

points in the field to be filmed represent the customer to be

served. If a specific point is not timely filmed, this affects only

the satisfaction of the viewers without invalidating the overall

solution.

The VRPTW assume that the cities to be visited (actions in

the SEF problem) are known a priori and will not change dur-

ing the execution of the solution. However, in real applications

this assumption may be too strict. In reality, we have locations

to be served that can be highly variable [5]: they can be born

and die at any moment, their demands can change over time

even when the solution has already been calculated. Also in

the SEF problem, the position to film and the time to film that

location change action by action.

The problem of planning routes through service demands

that arrive during a mission execution is known as the Dynamic

Vehicle Routing Problem (DVRP) [6], because part or all the

locations to reach are not known a priori.

In [6], the authors identify three main approaches to address

DVR problems. The first approach is to simply re-optimize

every time a new event takes place; in the second approach,

routing policies are designed to minimize the worst-case ratio

between their performance and the performance of an optimal

offline algorithm that has a priori knowledge of the entire

input sequence; in the third approach, the routing problem

is embedded within the framework of queueing theory and

routing policies are designed to minimize typical queueing-

theoretical cost functions such as the expected waiting time in

the system for the demands.

Both families of distributed algorithms we present in this

work follow the first approach. In the second family, we

additionally consider specific characteristics of the problem

to forecast the next locations to be covered.

III. DISTRIBUTED ALGORITHMS FOR DYNAMIC VRP-STW

If the whole event sequence is available a priori, then the

SEF problem becomes a VRP-STW problem, which has been

modeled and solved to optimality [3]. Since this assumption is

not realistic for a real-time system, new optimization methods

need to be designed to tackle the dynamic version of the SEF

problem.

In Section II we mentioned that three different approaches

have been identified. The first of these approaches simply pro-

poses to re-optimize every time a new event takes place. This

approach is the most suited for the specific communication and

movement capabilities of the flying robots to offer a feasible

and practical solution to the event filming problem. In fact, the

sub-optimal solution will be computed action-by-action by the

flying robots that cooperate by exploiting their communication

capabilities in a distributed and self-organized fashion. For

this purpose, we introduce in the distributed strategies the

coordination time, Tcoord, which is the time needed by the

robots to communicate with each other and determine which

of them will move to follow the newly generated action.

In the following we present two families: Nearest Neighbor

(NN) and Ball Movement Interception (BMI), each of them

consisting of four different distributed techniques to solve the

event filming problem.

A. Nearest Neighbor

The Nearest Neighbor technique for DVR problems in

robotic system is presented in [1]. The core idea is that viewer

satisfaction increases when a flying robot is able to reach the

location of the current action as quickly as possible, and that

the minimum traveled distance is achieved by the closest flying

robot. Thus, the flying robot that is the closest to the location

of the action is the one chosen to move and film the action.

The following three techniques are extensions of the basic NN

technique.

B. Nearest Neighbor-Division Field

A disadvantage of the NN technique is that when a sequence

of actions occurs in a limited area, the same flying robots will

be chosen to film it. If the duration of this sequence extends

over time, it would cause one robot to reach its maximum

feasible traveled distance much earlier than the others.

Based on these considerations, we introduce the Nearest

Neighbor-Division Field (NN-DF). In the NN-DF technique,

each robot is assigned to a portion of the field, and it will film

the actions that are located inside that portion.

This technique has the disadvantage of not choosing the

robot that is the nearest to the current action, which can result

in a reduced satisfaction for the viewer. We will see in Section

IV the effects of this with respect to the reduced area for each

robot to monitor.

C. Nearest Neighbor with Specular Repositioning

In the previous two techniques only one robot moves when

a new action is born. The Nearest Neighbor with Specular

Repositioning (NN-SR) technique considers robots as belong-

ing to a pair. When one of them, k, is chosen to move to

film an action for which it is the nearest neighbor, the robot

that is closest to the position specular to the action position,

k̄, moves as well to mirror the movement of the first. More

precisely, let L and W be the length and the width of the field.

When robot k moves to the position of the new action (xa, ya),
k̄ will move to (L − xa,W − ya). It is worth noting that

robots are not coupled at the beginning of the event, instead k̄
is chosen action-by-action depending on the proximity to the

action specular position. We expect that this technique, which

results in robots traveling more than the previous techniques,

will be more reactive and timely in filming the actions so as

to offer a higher satisfaction to the viewer.
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D. Nearest Neighbor with Quasi-Specular Repositioning

A generalization of the NN-SR technique is the Nearest

Neighbor with Quasi-Specular Repositioning (NN-QSR). The

NN-SR technique makes pairs of robots move specularly. As

we have already highlighted, this behavior can lead to a quick

depletion of the maximum allowed traveled distance, due to

the specular movements of the robot (k̄) that is not filming

any action. Thus, the idea behind the NN-QSR is to make the

center of the field be an attractor for k̄ while it is repositioning

in the direction of k’s specular position.

The attraction strength on the movement can be modulated

through an appropriate detour factor, 0 ≤ β ≤ 1. When

β = 0, no detour is applied on the movement of k̄, which

moves to the specular position in respect of the current action

position, and NN-QSR coincides with NN-SR. When β = 1,

k̄ is completely detoured towards the center of the field. For

intermediate values between 0 and 1, k̄ move on a point on the

straight line between these two extreme points. More precisely,

if (xa, ya), L, W are the positions of the new action, the length

and the width of the field, respectively, then k̄ will move to

(L · (1− β
2
)− xa · (1− β),W · (1− β

2
)− ya · (1− β)).

By detouring the movement of k̄, we expect a higher

satisfaction of the viewer as compared to the NN and NN-

DF techniques, without introducing a high traveled distance

expenditure as in the NN-SR technique.

E. Ball Movement Interception

All the previous techniques work well if tbirth and tstart
are sufficiently far in time to allow a robot to reach the action

location before tstart. In fact, these techniques try to solve the

dynamic version of the proposed problem simply by adapting

as quick as possible the position of one (or one pair of) robots.

None of them try to forecast the location to film for next

action before its tbirth. As we described in [3], the static model

introduces the time of “flight” of the ball when the ball is not

possessed by any player, Tfly . This interval of time between

tstopi
and tbirthi+1

could be used to forecast the location of

next action.

We can realistically assume that robots, which are able to

constantly detect the ball and its location, are also able to

easily compute their trajectory. For the sake of simplicity, in

this work, we consider only that the ball moves along straight

lines. We consider the parabolic trajectory of the ball as flatted

on the straight line lying on the game field plane, and we do

not take into consideration special effects that can be given to

the ball.

By assuming that robots know the trajectory of the ball, they

can estimate the next player who will hold the ball. Through

this estimation, before the ball reaches the next player they can

start moving towards the straight line between the position of

the previous action and that of the player expected to receive

the ball. Thus, we introduce a new family of techniques,

called Ball Movement Interception (BMI), which includes all

the previous techniques augmented by this knowledge: Ball

Movement Interception (BMI), Ball Movement Interception

with Division Field (BMI-DF), Ball Movement Interception

with Specular Repositioning (BMI-SR) and Ball Movement

Interception with Quasi-Specular Repositioning (BMI-QSR).

It is important to note that we do not assume that unexpected

interceptions of the ball destined to a specific player are ne-

glected. In fact, such events would simply cause a degradation

in the performance of this family of techniques.

IV. PERFORMANCE RESULTS

In this Section we will show two simulation campaigns il-

lustrating selected results obtained for the proposed algorithms

when several parameters vary. We consider the average viewer

satisfaction as the output parameter for assessing the quality of

the route chosen for the robots, and the total traveled distance

as the output parameter representing the cost of the route. In

the first simulation campaign we study the impact of the detour

factor, β, on the performance of the Specular Repositioning

techniques. The second simulation campaign is a more general

comparison among the different distributed techniques. The

results have been achieved by using MATLAB 7.9.0.529

(R2009b), and they have been averaged over 1000 runs with

a confidence interval of 95%. The parameters presented in

Table I are used in all the simulation campaigns, specific

differences will be highlighted in each campaign subsection.

We simulate the behavior of the algorithms when the num-

ber of actions in the event and the duration of each action vary,

respectively. The number of actions is useful to characterize

the time-space variability of the actions in the event, whereas

the duration of an action represents the dynamicity of the

event. Both these input parameters depend on the kind of

sport that has to be filmed and their characterization is left

as a future work. In our simulations, we also used a variable

number of robots (2÷ 6), but, for matter of space, we will be

able to show few results of scenarios with 2 and 4 robots.
Parameter Value

Size of the game field (L×W ) 110× 80 [m2]
Max Distance Feasible by Robots 65 [km]

Speed of Robots 15 [m/s]
Action Min Duration (tbirth → tstop) 0.2 [s]

Ball Min and Max Speed {1÷ 40} [m/s]
Coordination Time (Tcoord) 0.2 [s]

Max Satisfaction (Smax) 1

Actions Spatial and Temporal Distribution random

Number of run for each scenario 1000

TABLE I: Fixed parameters used for all simulations

A. Performance evaluation varying detour factor

In this simulation campaign we want to investigate the

impact of the detour factor on the performance of the QSR

techniques. Hence, we compare the results of NN-QSR and

BMI-QSR, when the detour factor, β, varies in the range

{0 ÷ 1}. We let the number of actions in the event and the

duration of an action vary, as shown in Table II. The range

considered for the former parameter has been increased to

match the time duration of a real event. The performance of

the two techniques in terms of average viewer satisfaction for

different number of actions is reported in Fig. 1, and traveled

distance for different maximum durations of the actions in Fig.

2.
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Number of Robots 2

Robot k Position {(−1)k L
4
+ L

2
, W

2
}

Action Max Duration (tbirth → tstop) {2, 6, 10}[s]
Detour Factor (β) {0÷ 1}
Number of Actions {100, 500, 1000}

TABLE II: Simulation parameters used for simulating NN-

QSR and BMI-QSR
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NN−QSR Number of Actions=100

NN−QSR Number of Actions=500

NN−QSR Number of Actions=1000

BMI−QSR Number of Actions=100

BMI−QSR Number of Actions=500

BMI−QSR Number of Actions=1000

Fig. 1: QSR techniques: average viewer’s satisfaction when

the detour factor and the number of actions vary

From Fig. 1 we observe that use of the ball movement

interception does limit the need to reposition the robot specular

to the robot that is filming the action. The BMI technique leads

to a high viewer’s satisfaction when the attraction strength

towards the center of the field increases, whereas the NN-

QSR technique presents a maximum when the detour factor

is between 0.5 and 0.6. This also means that different detour

strengths should be applied depending on the used technique.

As expected, the viewer satisfaction experienced with the BMI

technique is higher on average.

The same behavior for the NN-QSR technique is presented

in Fig. 2, where we can appreciate the existence of a minimum

in the distance traveled by the robots when the detour factor

is around 0.6. The BMI-QSR improves its performance when

the detour factor grows until values very close to 1. It is

interesting to remark that for both the techniques, a decrease in

the distance traveled by the robots corresponds to an increase
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NN−QSR Action Max Duration=2s

NN−QSR Action Max Duration=6s

NN−QSR Action Max Duration=10s

BMI−QSR Action Max Duration=2

BMI−QSR Action Max Duration=6s

BMI−QSR Action Max Duration=10s

Fig. 2: QSR techniques: traveled distance when the detour

factor and the action maximum duration vary

Number of Drones 4

Drone k Position
{(−1)k L

4
+ L

2
,

(−1)⌈k/2⌉ W
4

+ W
2
}

Action Max Duration (tbirth → tstop) 2÷ 10 [s]
NN-QSR Detour Factor (β) 0.6
BMI-QSR Detour Factor (β) 0.8

Number of Actions {1000÷ 5000}

TABLE III: Simulation parameters used for distributed algo-

rithms comparison
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Fig. 3: Distributed algorithms comparison: total traveled dis-

tance for fixed actions maximum duration (6 [s])

in the satisfaction experienced by the viewer. Comparatively,

the NN-QSR technique leads the robots to travel about 1.3km
on average less than the BMI-QSR technique, with a corre-

sponding about 18% on average of decrease in the viewer’s

satisfaction. For both the output parameters, the number of

actions and the action maximum duration do not significantly

impact the performance of the different techniques, therefore

the three simulated algorithms produce overlapping curves.

B. Comparison of Positioning Techniques

This second simulation campaign, whose main parameters

are in Table III, shows the results when all the distributed

techniques are applied to a scenario with a variable number

of actions and a fixed action maximum duration (Fig. 3, 4)

and a fixed number of actions and a variable action maximum

duration (Fig. 5, 6).

In Fig. 3 we show that the distance traveled by the robots

grows linearly with respect to the number of actions for all

the algorithms. Thus, it is easy to predict the distance that

each technique will make robots travel through an estimate

of the number of actions a real event will consist of. As

expected, the NN technique is the best in terms of traveled

distance, both when the Division Field is used and when it is

not. The basic technique of the BMI family performs as the

third best for this metric, which is a very encouraging result

because of the consideration we will make about the average

viewer satisfaction. On average the BMI technique makes

robots travel about 73 km more than NN in the considered

interval. The techniques with Specular Repositioning are the

worst for this metric because of the distance traveled by the

robot that does not film the action.
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Fig. 4: Distributed algorithms comparison: average viewer’s

satisfaction for fixed actions maximum duration (6 [s])

The situation is reversed in Fig. 4, which shows the average

viewer satisfaction. All techniques in the BMI family achieve

a higher satisfaction than the corresponding techniques in

the NN family. The distance between the best techniques

of the two families for this parameter, which are the basic

technique and the SR technique, is 14% on average. When

the upper limit on the feasible traveled distance is reached,

both the satisfaction achieved by BMI-SR and BMI-QSR start

decreasing, since robots are not allowed to move anymore.

Thus, the instantaneous satisfaction goes to zero and the

average satisfaction decreases. Until the feasible distance limit

is reached, the two techniques of the BMI family perform

very similarly, the only main difference is that the QSR let

robots travel more efficiently. Instead, we can appreciate some

difference in the performance of the same techniques for the

NN family, the SR technique performs 2% better on average

than the QSR technique.

In Fig. 5 we can appreciate the traveled distance when

the maximum duration of the actions varies. We can see

that all the proposed algorithms are scalable with respect to

this input parameter, and the heuristics ranking is the same

of that in Fig. 3. Fig. 6 shows a logarithmic growth of

the average viewer’s satisfaction when the actions maximum

duration increases. Very quick and short actions create troubles

to all the algorithms, which do not achieve more than 30% of

viewer’s satisfaction, whereas they perform much better and

reach 90% of satisfaction when the maximum duration is the

upper value. On average, the BMI techniques have a gain of

15% over the corresponding NN techniques.

V. CONCLUSION

In the context of coordination schemes deployment for

mobile robots, we have introduced the SEF problem, whose

objective is to maximize the satisfaction of an event viewer

while minimizing the distance traveled by the camera-drones

that film the event. We considered the dynamic version of the

problem where knowledge of the entire sequence of actions

is not assumed to be known a priori. The dynamic version of

the Sport Event Filming can be treated as a Dynamic Vehicle

Routing problem. We solved it by re-optimizing the position

of the drones every time that a new action occurs. As a future
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Fig. 5: Distributed algorithms comparison: total traveled dis-

tance for a fixed number of actions (1000)
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Fig. 6: Distributed algorithms: average viewer’s satisfaction

for a fixed number of actions (1000)

work, we will use a different approach based on queuing

theoretical cost functions.
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